請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78814完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐展言 | zh_TW |
| dc.contributor.advisor | Chan-Yen Ou | en |
| dc.contributor.author | 王荷昱 | zh_TW |
| dc.contributor.author | Ho-Yu Wang | en |
| dc.date.accessioned | 2021-07-11T15:21:19Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2019-03-11 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Bleazard, W., McCaffery, J.M., King, E.J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., and Shaw, J.M. (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298-304.
Cipolat S., Martins de Brito O., Dal Zilio B., Scorrano L. (2004). OPA1 requires mitofusin to promote mitochondrial fusion. Proc. Natl Acad Sci USA. 101, 15927-32. Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., and Guo, M. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 441, 1162-1166. Daste F., Sauvanet C., Bavdek A., Baye J., Pierre F., Le Borgne R., David C., Rojo M., Fuchs P., and Tareste D (2018). The heptad repeat domain of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep. 6, e43637 Frederick, R.L., McCaffery, J.M., Cunningham, K.W., Okamoto, K., and Shaw, J.M. (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol. 167, 87-98. Fransson, S., Ruusala, A., and Aspenström, P. (2006). The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 344, 500-510. Glater, E.E., Megeath, L.J., Stowers, R.S., and Schwarz, T.L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545-557. Guo, X., Macleod, G.T., Wellington, A., Hu, F., Panchumarthi, S., Schoenfield, M., Marin, L., Charlton, M.P., Atwood, H.L., and Zinsmaier, K.E. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 47, 379-393. Groger, A., Kolb, R, Schafer, R., and Klose, U. (2014). Dopamine reduction in the substantia nigra of Parkinson's disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One. 9, e84081. Gautier, C.A., Kitada, T., and Shen, J. (2008). Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A. 105, 11364-11369. Goldberg, M.S., Fleming, S.M., Palacino, J.J., Cepeda, C., Lam, H.A., Bhatnagar, A., Meloni, E.G., Wu, N., Ackerson, L.C., Klapstein, G.J., Gajendiran, M., Roth, B.L., Chesselet, M.F., Maidment, N.T., Levine, M.S., and Shen, J. (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol Chem. 278, 43628-43635. Geisler, S., Holmström, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 12, 119-131. Gegg, M.E., Cooper, J.M., Chau, K.Y., Rojo, M., Schapira, A.H., and Taanman, J.W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 19, 4861-4870. Hales, K.G., and Fuller, M.T. (1997). Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 90, 121-129. Hermann, G.J., Thatcher, J.W., Mills, J.P., Hales, K.G., Fuller, M.T., Nunnari, J., and Shaw, J.M. (1998). Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359-373. Hatch, A.L., Gurel, P.S., and Higgs, H.N. (2014). Novel roles for actin in mitochondrial fission. J. Cell Sci. 127, 4549-4560. Ishihara N., Eura Y., and Mihara K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535-6546. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392, 605-608. Kanaji S., Iwahashi J., Kida Y., Sakaguchi M., Mihara K. (2000). Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol. 151, 277-288. Kameda H., Furuta T., Matsuda W., Ohira K., Nakamura K., Hioki H., Kaneko T. (2008). Targeting green fluorescent protein to dendritic membranein central neurons. Neurosci Res. 61, 79-91. Li, Z., Okamoto, K., Hayashi, Y., and Sheng, M. (2004). The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses. Cell. 119, 873-887. Labrousse, A.M., Zappaterra, M.D., Rube, D.A., and van der Bliek, A.M. (1999). C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell. 4, 815-826. Morris, R.L., and Hollenbeck, P.J. (1993). The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci. 104, 917-927. Macaskill, A.F., Rinholm, J.E., Twelvetrees, A.E., Arancibia-Carcamo, I.L., Muir, J., Fransson, A., Aspenstrom, P., Attwell, D., and Kittler, J.T. (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 61, 541-555. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., Kimura, M., Komatsu, M., Hattori, N., and Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221. Maniar T.A., Kaplan M., Wang G.J., Shen K., Wei L., Shaw J.E., Koushika S.P., Bargmann C.I. (2011). UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat. Neurosci. 15, 48-56. Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., and Hirokawa, N. (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 79, 1209-1220. Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803. Parker, W.D Jr., Boyson, S.J., and Parks, J.K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol. 26, 719-723. Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., and Chung, J. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 441, 1157-1161. Poole, A.C., Thomas, R.E., Yu, S., Vincow, E.S., and Pallanck, L. (2010). The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One. 5, e10054. Palikaras K., Lionaki E., and Tavernarakis N. (2015). Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 521, 525-8. Santel, A., Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874. Stowers, R.S., Megeath, L.J., Gorska-Andrzejak, J., Meinertzhagen, I.A., and Schwarz, T.L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron. 36, 1063-1077. Shirihai O.S., Song M., and Dorn G.W. II. (2015). How mitochondria dynamism orchestrates mitophagy. Circ. Res. 116, 1835-1849. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N. (1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 93, 1147-1158. Tilokani L., Nagashima S., Paupe V., and Prudent J. (2018). Mitochondrial dynamics: overview of molecular machanisms. Essays Biochem. 62, 341-360. Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G., Albanese, A., Nussbaum, R., González-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W.P., Latchman, D.S., Harvey, R.J., Dallapiccola, B., Auburger, G., and Wood, N.W. (2004). Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 304, 1158-1160. Vives-Bauza C., and Przedborski S. (2011). Mitophagy: the latest problem for Parkinson’s disease. Trends. Mol Med. 17, 158-165. Wong E.D., Wagner J.A., Gorsich S.W., McCaffery J.M., Shaw J.M., and Nunnari J. (2000). The dynamin-related GTPase, Mgm1p, is and intermembrane space protein required for maintenance of fusion competent mitochondria. J, Cell Biol. 151, 341-352. Wong E.D., Wagner J.A., Scott S.V., Okreglak V., Holewinske T.J., Cassidy-Stone A., and Nunnari J. (2003). The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303-311. Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y.L., Selkoe, D., Rice, S., Steen, J., LaVoie, M.J., and Schwarz, T.L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 147, 893-906. Xiao B., Deng X., Zhou W., and Tan E.K. (2016). Flow cytometry-based asssesment of mitopgagy using Mitotracker. Front. Cell Neurosci. 10, 76. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78814 | - |
| dc.description.abstract | 神經(neuron)為生物體中用來接收、傳遞訊息的細胞,主要結構為細胞本體(cell body)、接收訊息的樹突(dendritie)以及送出訊息的軸突(axon)。粒線體(mitochondrion)為細胞最主要用來生成能量的胞器,當粒線體能量供給出問題,會造成神經發育異常或功能受損而導致神經退化性疾病,例如帕金森氏症。先前研究指出,PTEN-誘導激酶1(PINK1)和E3泛素連接酶(Parkin)調控粒線體自噬作用(mitophagy)來清除細胞中受損的粒線體,而PINK1或Parkin異常是導致帕金森氏症的主要原因之一。然而,目前仍然沒有一個適合的活體模式系統來研究PINK1、Parkin以及他們的下游因子對於粒線體的調控與神經樹突形態之間的關係。在我的研究中,我首先證明在線蟲PVD神經元中粒線體的分布以及分裂融合均會影響神經樹突的型態生長,且粒線體的存在可以穩定生長中的樹突不進行無謂的分支。進一步,我發現缺乏PINK1或Parkin均會造成樹突長度和分支的減少。另一方面,在粒線體的觀察中我發現,缺乏Parkin的情況下,許多軸突中的粒線體會變小且模糊化,細胞本體也會出現許多不正常的粒線體顆粒,而這些顆粒的產生需要發動相關蛋白1(Drp1),同時也部分需要PINK1。然而,缺乏粒線體Rho GTP酶1 (Miro1)會更加促進這些不正常顆粒的產生。最後,我發現缺乏粒線體融合蛋白(mitofusin)會造成粒線體細碎化並且亮度與數量均會減少,而同時缺乏Parkin能夠稍微回復粒線體的亮度與數量,代表去除Parkin有助於細碎的粒線體聚集。總而言之,我在活體生物中一個特定的神經細胞檢驗粒線體與神經樹突的關係,並觀察到了缺乏PINK1、Parkin和其下游因子對於粒線體型態的影響,以及造成樹突在生長上的缺陷。 | zh_TW |
| dc.description.abstract | Neuron is a cell type that functions in receiving signals, integrating incoming signals and sending signals to target cells, and its compartments include cell body, dendritie and axon. Mitochondrion is an organelle which generates most of ATP, as source of chemical energy. Defect of generating energy in mitochondria may affects neuronal morphology and function, and causes neurodegerative diseases, such as Parkinson’s disease. Previous studies reported that PINK1 and Parkin regulate mitophagy to eliminate damaged mitochondria, deficiency of PINK1 or Parkin cause Parkinson’s disease. However, there is still no robust model to study how PINK1, Parkin and their substrates regulate mitochondria and affect dendritic morphology in vivo. In my study, I confirmed that both mitochondrial localization and dynamics affect dendritic morphogenesis in C. elegan PVD neuron, and mitochondrial can stabilize dendritic branching. Next, I found the decrease of dendritic length and branches in mutation of PINK1/pink-1 and Parkin/pdr-1. In my observation, I found numbers of small and blurred mitochondria in axon and abnormal mitochondrial puncta in cell body in pdr-1 mutant. The abnormal puncta in cell body require Drp1 and also partially require PINK1. Furthermore, loss of Miro1 enhances the generating of abnormal mitochondrial puncta. Finally, mutation of mitofusin/fzo-1 caused mitochondrial fragmentation and decrease of mitochondrial intensity and number, however, the defects were slightly rescued in pdr-1; fzo-1 mutant, indicating that loss of Parkin promotes fragmented mitochondria to aggregate. Taken together, I established a platform which allows us to examine the relationship between mitochondria and dendrite in a specific neuron in vivo, and found that impairment of PINK1, Parkin or their substrates affect mitochondrial and dendritic morphology. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:21:19Z (GMT). No. of bitstreams: 1 ntu-108-R03442026-1.pdf: 9736481 bytes, checksum: 240196e21e0eca9ef3b809e566079615 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要............................................................................................................................i
ABSTRACT....................................................................................................................iii CONTENTS.....................................................................................................................v I. INTRODUCTION........................................................................................................1 1.1 The relationship between mitochondria and neuronal morphology........................1 1.2 The mechanism of mitochondrial dynamics and transport......................................2 1.3 Parkinson’s disease and the role of PINK1/Parkin pathway....................................4 1.4 The relationship between PINK1/Parkin pathway and mitochondrial dynamics or transport...................................................................................................................5 II. MATERIALS AND METHODS...............................................................................8 2.1 Strains and Genetics................................................................................................8 2.2 Designing an integrated line to observe mitochondria and neuronal morphology in PVD neuron.............................................................................................................8 2.3 Constructs and transgenic worms............................................................................8 2.4 Protocol of generating transgenic integrated line..................................................11 2.5 Combination of different genotypes......................................................................12 2.6 Worm lysis for genomic DNA...............................................................................13 2.7 Imaging and quantification....................................................................................13 2.8 Time lapse imaging................................................................................................14 2.9 Airyscan imaging...................................................................................................15 III. RESULTS.................................................................................................................16 3.1 Mitochondrial localization affects dendritic growth and branching......................16 3.2 Not only localization, mitochondrial dynamics also affect dendritic morphogenesis.......................................................................................................18 3.3 Mitochondria stabilize 2° dendritic growth...........................................................19 3.4 Examining parkinson’s disease related genes, pink-1 and pdr-1, in mitochondria and dendritic morphology......................................................................................20 3.5 Drp1 is required for the abnormal mitochondrial puncta in cell body of pdr-1....23 3.6 Loss of Miro1 enhances the occurrence rate of abmormal mitochondrial puncta in cell body.................................................................................................................24 3.7 Loss of Parkin promotes fragmented mitochondria to aggregate in deficiency of mitofusin................................................................................................................24 IV. DISSCUSION...........................................................................................................27 4.1 PINK1 might have several different function to regulate mitochondria in Parkin- independent pathway…………………...………...........………………………...28 4.2 Loss of Miro1 may be an initial step of mitophagy which promotes generating of mitochondrial buddings.........................................................................................29 4.3 Mitofusin is not the only Parkin substrate which regulate mitochondrial aggregation..........................................................................................................30 V. FIGURES...................................................................................................................31 5.1 Designing an integration line to investigate the relationship between mitochondria and neuronal morphology in PVD neuron..............................................................31 5.2 Mitochondrial localization affects dendritic growth and branching........................33 5.3 Not only localization, mitochondrial dynamics also affect dendritic morphogenesis………………………...............………….......….........................36 5.4 Mitochondria stabilize 2° dendritic growth............................................................38 5.5 Many small and blurred mitochondria occurred in axon in deficiency of Parkin.....................................................................................................................41 5.6 Loss of Parkin promotes fragmented mitochondria to aggregate in deficiency of mitofusin................................................................................................................45 5.7 Observation of mitochondria in cell body...............................................................48 5.8 Observation of neuronal morphology.....................................................................53 VI. REFFERENCES......................................................................................................57 VII. APPENDIX.............................................................................................................66 7.1 Constructs and transgenic worms...........................................................................66 7.2 Primers for genotyping...........................................................................................69 7.3 Images for quantification........................................................................................71 | - |
| dc.language.iso | en | - |
| dc.subject | E3泛素連接? | zh_TW |
| dc.subject | PTEN-誘導激?1 | zh_TW |
| dc.subject | 樹突型態 | zh_TW |
| dc.subject | 帕金森氏症 | zh_TW |
| dc.subject | 神經退化性疾病 | zh_TW |
| dc.subject | neurodegenerative diseases | en |
| dc.subject | Parkinsin’s disease | en |
| dc.subject | Parkin | en |
| dc.subject | dendritic morphogenesis | en |
| dc.subject | PINK1 | en |
| dc.title | 探討PINK1/Parkin如何影響粒線體動態與神經的發育 | zh_TW |
| dc.title | The role of PINK1/Parkin pathway in mitochondrial dynamics and neuronal morphogenesis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林敬哲;蔡欣祐 | zh_TW |
| dc.contributor.oralexamcommittee | Jing-Jer Lin;Hsin-Yue Tsai | en |
| dc.subject.keyword | 神經退化性疾病,帕金森氏症,樹突型態,PTEN-誘導激?1,E3泛素連接?, | zh_TW |
| dc.subject.keyword | neurodegenerative diseases,Parkinsin’s disease,dendritic morphogenesis,PINK1,Parkin, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU201900293 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-02-13 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| dc.date.embargo-lift | 2024-03-11 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
