Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁(Pei-Zen Chang)
dc.contributor.authorPing-Jung Chenen
dc.contributor.author陳品蓉zh_TW
dc.date.accessioned2021-07-11T15:20:34Z-
dc.date.available2023-02-12
dc.date.copyright2019-03-15
dc.date.issued2019
dc.date.submitted2019-02-19
dc.identifier.citationReference
[1] B. Bossmanns and J. F. Tu, 'A thermal model for high speed motorized spindles,' International Journal of Machine Tools and Manufacture, vol. 39, no. 9, pp. 1345-1366, 1999.
[2] B. Bossmanns and J. F. Tu, 'A power flow model for high speed motorized spindles—heat generation characterization,' Journal of Manufacturing Science and Engineering, vol. 123, no. 3, pp. 494-505, 2001.
[3] C. Brecher, Y. Shneor, S. Neus, K. Bakarinow, and M. Fey, 'Thermal Behavior of Externally Driven Spindle: Experimental Study and Modelling,' Engineering, vol. 7, no. 02, pp. 73-92, 2015.
[4] Y. M. Cho, S. Srinavasan, J.-H. Oh, and H. S. Kim, 'Modelling and system identification of active magnetic bearing systems,' Mathematical and Computer Modelling of Dynamical Systems, vol. 13, no. 2, pp. 125-142, 2007.
[5] T. J. A. Eguia, R. Shen, S. X. Tan, E. H. Pacheco, and M. Tirumala, 'Architecture level thermal modeling for multi-core systems using subspace system method,' in ASIC, 2009. ASICON'09. IEEE 8th International Conference on, 2009, pp. 714-717: IEEE.
[6] G. L. Skibinski and W. A. Sethares, 'Thermal parameter estimation using recursive identification,' IEEE Transactions on power electronics, vol. 6, no. 2, pp. 228-239, 1991.
[7] A. Kerezov, A. Kulkarni, and S. Nihtianov, 'Wireless temperature sensor for harsh industrial environments,' in Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE, 2015, pp. 003986-003991: IEEE.
[8] Y. Qian et al., 'Application of RTD Sensor in the Real Time Measurement and Wireless Transmission,' in Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2014 Fourth International Conference on, 2014, pp. 658-662: IEEE.
[9] D. Ross-Pinnock and P. G. Maropoulos, 'Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future,' Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, no. 5, pp. 793-806, 2016.
[10] F. Lacy, 'An Examination and Validation of the Theoretical Resistivity-Temperature Relationship for Conductors,' World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 7, no. 4, pp. 439-445, 2013.
[11] D. Zvizdić and D. Šestan, 'Hysteresis of thin film IPRTs in the Range 100 C to 600 C,' in AIP conference Proceedings, 2013, vol. 1552, no. 1, pp. 445-450: AIP.
[12] Datasheet of ADG1606/1607-4.5 Ω RON, 16-Channel, Differential 8-Channel, ±5V, +12 V, +5 V, and +3.3 V Multiplexers published by Analog Devices, 2009-2016.
[13] Arduino, 'Bluno Beetle Schematic_SKU:DFR0339.'
[14] 6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference AD7794/AD7795 published by Analog Devices.
[15] 張志良, PCB Layout印刷電路板設計(基礎篇). 全華圖書.
[16] D. o. T. A. K. T. k&k Associates, 'THERMAL NETWORK MODELING HANDBOOK,' pp. 1-29.
[17] Y.-C. Lo, Y.-C. Hu, and P.-Z. Chang, 'Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module,' Sensors, vol. 18, no. 2, p. 656, 2018.
[18] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[19] P. Childs and C. Long, 'A review of forced convective heat transfer in stationary and rotating annuli,' Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 210, no. 2, pp. 123-134, 1996.
[20] A. A. Kendoush, 'An approximate solution of the convective heat transfer from an isothermal rotating cylinder,' International Journal of Heat and Fluid Flow, vol. 17, no. 4, pp. 439-441, 1996.
[21] Z. Liu, M. Pan, A. Zhang, Y. Zhao, Y. Yang, and C. Ma, 'Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance,' The International Journal of Advanced Manufacturing Technology, vol. 76, no. 9-12, pp. 1913-1926, 2015.
[22] L. Ljung, System identification toolbox: User's guide. Citeseer, 1995.
[23] A. K. Tangirala, Principles of system identification: Theory and practice. Crc Press, 2014.
[24] L. Ljung, System identification: theory for the user. Prentice-hall, 1987.
[25] F. Golnaraghi and B. Kuo, 'Automatic control systems,' Complex Variables, vol. 2, pp. 1-1, 2010.
[26] S. Arlot and A. Celisse, 'A survey of cross-validation procedures for model selection,' Statistics surveys, vol. 4, pp. 40-79, 2010.
[27] T. Fushiki, 'Estimation of prediction error by using K-fold cross-validation,' Statistics and Computing, vol. 21, no. 2, pp. 137-146, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78804-
dc.description.abstract主軸的內部溫度是預防保養的重要指標,但是其內部並無足夠空間可置入溫度感測器,而將主軸鑽孔則會降低其機械剛度,故難以直接量測主軸內部的溫度,因此建立主軸的熱特徵模型並據以預測其內部溫度成為重要的研究。本文提出了兩種系統識別(System Identification,SID)方法,分別為灰箱系統識別(Grey-box System Identification,GSID)和黑箱系統識別(Black-box System Identification,BSID),用來建立外部驅動式主軸的熱特徵模型。本研究包含溫度感測及無線傳輸模組(Temperature Sensing and Wireless Transmission Module,TSWTM)的自製硬體和用於系統識別(SID)的軟體; TSWTM用來蒐集SID所需的溫度訓練數據,以識別主軸熱特徵模型的參數。
在GSID中,主軸的熱特性被描述為以熱阻(thermal resistance),熱容(thermal capacity)和熱源(heat source)所組成的熱網絡模型(Thermal Network Model,TNM),該TNM的參數則由MATLAB的System ID Toolbox提供的命令“greyest”識別出來。TNM可以預測出各特徵點在不同轉速下的溫升曲線,在主軸的工作模式和自然冷卻模式下,其預測溫度和測量數據的一致性分別達到71.83%和93.14%。在BSID中,主軸的熱特性由線性非時變狀態空間模型建模,BSID整合由MATLAB的System ID Toolbox提供的命令“n4sid”和機器學習中的K-fold交叉驗證方法,將模型的參數識別出來,所產生的熱特徵模型能夠在操作期間從其表面溫度準確地預測出主軸的內部溫度或者以轉速預測主軸的內外部溫度,其驗證準確率高於98.5%。BSID可以有效地最佳化模型的複雜度,在模型的偏差和變異之間取得平衡,避免擬合不足或是過度擬合的情況。本文比較了兩種用於建立主軸熱特徵模型的系統辨識方法,並說明了利用BSID算法從其表面溫度(可直接檢測)精確計算出主軸內部溫度(無法直接檢測)的可行性。
zh_TW
dc.description.abstractThe internal temperature is an important index for the prevention and maintenance of a spindle. However, the temperature inside the spindle is undetectable directly because there is no space to embed temperature sensor and drilling holes will reduce its mechanical stiffness. Therefore, it is worthwhile to understand the thermal-feature of a spindle and predict the internal temperature variation of a spindle from its thermal-feature model. This article presents two method of system identification (SID), namely grey-box system identification (GSID) and black-cox system identification (BSID) to identify the thermal-feature model of an externally driven spindle. The works contains a self-made hardware of the temperature sensing and wireless transmission module (TSWTM) and a software for the SID; TSWTM is to acquire the temperature training data while SID to identify the parameters of the thermal-feature model of spindle. For GSID, the thermal-feature model of a spindle is modeled as a thermal network model (TNM) composed of equivalent thermal resistances, thermal capacity and heat source, and the parameters of the TNM are identified by the command “greyest” provided by the System ID Toolbox of MATLAB. The resulting TNM is used to figure out the temperature variation inside and outside the spindle via rotational speeds and the consistence with measurement data reaches to 71.83% and 93.14% during the operation and natural-cooling modes of the spindle respectively. For BSID, the thermal-feature of a spindle is modeled by a linearly time-invariant state-space model whose parameters are identified by BSID which integrates the command “n4sid” provided by the System ID Toolbox of MATLAB and the k-fold cross-validation that is common in machine learning. The present BSID can effectively strike a balance between the bias and variance of model, such that both under-fitting and over-fitting can be avoided. The resulting thermal-feature model can not only predict the temperature of spindle rotating at various speeds but also figure out the internal temperature of spindle from its surface temperature. Its validation accuracy is higher than 98.5%. This article compares two kind of system identification in thermal-feature modeling, and illustrates the feasibility of accurately figuring out the internal temperature (undetectable directly) of spindle from its surface temperature (detectable directly) with BSID.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:20:34Z (GMT). No. of bitstreams: 1
ntu-108-R05543089-1.pdf: 10511356 bytes, checksum: dc5aebb6863b63dc9ea390eecef76984 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsCONTENTS
誌謝 II
中文摘要 III
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 1
1.3 Thesis Organization 2
Chapter 2 Hardware 4
2.1 Temperature sensor and wireless transmission module (TSWTM) 4
2.1.1 Circuit board design process 7
2.1.2 Schematic design 8
2.1.3 PCB layout design 11
2.1.4 Hardware component integration 13
2.2 Experiment setup 15
2.2.1 Spindle run-in system 15
2.2.2 Performance and components of TSWTM 16
Chapter 3 Thermal-feature model of spindle 21
3.1 Grey-box system identification (GSID) for the thermal-feature model of spindle 21
3.1.1 Parameterization strategy of thermal network model 21
3.1.2 Thermal network model in operating mode 24
3.1.3 Thermal network model at steady state 28
3.1.4 Thermal network model in nature cooling mode 29
3.1.5 Algorithm of GSID 30
3.2 Black-box system identification (BSID) for the thermal-feature model of spindle 33
3.2.1 Data preparation stage 34
3.2.2 Structure determination stage 38
3.2.3 Parameter identification stage 40
Chapter 4 Results and Discussions 45
4.1 Validation for thermal-feature model established with grey-box system identification 45
4.1.1 Parameter estimation result 45
4.1.2 Self-validation and external-validation 45
4.2 Validation for thermal-feature model established with black-box system identification 50
4.2.1 Speed-dependence of the thermal-feature model of spindle 50
4.2.2 Using the thermal-feature model to predict the temperature variation of spindle at various speeds 52
4.2.3 Predicting internal temperature of spindle from its surface temperature 55
Chapter 5 Conclusion and future works 61
5.1.1 Conclusion 61
5.1.2 Future works 63
Reference 65
LIST OF FIGURES
Figure 2.1.1 Functional block diagram of the TSWTM 5
Figure 2.1.2 (a) Schematic diagram of the current flow path for an analog input channel in parallel; (b) Signal transform firmware flow chart. 5
Figure 2.1.3 Circuit board design process diagram 8
Figure 2.1.4 Analog-to-digital circuit schematic of TS-WTM 10
Figure 2.1.5 ADG1607 functional block diagram [12] 10
Figure 2.1.6 Bluno Beetle board MCU&I/O part circuit schematic [13] 11
Figure 2.1.7 Analog-to-digital circuit PCB layout of TSWTM 12
Figure 2.1.8 (a) Top layer (b) Bottom layer of the TSWTM PCB layout 13
Figure 2.1.9 Analog-to-digital circuit component position of TSWTM 14
Figure 2.2.1 Experiment setup schematic 15
Figure 2.2.2 Sensor location and characteristic points on spindle. 16
Figure 2.2.3 The sensing error of TSWTM at various temperature: (a) CH1; (b) CH2; (c) CH3; (d) CH4; (e) CH5. 17
Figure 2.2.4 Temperature measurement of TSWTM elapsing a time-period at constant temperature: (a) 35℃ (b) 40℃ (c) 45℃ (d) 55℃. 18
Figure 2.2.5 Introduction of all components used in the TSWTM. 20
Figure 3.1.6 TSWTM assembly process 20
Figure 3.1.1 Sensor location and TNM representation on spindle 23
Figure 3.1.2 Thermal system block diagram 23
Figure 3.1.3 TNM in operating mode 24
Figure 3.1.4 TNM at steady state 28
Figure 3.1.5 TNM in nature cooling mode 29
Figure 3.1.6 The algorithm flowchart of GSID 32
Figure 3.1.7 Graphical user interface for GSID. 32
Figure 3.2.1 Procedure of BSID. 34
Figure 3.2.2 Raw data: (a) The time-series of temperatures measured by TSWTM; (b) the time-series of input rotational speed of spindle. Given the case of 4,000 rpm as an example. 36
Figure 3.2.3 Resampled data with the same sampling rate of 1 Hz: (a) The time-series of temperatures resampled from the raw data; (b) The time-series of the input rotational speed of spindle resample from the raw data. Given the case of 4,000 rpm as an example. 37
Figure 3.2.4 The final dataset for system identification. Given the case of 4,000 rpm as an example. 38
Figure 3.2.5 The temperature variations of seven spindle’s characteristic points at the rotational speeds same to that of Figure 3.2.2 (b) but measure on different dates: (a) rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid; (f) rear outer housing; (g) front outer housing. 40
Figure 3.2.6 Select the model order by the command “n4sid” in the System ID Toolbox of MATLAB. 41
Figure 3.2.7 Model order determination via 2-fold cross validation: (a) The training and validation accuracies by MNRMSE at different model orders, wherein the best model order of 25 is indicated by an asterisk; (b) Zoom-in to the range near order 25. 44
Figure 4.1.1 Model self-validations of: (a) front bearing D (T1); (b) inner housing mid (T2); (c) rear bearing A (T3); (d) shaft mid (T4); (e) rear outer housing (T5); (f) front outer housing (T6) in operating mode 47
Figure 4.1.2 Model self-validations of: (a) front bearing D (T1); (b) inner housing mid (T2); (c) rear bearing A (T3); (d) shaft mid (T4); (e) rear outer housing (T5); (f) front outer housing (T6) in nature cooling mode 48
Figure 4.1.3 Model external-validations of: (a) front bearing D (T1); (b) inner housing mid (T2); (c) rear bearing A (T3); (d) shaft mid (T4); (e) rear outer housing (T5); (f) front outer housing (T6) in operating mode 49
Figure 4.1.4 Model external-validations of: (a) front bearing D (T1); (b) inner housing mid (T2); (c) rear bearing A (T3); (d) shaft mid (T4); (e) rear outer housing (T5); (f) front outer housing (T6) in nature cooling mode 50
Figure 4.2.1 The percentage VA of 8-order model: (a) The matrix chart; (b) The bar chart, wherein each group of bars corresponds to a row of the matrix chart. 52
Figure 4.2.2 The percentage VA of 25-order model: (a) The matrix chart; (b) The bar chart, wherein each group of bars corresponds to a row of the matrix chart. 52
Figure 4.2.3 Using the thermal-feature model of spindle to predict the temperature variation at: (a) rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid; (f) rear outer housing, (g) front outer housing. 54
Figure 4.2.4 Using the 3I5O thermal-feature model (Table 4.2.1) to predict the internal temperature of spindle at: (a) rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid. 58
Figure 4.2.5 Using the 2I5O thermal-feature model (Table 4.2.1) to predict the internal temperature of spindle at: (a) rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid. 59
Figure 4.2.6 Using the 1I5O thermal-feature model (Table 4.2.1) to predict the internal temperature of spindle at: (a) rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid. 59
Figure 4.2.7 The accuracies of temperature prediction by the thermal-feature models listed in Table 4.2.1. 60
LIST OF TABLES
Table 2.1.1 ADG1607 truth table [12] 6
Table 2.1.2 IC component integration table 13
Table 2.1.3 Analog-to-digital circuit TSWTM Bill of Material (BOM) 14
Table 2.2.1 Specification of TSWTM 19
Table 2.2.2 Specifications of the temperature sensing probe 19
Table 2.2.3 Commercial temperature module specification comparison table 19
Table 3.2.1 The data descriptions for thermal-feature model identification, all data are recorded in year 2018. The superscript of data name indicates the fold number and the subscript indicates the input spindle speed. The format of record date is month/day. Note that each data contains 1 time-series of input spindle speed and 7 time-series of temperature variation corresponding to 7 characteristic temperature points of the spindle. 36
Table 3.2.2 Results of 2-fold cross validation at a given rotational speeds. 44
Table 4.1.1 Estimated thermal parameters of TNM 45
Table 4.2.1 The thermal-feature models and their input/output data. 56
dc.language.isoen
dc.subject熱特徵模型zh_TW
dc.subject溫度感測器zh_TW
dc.subject系統識別zh_TW
dc.subject工具機主軸zh_TW
dc.subject機器學習zh_TW
dc.subjectThermal feature modelen
dc.subjectMachine learningen
dc.subjectMachine tool spindleen
dc.subjectSystem identificationen
dc.subjectTemperature sensoren
dc.title工具機主軸之熱特徵系統辨識zh_TW
dc.titleThermal-Feature System Identification for a Machine
Tool Spindle
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor胡毓忠(Yuh-Chung Hu)
dc.contributor.oralexamcommittee張智星(Jyh-Shing Jang),王啟昌(Chi-Chang Wang)
dc.subject.keyword機器學習,工具機主軸,系統識別,溫度感測器,熱特徵模型,zh_TW
dc.subject.keywordMachine learning,Machine tool spindle,System identification,Temperature sensor,Thermal feature model,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201800972
dc.rights.note有償授權
dc.date.accepted2019-02-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R05543089-1.pdf
  未授權公開取用
10.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved