Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78801
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成zh_TW
dc.contributor.author劉力愷zh_TW
dc.contributor.authorLEE-KAI LIUen
dc.date.accessioned2021-07-11T15:20:21Z-
dc.date.available2024-03-28-
dc.date.copyright2019-03-29-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] R. Lugo, P. Kung, and C. B. Ma, "Shoulder biomechanics," European journal of radiology, vol. 68, no. 1, pp. 16-24, 2008.
[2] M. Cirstea and M. F. Levin, "Compensatory strategies for reaching in stroke," Brain, vol. 123, no. 5, pp. 940-953, 2000.
[3] E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, J. Floyd, M. Fornage, C. Gillespie, and C. Isasi, "Heart disease and stroke statistics-2017 update: a report from the American Heart Association," Circulation, vol. 135, no. 10, pp. e146-e603, 2017.
[4] M. Urwin, D. Symmons, T. Allison, T. Brammah, H. Busby, M. Roxby, A. Simmons, and G. Williams, "Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation," Annals of the rheumatic diseases, vol. 57, no. 11, pp. 649-655, 1998.
[5] M. J. Kelley, P. W. Mcclure, and B. G. Leggin, "Frozen shoulder: evidence and a proposed model guiding rehabilitation," journal of orthopaedic & sports physical therapy, vol. 39, no. 2, pp. 135-148, 2009.
[6] G. Kwakkel, R. C. Wagenaar, T. W. Koelman, G. J. Lankhorst, and J. C. Koetsier, "Effects of intensity of rehabilitation after stroke: a research synthesis," Stroke, vol. 28, no. 8, pp. 1550-1556, 1997.
[7] C. Bütefisch, H. Hummelsheim, P. Denzler, and K.-H. Mauritz, "Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand," Journal of the neurological sciences, vol. 130, no. 1, pp. 59-68, 1995.
[8] J. McCabe, M. Monkiewicz, J. Holcomb, S. Pundik, and J. J. Daly, "Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial," Archives of physical medicine and rehabilitation, vol. 96, no. 6, pp. 981-990, 2015.
[9] V. S. Huang and J. W. Krakauer, "Robotic neurorehabilitation: a computational motor learning perspective," Journal of neuroengineering and rehabilitation, vol. 6, no. 1, p. 5, 2009.
[10] N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, "MIT-MANUS: a workstation for manual therapy and training. I," in Robot and Human Communication, 1992. Proceedings., IEEE International Workshop on, 1992, pp. 161-165: IEEE.
[11] C. G. Burgar, P. S. Lum, P. C. Shor, and H. M. Van der Loos, "Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience," Journal of rehabilitation research and development, vol. 37, no. 6, pp. 663-674, 2000.
[12] R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, and W. Harwin, "Upper limb robot mediated stroke therapy—GENTLE/s approach," Autonomous Robots, vol. 15, no. 1, pp. 35-51, 2003.
[13] M. Guidali, P. Schlink, A. Duschau-Wicke, and R. Riener, "Online learning and adaptation of patient support during ADL training," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, pp. 1-6: IEEE.
[14] V. Klamroth-Marganska, "Estimating the patient's contribution during robot-assisted therapy," Journal of rehabilitation research and development, vol. 50, no. 3, p. 379, 2013.
[15] T. Nef, M. Mihelj, G. Kiefer, C. Perndl, R. Muller, and R. Riener, "ARMin-Exoskeleton for arm therapy in stroke patients," in Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, 2007, pp. 68-74: IEEE.
[16] H. Kim, L. M. Miller, I. Fedulow, M. Simkins, G. M. Abrams, N. Byl, and J. Rosen, "Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 2, pp. 153-164, 2013.
[17] Y. Hasegawa and S. Oura, "Exoskeletal meal assistance system (emas ii) for progressive muscle dystrophy patient," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, pp. 1-6: IEEE.
[18] G. De Lee, W.-W. Wang, K.-W. Lee, S.-Y. Lin, L.-C. Fu, J.-S. Lai, W.-S. Chen, and J.-J. Luh, "Arm exoskeleton rehabilitation robot with assistive system for patient after stroke," in Control, Automation and Systems (ICCAS), 2012 12th International Conference on, 2012, pp. 1943-1948: IEEE.
[19] B.-C. Tsai, W.-W. Wang, L.-C. Hsu, L.-C. Fu, and J.-S. Lai, "An articulated rehabilitation robot for upper limb physiotherapy and training," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 1470-1475: IEEE.
[20] W.-W. Wang and L.-C. Fu, "Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system," in Medical Measurements and Applications Proceedings (MeMeA), 2011 IEEE International Workshop on, 2011, pp. 370-375: IEEE.
[21] L.-C. Hsu, W.-W. Wang, G.-D. Lee, Y.-W. Liao, L.-C. Fu, and J.-S. Lai, "A gravity compensation-based upper limb rehabilitation robot," in American Control Conference (ACC), 2012, 2012, pp. 4819-4824: IEEE.
[22] C.-H. Lin, W.-M. Lien, W.-W. Wang, S.-H. Chen, C.-H. Lo, S.-Y. Lin, L.-C. Fu, and J.-S. Lai, "NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation," in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, 2014, pp. 3555-3560: IEEE.
[23] W.-M. Lien, H.-Y. Li, H.-Y. Hong, S.-H. Chen, L.-C. Fu, and J.-S. Lai, "Developing a novel bilateral arm training on rehabilitation robot NTUH-II for neurologic and orthopedic disorder," in Robotics and Biomimetics (ROBIO), 2015 IEEE International Conference on, 2015, pp. 158-163: IEEE.
[24] W. Yu and J. Rosen, "Neural PID control of robot manipulators with application to an upper limb exoskeleton," IEEE Transactions on cybernetics, vol. 43, no. 2, pp. 673-684, 2013.
[25] H.-Y. Li, L.-Y. Chien, H.-Y. Hong, S.-H. Pan, C.-L. Chiao, H.-W. Chen, L.-C. Fu, and J.-S. Lai, "Active control with force sensor and shoulder circumduction implemented on exoskeleton robot NTUH-II," in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, 2016, pp. 2406-2411: IEEE.
[26] P. K. Artemiadis and K. J. Kyriakopoulos, "A switching regime model for the EMG-based control of a robot arm," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 53-63, 2011.
[27] S. Tominaga, H. Nakamura, N. Mizutani, R. Sakamoto, K. i. Yano, T. Aoki, and Y. Nishimoto, "Elbow joint motion support for C4 level cervical cord injury patient using an exoskeleton robot," in Robotics and Automation (ICRA), 2015 IEEE International Conference on, 2015, pp. 4979-4984: IEEE.
[28] K. Kiguchi and Y. Hayashi, "An EMG-based control for an upper-limb power-assist exoskeleton robot," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1064-1071, 2012.
[29] 簡立宇, "應用交互作用扭矩觀測器於外骨骼上肢復健機器人之控制," 碩士, 電機工程學研究所, 國立臺灣大學, 台北市, 2017.
[30] A. Wahrburg, E. Morara, G. Cesari, B. Matthias, and H. Ding, "Cartesian contact force estimation for robotic manipulators using kalman filters and the generalized momentum," in Automation Science and Engineering (CASE), 2015 IEEE International Conference on, 2015, pp. 1230-1235: IEEE.
[31] C. Carignan, J. Tang, and S. Roderick, "Development of an exoskeleton haptic interface for virtual task training," in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 3697-3702: IEEE.
[32] M. W. Spong and M. Vidyasagar, Robot dynamics and control. John Wiley & Sons, 2008.
[33] G. Bishop and G. Welch, "An introduction to the Kalman filter," Proc of SIGGRAPH, Course, vol. 8, no. 27599-23175, p. 41, 2001.
[34] R. G. Brown and P. Y. Hwang, Introduction to random signals and applied Kalman filtering. Wiley New York, 1992.
[35] B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, "A survey of models, analysis tools and compensation methods for the control of machines with friction," Automatica, vol. 30, no. 7, pp. 1083-1138, 1994.
[36] J. A. Hertz, Introduction to the theory of neural computation. CRC Press, 2018.
[37] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016.
[38] A. De Luca and R. Mattone, "Actuator failure detection and isolation using generalized momenta," in Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on, 2003, vol. 1, pp. 634-639: IEEE.
[39] K. S. Eom, I. H. Suh, W. K. Chung, and S.-R. Oh, "Disturbance observer based force control of robot manipulator without force sensor," in Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, 1998, vol. 4, pp. 3012-3017: IEEE.
[40] A. Colomé, D. Pardo, G. Alenya, and C. Torras, "External force estimation during compliant robot manipulation," in Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013, pp. 3535-3540: IEEE.
[41] A. Wahrburg, S. Zeiss, B. Matthias, and H. Ding, "Contact force estimation for robotic assembly using motor torques," in Automation Science and Engineering (CASE), 2014 IEEE International Conference on, 2014, pp. 1252-1257: IEEE.
[42] M. Van Damme, P. Beyl, B. Vanderborght, V. Grosu, R. Van Ham, I. Vanderniepen, A. Matthys, and D. Lefeber, "Estimating robot end-effector force from noisy actuator torque measurements," in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 1108-1113: IEEE.
[43] T. J. Sejnowski, "Neurobiology: making smooth moves," Nature, vol. 394, no. 6695, p. 725, 1998.
[44] R. Ikeura, H. Monden, and H. Inooka, "Cooperative motion control of a robot and a human," in Robot and Human Communication, 1994. RO-MAN'94 Nagoya, Proceedings., 3rd IEEE International Workshop on, 1994, pp. 112-117: IEEE.
[45] V. Duchaine and C. M. Gosselin, "General model of human-robot cooperation using a novel velocity based variable impedance control," in EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007. Second Joint, 2007, pp. 446-451: IEEE.
[46] F. Dimeas and N. Aspragathos, "Online stability in human-robot cooperation with admittance control," IEEE transactions on haptics, vol. 9, no. 2, pp. 267-278, 2016.
[47] W. Yu, J. Rosen, and X. Li, "PID admittance control for an upper limb exoskeleton," in American Control Conference (ACC), 2011, 2011, pp. 1124-1129: IEEE.
[48] S. L. Ipri and H. Asada, "Tuned dither for friction suppression during force-guided robotic assembly," in Intelligent Robots and Systems 95.'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on, 1995, vol. 1, pp. 310-315: IEEE.
[49] S. Lee and H. Asada, "Direct adaptive control of force-guided assembly robots using tuned dither," in American Control Conference, Proceedings of the 1995, 1995, vol. 1, pp. 370-374: IEEE.
[50] A. Stolt, A. Robertsson, and R. Johansson, "Robotic force estimation using dithering to decrease the low velocity friction uncertainties," in Robotics and Automation (ICRA), 2015 IEEE International Conference on, 2015, pp. 3896-3902: IEEE.
[51] C. Secchi, S. Stramigioli, and C. Fantuzzi, Control of interactive robotic interfaces: A port-Hamiltonian approach. Springer Science & Business Media, 2007.
[52] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and E. Burdet, "On the analysis of movement smoothness," Journal of neuroengineering and rehabilitation, vol. 12, no. 1, p. 112, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78801-
dc.description.abstract中風是一種常見的神經性損傷,中風倖存者通常伴有失能,主要是上肢和下肢運動障礙。臨床研究表明,患者可通過高密度以及高參與率的復健療程重建起運動能力。大多數中風患者需要持續復健一段時間,導致大量的人力和成本需求。引進外骨骼上肢復健機器人的治療,可實現更頻繁的治療並降低醫療成本。應用機器人輔助訓練中的控制策略可分為被動,輔助和主動控制。
本研究提出一套應用於無傳感器外骨骼上肢復健機器人的主動控制方法。由於NTUH-II外骨骼機器人的機械結構,摩擦力模型較一般的市售的機器人複雜。然而,此研究需建立精確的摩擦力模型,以便建立一個應用卡爾曼濾波器的交互作用扭矩觀測器來估計人與機器人之間的相互作用力。並使用相互作用力來轉換成機器人的運動軌跡,藉此使機器人跟隨患者的手臂運動。應用此控制方法讓患者可自由運動手臂以訓練其運動控制能力。
本研究提出的控制方法已經於三位健康受試者之臨床試驗予以驗證。結果顯示與相關文獻相比,它可以提高運動的平滑性,同時減少使用者的施力。與使用肌電訊號感測器和力/力矩感測器方法相比,本研究成果顯示,本方法可省去額外感測器的成本並同時達到良好的表現。
zh_TW
dc.description.abstractStroke is one of the leading causes which acquired neurological impairments in adults. Stroke survivors usually remain some disabilities in which the most common disabilities are motor impairments on both upper and lower limb movement. Clinical study shows that when the rehabilitation is both intense and involves the patients, the patients might regain their motor ability. Rehabilitation therapy usually needs to be performed persistently throughout most of the stroke patients’ life, hence can be labor-intensive and costly. Exoskeletons robots have the potential to enable more frequent treatment and potentially reducing costs. The control strategy in robot-assisted training (RAT) can separate into passive, active-assisted and active mode control.
In order to design the active mode control, the human-robot cognitive interaction control becomes one of the key topics. In this study, a sensorless control of upper limb rehabilitation exoskeleton, named NTUH-II is proposed. Due to mechanical structure of NTUH-II, the friction behavior is more complicated than the commercial robot. However, the accurate friction model is crucial for constructing an interaction torque observer using Kalman filter which is used to acquire human intention. Furthermore, taking the human intention to derive the desired motion trajectory of the exoskeleton. As a result, the robot arm will follow the user’s arm, and the patients can freely move their arm to improve their motor control.
Various experiments have been conducted on three subjects which verify the performance of the proposed interactive torque observer based controller. The results show that it can improve the smoothness of the motion and reduce the subject’s effort compared with the related works. Moreover, compared with the use of electromyography sensor and force/torque sensor, this method can get rid of additional sensors while achieving good performance.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:20:21Z (GMT). No. of bitstreams: 1
ntu-107-R05921065-1.pdf: 3809336 bytes, checksum: 573464b7d535eaa3a3661efe4d164441 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsChapter 1 Introduction----1
1.1 Motivation----1
1.2 Literature Survey----3
1.3 Contribution----6
1.4 Thesis Organization----7
Chapter 2 System Overview and Preliminary----8
2.1 Upper Limb Rehabilitation Robot NTUH-II----8
2.2 Forward Kinematics----13
2.3 Jacobians----14
2.3.1 Linear Velocity----16
2.3.2 Angular Velocity----16
2.3.3 Application to NTUH-II----17
2.4 Robot Dynamics----17
2.5 Kalman Filter----23
2.6 Friction----26
2.6.1 Friction Behavior----26
2.6.2 Classical Friction Model----28
2.7 Deep Neural Network----29
2.8 Active Mode Therapy----31
Chapter 3 Design of Control System----32
3.1 System Block Diagram----32
3.2 Friction Modeling and Estimation----33
3.3 Interactive Torque Observer Utilizing Kalman Filter----37
3.4 Variable Admittance Model----41
3.5 Dithering----44
3.6 Active Mode Control Strategy----45
3.7 Stability Issues----47
Chapter 4 Experiment Result----50
4.1 Experiment Setup and Protocol----50
4.1.1 Interactive Torque Observer----50
4.1.2 Active Mode Control----53
4.2 Experiment Result----57
4.2.1 Performance of Interactive Torque Observer---57
4.2.2 Performance of Active Mode Control----60
Chapter 5 Conclusion----69
REFERENCE----71
-
dc.language.isozh_TW-
dc.subject主動模式控制zh_TW
dc.subject主動式療程zh_TW
dc.subjectNTUH-IIzh_TW
dc.subject交互作用扭矩觀察器zh_TW
dc.subject復健機械手臂zh_TW
dc.subject摩擦力模型zh_TW
dc.subjectrehabilitation roboticsen
dc.subjectinteractive torque estimationen
dc.subjectfriction modelingen
dc.subjectactive mode rehabilitationen
dc.subjectactive mode controlen
dc.subjectNTUH-IIen
dc.title具有摩擦力估測之無感測器上肢復健機器人控制zh_TW
dc.titleSensorless Exoskeleton Robot Control with Friction Estimation for Upper Limb Rehabilitationen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文翔;陸哲駒;盧璐;賴金鑫zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword復健機械手臂,交互作用扭矩觀察器,摩擦力模型,主動式療程,主動模式控制,NTUH-II,zh_TW
dc.subject.keywordrehabilitation robotics,interactive torque estimation,friction modeling,active mode rehabilitation,active mode control,NTUH-II,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU201804107-
dc.rights.note未授權-
dc.date.accepted2019-03-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2024-03-29-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved