Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78781
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡偉博zh_TW
dc.contributor.author葉尚霖zh_TW
dc.contributor.authorShang-Lin Yehen
dc.date.accessioned2021-07-11T15:18:54Z-
dc.date.available2024-07-17-
dc.date.copyright2019-07-18-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Vicario, P.P., et al., Cell adhesion and proliferation are reduced on stainless steel coated with polysaccharide-based polymeric formulations. J Biomed Mater Res B Appl Biomater, 2009. 89(1): p. 114-21.
2. Li, D., Q. Zheng, and Y.W. Wang, Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer Chemistry, 2014. 5(1): p. 14-24.
3. Jiang, S.Y. and Z.Q. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p. 920-932.
4. Liu, C.H., et al., Antifouling Thin-Film Composite Membranes by Controlled Architecture of Zwitterionic Polymer Brush Layer. Environmental Science & Technology, 2017. 51(4): p. 2161-2169.
5. Chang, Y., et al., Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. Acs Applied Materials & Interfaces, 2011. 3(4): p. 1228-1237.
6. Chou, Y.N., T.C. Wen, and Y. Chang, Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomaterialia, 2016. 40: p. 78-91.
7. Kwon, H.J., et al., Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomaterialia, 2017. 61: p. 169-179.
8. Li, G.Z., et al., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008. 29(35): p. 4592-4597.
9. Gao, C.L., et al., Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 2010. 31(7): p. 1486-1492.
10. Cho, E.C., et al., Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chemical Engineering Journal, 2017. 314: p. 347-357.
11. Guo, Y.M., W. Geng, and J.Q. Sun, Layer-by-Layer Deposition of Polyelectrolyte-Polyelectrolyte Complexes for Multilayer Film Fabrication. Langmuir, 2009. 25(2): p. 1004-1010.
12. Boudou, T., et al., Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Advanced Materials, 2010. 22(4): p. 441-467.
13. Capes, J.S., H.Y. Ando, and R.E. Cameron, Fabrication of polymeric scaffolds with a controlled distribution of pores. Journal of Materials Science-Materials in Medicine, 2005. 16(12): p. 1069-1075.
14. Houska, M., et al., Hemocompatible albumin-heparin coatings prepared by the layer-by-layer technique. The effect of layer ordering on thrombin inhibition and Platelet adhesion. Journal of Biomedical Materials Research Part A, 2008. 86A(3): p. 769-778.
15. Ejima, H., et al., One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 2013. 341(6142): p. 154-157.
16. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430.
17. Yang, J., M.A.C. Stuart, and M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews, 2014. 43(24): p. 8271-8298.
18. Thissen, H., et al., Prebiotic-chemistry inspired polymer coatings for biomedical and material science applications. Npg Asia Materials, 2015. 7: p. 9.
19. Waite, J.H. and X.X. Qin, Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry, 2001. 40(9): p. 2887-2893.
20. Park, T.J., et al., Characterization of Melanin-TiO2 Complexes Using FT-IR and C-13 Solid-state NMR Spectroscopy. Bulletin of the Korean Chemical Society, 2008. 29(12): p. 2459-2464.
21. Hong, S., et al., Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 2012. 22(22): p. 4711-4717.
22. Wei, Q., et al., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010. 1(9): p. 1430-1433.
23. Burzio, L.A. and J.H. Waite, Cross-linking in adhesive quinoproteins: Studies with model decapeptides. Biochemistry, 2000. 39(36): p. 11147-11153.
24. Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine Surface Chemistry: A Decade of Discovery. Acs Applied Materials & Interfaces, 2018. 10(9): p. 7523-7540.
25. Dang, Y., et al., Biocompatible and antifouling coating of cell membrane phosphorylcholine and mussel catechol modified multi-arm PEGs. Journal of Materials Chemistry B, 2015. 3(11): p. 2350-2361.
26. Goh, S.C., et al., Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates. Journal of Materials Chemistry B, 2018. 6(6): p. 940-949.
27. Tsai, W.B., et al., Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions. Acta Biomater, 2011. 7(6): p. 2518-25.
28. Li, M., et al., Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegration functions. Journal of Materials Chemistry B, 2015. 3(45): p. 8796-8805.
29. Stano, P. and P.L. Luisi, Basic questions about the Origins of Life: Proceedings of the Erice International School of Complexity (Fourth course). Origins of Life and Evolution of Biospheres, 2007. 37(4-5): p. 303-307.
30. Menzies, D.J., et al., Adhesive Prebiotic Chemistry Inspired Coatings for Bone Contacting Applications. Acs Biomaterials Science & Engineering, 2017. 3(5): p. 793-806.
31. Maillard, J.Y. and P. Hartemann, Silver as an antimicrobial: facts and gaps in knowledge. Critical Reviews in Microbiology, 2013. 39(4): p. 373-383.
32. Reitzer, F., et al., Polyphenols at interfaces. Adv Colloid Interface Sci, 2018. 257: p. 31-41.
33. Barrett, D.G., T.S. Sileika, and P.B. Messersmith, Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chemical Communications, 2014. 50(55): p. 7265-7268.
34. Drynan, J.W., et al., The chemistry of low molecular weight black tea polyphenols. Nat Prod Rep, 2010. 27(3): p. 417-62.
35. Sileika, T.S., et al., Colorless Multifunctional Coatings Inspired by Polyphenols Found in Tea, Chocolate, and Wine. Angewandte Chemie-International Edition, 2013. 52(41): p. 10766-10770.
36. Haslam, E., Thoughts on thearubigins. Phytochemistry, 2003. 64(1): p. 61-73.
37. Wei, Q. and R. Haag, Universal polymer coatings and their representative biomedical applications. Materials Horizons, 2015. 2(6): p. 567-577.
38. Ghiloufi, I., L. Khezami, and L. El Mir, Nanoporous activated carbon for fast uptake of heavy metals from aqueous solution. Desalination and Water Treatment, 2014. 55(4): p. 935-944.
39. Behboodi-Sadabad, F., et al., UV-Triggered Polymerization, Deposition, and Patterning of Plant Phenolic Compounds. Advanced Functional Materials, 2017. 27(22): p. 11.
40. Huang, Q., et al., Tea Polyphenol-Functionalized Graphene/Chitosan as an Experimental Platform with Improved Mechanical Behavior and Bioactivity. ACS Appl Mater Interfaces, 2015. 7(37): p. 20893-901.
41. Shiu, J.C., et al., Preparation and characterization of caffeic acid grafted chitosan/CPTMS hybrid scaffolds. Carbohydrate Polymers, 2010. 79(3): p. 724-730.
42. Choi, J.S., P.B. Messersmith, and H.S. Yoo, Decoration of electrospun nanofibers with monomeric catechols to facilitate cell adhesion. Macromol Biosci, 2014. 14(2): p. 270-9.
43. Madhurakkat Perikamana, S.K., et al., Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules, 2015. 16(9): p. 2541-55.
44. Dhand, C., et al., Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications. Acs Applied Materials & Interfaces, 2016. 8(2): p. 1220-1232.
45. Yang, X., et al., Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. Colloids Surf B Biointerfaces, 2017. 160: p. 136-143.
46. Chen, S.Q., et al., Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface. Chemical Engineering Journal, 2018. 337: p. 122-132.
47. Xu, G., et al., One-Step Anchoring of Tannic Acid-Scaffolded Bifunctional Coatings of Antifouling and Antimicrobial Polymer Brushes. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 1786-1795.
48. Ball, V., Electrodeposition of coatings made from catecholamines, polyphenols and aminimalonitrile: Common features, perspectives and challenges. Progress in Organic Coatings, 2019. 131: p. 441-447.
49. Kim, S., et al., Electrochemical deposition of dopamine–hyaluronic acid conjugates for anti-biofouling bioelectrodes. Journal of Materials Chemistry B, 2017. 5(23): p. 4507-4513.
50. Stöckle, B., et al., Precise Control of Polydopamine Film Formation by Electropolymerization. Macromolecular Symposia, 2014. 346(1): p. 73-81.
51. Ball, V., Electrodeposition of pyrocatechol based films: Influence of potential scan rate, pyrocatechol concentration and pH. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017. 518: p. 109-115.
52. Ball, V., et al., Electrochemical deposition of aminomalonitrile based films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 552: p. 124-129.
53. Kim, S., et al., Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Sci Rep, 2016. 6: p. 30475.
54. Chien, C.Y. and W.B. Tsai, Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces, 2013. 5(15): p. 6975-83.
55. Wang, J.L., et al., Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014. 35(27): p. 7679-89.
56. Forzani, E.S., V.M. Solis, and E.J. Calvo, Electrochemical behavior of polyphenol oxidase immobilized in self-assembled structures layer by layer with cationic polyallylamine. Analytical Chemistry, 2000. 72(21): p. 5300-5307.
57. Hu, D., C. Peng, and G.Z. Chen, Electrodeposition of Nonconducting Polymers: Roles of Carbon Nanotubes in the Process and Products. Acs Nano, 2010. 4(7): p. 4274-4282.
58. Wu, M., et al., Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry, 2005. 15(23).
59. Lowe, S., N.M. O'Brien-Simpson, and L.A. Connal, Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polymer Chemistry, 2015. 6(2): p. 198-212.
60. Wilson, C.J., et al., Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005. 11(1-2): p. 1-18.
61. Tesler, A.B., et al., Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature Communications, 2015. 6: p. 10.
62. Lee, J.H., B.J. Jeong, and H.B. Lee, Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. Journal of Biomedical Materials Research, 1997. 34(1): p. 105-114.
63. Shih, Y.J., et al., Hemocompatibility of polyampholyte copolymers with well-defined charge bias in human blood. Langmuir, 2014. 30(22): p. 6489-96.
64. Liu, J.K. and M.L. Lee, Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis, 2006. 27(18): p. 3533-3546.
65. Cheng, J., B.A. Teply, and I. Sherifi, Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007. 28(5): p. 869-876.
66. Jeon, S.I., et al., PROTEIN SURFACE INTERACTIONS IN THE PRESENCE OF POLYETHYLENE OXIDE .1. SIMPLIFIED THEORY. Journal of Colloid and Interface Science, 1991. 142(1): p. 149-158.
67. McPherson, T., A. Kidane, and I. Szleifer, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir, 1998. 14(1): p. 176-186.
68. Zhang, Z., M. Zhang, and S. Chen, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291.
69. Dalsin, J.L., B.H. Hu, and B.P. Lee, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society, 2003. 125(14): p. 4253-4258.
70. Keum, H., et al., Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water. Acs Applied Materials & Interfaces, 2017. 9(23): p. 19736-19745.
71. Shen, M.C., L. Martinson, and M.S. Wagner, PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science-Polymer Edition, 2002. 13(4): p. 367-390.
72. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-assembled mnolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 2000. 16(24): p. 9604-9608.
73. Ostuni, E., R.G. Chapman, and R.E. Holmlin, A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620.
74. Chang, Y., S. Chen, and Z. Zhang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
75. Cao, Z. and S. Jiang, Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today, 2012. 7(5): p. 404-413.
76. Leng, C., et al., Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers. Langmuir, 2018. 34(22): p. 6538-6545.
77. Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014. 30(32): p. 9625-9636.
78. Norde, W., et al., PROTEIN ADSORPTION AT SOLID LIQUID INTERFACES - REVERSIBILITY AND CONFORMATION ASPECTS. Journal of Colloid and Interface Science, 1986. 112(2): p. 447-456.
79. Bretscher, M.S. and M.C. Raff, MAMMALIAN PLASMA-MEMBRANES. Nature, 1975. 258(5530): p. 43-49.
80. Burr, M.L., et al., CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature, 2017. 549(7670): p. 101-105.
81. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000. 18(3-4): p. 261-275.
82. Wiarachai, O., T. Vilaivan, and Y. Iwasaki, Clickable and antifouling platform of poly (propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine) for biosensing applications. Langmuir, 2016. 32(4): p. 1184-1194.
83. Shiojima, T., Y. Inoue, and M. Kyomoto, High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives. Acta Biomaterialia, 2016. 40: p. 38-45.
84. Ishihara, K., et al., HEMOCOMPATIBILITY OF HUMAN WHOLE-BLOOD ON POLYMERS WITH A PHOSPHOLIPID POLAR GROUP AND ITS MECHANISM. Journal of Biomedical Materials Research, 1992. 26(12): p. 1543-1552.
85. Ishihara, K. and Y. Iwasaki, Reduced protein adsorption on novel phospholipid polymers. Journal of Biomaterials Applications, 1998. 13(2): p. 111-127.
86. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3-4): p. 261-275.
87. Yan, L.F. and K. Ishihara, Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing mew hemocompatible coating materials. Journal of Polymer Science Part a-Polymer Chemistry, 2008. 46(10): p. 3306-3313.
88. Liu, P.S., Q. Chen, and S.S. Wu, Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. Journal of Membrane Science, 2010. 350(1-2): p. 387-394.
89. Hasegawa, T., Y. Iwasaki, and K. Ishihara, Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Biomedical Materials Research, 2002. 63(3): p. 333-341.
90. Lee, I., K. Kobayashi, and H.Y. Sun, Biomembrane mimetic polymer poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) at the interface of polyurethane surfaces. Journal of Biomedical Materials Research Part A, 2007. 82A(2): p. 316-322.
91. Wang, Z.G., P.J. Wan, and M.M. Ding, Synthesis and micellization of new biodegradable phosphorylcholine-capped polyurethane. Journal of Polymer Science Part a-Polymer Chemistry, 2011. 49(9): p. 2033-2042.
92. Lowe, A.B., N.C. Billingham, and S.P. Armes, Synthesis and properties of low-polydispersity poly(sulfopropylbetaine)s and their block copolymers. Macromolecules, 1999. 32(7): p. 2141-2148.
93. Lee, W.F. and G.Y. Huang, Poly(sulfobetaine)s and corresponding cationic polymers .5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide maleic anhydride copolymer. Polymer, 1996. 37(19): p. 4389-4395.
94. Yuan, J., et al., Reduced platelet adhesion on the surface of polyurethane bearing structure of sulfobetaine. Journal of Biomaterials Applications, 2003. 18(2): p. 123-135.
95. Zhang, Z., et al., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804.
96. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
97. Huxtable, R.J., PHYSIOLOGICAL ACTIONS OF TAURINE. Physiological Reviews, 1992. 72(1): p. 101-163.
98. Kuo, W.H., et al., Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules, 2011. 12(12): p. 4348-4356.
99. Chen, L.J., et al., Surface modification by grafting of poly(SBMA-co-AEMA)-g-PDA coating and its application in CE. Journal of Biomaterials Science-Polymer Edition, 2014. 25(8): p. 766-785.
100. Chou, Y.N., et al., Surface zwitterionization on versatile hydrophobic interfaces via a combined copolymerization/self-assembling process. Journal of Materials Chemistry B, 2018. 6(30): p. 4909-4919.
101. Zhang, Z., T. Chao, and S. Chen, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
102. Kathmann, E.E., L.A. White, and C.L. McCormick, Water soluble polymers .70. effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer, 1997. 38(4): p. 879-886.
103. Yancey, P.H., et al., LIVING WITH WATER-STRESS - EVOLUTION OF OSMOLYTE SYSTEMS. Science, 1982. 217(4566): p. 1214-1222.
104. Ishihara K, N.H., Mihara T, Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research, 1998. 39: p. 323–330.
105. Ma, H., J. Hyun, and P. Stiller, Non-foulingrdquo oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 2004. 16(4): p. 338-341.
106. Chen, H., L. Yuan, and W. Song, Biocompatible polymer materials: role of protein-surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059-1087.
107. Chien, H.W., et al., Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloids and Surfaces B-Biointerfaces, 2013. 107: p. 152-159.
108. Cheng, G., et al., A Switchable Biocompatible Polymer Surface with Self-Sterilizing and Nonfouling Capabilities. Angewandte Chemie-International Edition, 2008. 47(46): p. 8831-8834.
109. Yang, W., et al., Pursuing "Zero" Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir, 2009. 25(19): p. 11911-11916.
110. Vaisocherova, H., et al., Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 2008. 80(20): p. 7894-7901.
111. Zhang, Z., S.F. Chen, and S.Y. Jiang, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
112. Yang, W., et al., Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials, 2009. 30(29): p. 5617-5621.
113. Sun, J., et al., Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polymer Chemistry, 2013. 4(24): p. 5810-5818.
114. Liu, Y.X., C.P. Chang, and T. Sun, Dopamine-Assisted Deposition of Dextran for Nonfouling Applications. Langmuir, 2014. 30(11): p. 3118-3126.
115. Thissen, H., et al., Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials, 2010. 31(21): p. 5510-5519.
116. Jongebloed, W.L., et al., NEW MATERIAL FOR LOW-COST INTRAOCULAR LENSES. Biomaterials, 1994. 15(10): p. 766-773.
117. Nibourg, L.M., et al., Prevention of posterior capsular opacification. Exp Eye Res, 2015. 136: p. 100-15.
118. Duncan, G., et al., Thapsigargin-coated intraocular lenses inhibit human lens cell growth. Nature Medicine, 1997. 3(9): p. 1026-1028.
119. Wu, J.T., et al., Customizable Optical and Biofunctional Properties of a Medical Lens Based on Chemical Vapor Deposition Encapsulation of Liquids. Chemistry of Materials, 2015. 27(20): p. 7028-7033.
120. Xu, X., et al., Surface PEGylation of intraocular lens for PCO prevention: An invivo evaluation. Journal of Biomaterials Applications, 2016. 31(1): p. 68-76.
121. Yao, K., et al., Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties. Journal of Biomedical Materials Research Part A, 2006. 78A(4): p. 684-692.
122. Huang, X.D., et al., UV-assisted treatment on hydrophobic acrylic IOLs anterior surface with methacryloyloxyethyl phosphorylcholine: Reducing inflammation and maintaining low posterior capsular opacification properties. Materials Science & Engineering C-Materials for Biological Applications, 2017. 75: p. 1289-1298.
123. Vaisocherova, H., E. Brynda, and J. Homola, Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Analytical and Bioanalytical Chemistry, 2015. 407(14): p. 3927-3953.
124. Wang, Y., et al., Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal Bioanal Chem, 2018. 410(23): p. 5871-5878.
125. Labib, M., E.H. Sargent, and S.O. Kelley, Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews, 2016. 116(16): p. 9001-9090.
126. Liu, Y., et al., Self-Assembling Protein-Polymer Bioconjugates for Surfaces with Antifouling Features and Low Non-Specific Binding. ACS Appl Mater Interfaces, 2018.
127. Wang, G., et al., Mixed Self-Assembly of Polyethylene Glycol and Aptamer on Polydopamine Surface for Highly Sensitive and Low-Fouling Detection of Adenosine Triphosphate in Complex Media. ACS Appl Mater Interfaces, 2017. 9(36): p. 31153-31160.
128. Wang, J. and N. Hui, Zwitterionic poly(carboxybetaine) functionalized conducting polymer polyaniline nanowires for the electrochemical detection of carcinoembryonic antigen in undiluted blood serum. Bioelectrochemistry, 2019. 125: p. 90-96.
129. Chen, S.F., Z.Q. Cao, and S.Y. Jiang, Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials, 2009. 30(29): p. 5892-5896.
130. Wang, G., et al., Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens Bioelectron, 2018. 101: p. 129-134.
131. Rana, D. and T. Matsuura, Surface Modifications for Antifouling Membranes. Chemical Reviews, 2010. 110(4): p. 2448-2471.
132. Vrijenhoek, E.M., S. Hong, and M. Elimelech, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 2001. 188(1): p. 115-128.
133. Pasmore, M., et al., Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. Journal of Membrane Science, 2001. 194(1): p. 15-32.
134. He, Y., et al., Dopamine-induced nonionic polymer coatings for significantly enhancing separation and antifouling properties of polymer membranes: Codeposition versus sequential deposition. Journal of Membrane Science, 2017. 539: p. 421-431.
135. Karkhanechi, H., R. Takagi, and H. Matsuyama, Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization. Desalination, 2014. 337: p. 23-30.
136. Sun, Q., et al., Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. Journal of Membrane Science, 2006. 285(1-2): p. 299-305.
137. Hadidi, M. and A.L. Zydney, Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. Journal of Membrane Science, 2014. 452: p. 97-103.
138. Bengani-Lutz, P., et al., Self-Assembling Zwitterionic Copolymers as Membrane Selective Layers with Excellent Fouling Resistance: Effect of Zwitterion Chemistry. Acs Applied Materials & Interfaces, 2017. 9(24): p. 20859-20872.
139. Zhou, R., et al., Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 2014. 466: p. 18-25.
140. Shahkaramipour, N., et al., Facile Grafting of Zwitterions onto the Membrane Surface To Enhance Antifouling Properties for Wastewater Reuse. Industrial & Engineering Chemistry Research, 2017. 56(32): p. 9202-9212.
141. Baek, Y., et al., A Facile Surface Modification for Antifouling Reverse Osmosis Membranes Using Polydopamine under UV Irradiation. Industrial & Engineering Chemistry Research, 2017. 56(19): p. 5756-5760.
142. Zhang, R., et al., Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev, 2016. 45(21): p. 5888-5924.
143. Kim, H.J., et al., Polyphenol/Fe-III Complex Coated Membranes Having Multifunctional Properties Prepared by a One-Step Fast Assembly. Advanced Materials Interfaces, 2015. 2(14): p. 8.
144. Crist, B.V., XPS in industry-Problems with binding energies in journals and binding energy databases. Journal of Electron Spectroscopy and Related Phenomena, 2019. 231: p. 75-87.
145. AboBakr, A., et al., Experimental comparison of integer/fractional-order electrical models of plant. Aeu-International Journal of Electronics and Communications, 2017. 80: p. 1-9.
146. Geissler, S., et al., Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir, 2016. 32(32): p. 8050-8060.
147. Cho, J.H., et al., Ascidian-Inspired Fast-Forming Hydrogel System for Versatile Biomedical Applications: Pyrogallol Chemistry for Dual Modes of Crosslinking Mechanism. Advanced Functional Materials, 2018. 28(6): p. 10.
148. Ball, V., et al., Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. Journal of Colloid and Interface Science, 2012. 386: p. 366-372.
149. Popat, K.C., S. Sharma, and T.A. Desai, Quantitative XPS analysis of PEG-modified silicon surfaces. Journal of Physical Chemistry B, 2004. 108(17): p. 5185-5188.
150. Chen, H., et al., Biocompatible polymer materials: Role of protein-surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059-1087.
151. Tsai, W.B., J.M. Grunkemeier, and T.A. Horbett, Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. Journal of Biomedical Materials Research, 1999. 44(2): p. 130-139.
152. Chang, Y., et al., Bioadhesive Control of Plasma Proteins and Blood Cells from Umbilical Cord Blood onto the Interface Grafted with Zwitterionic Polymer Brushes. Langmuir, 2012. 28(9): p. 4309-4317.
153. Lejars, M., A. Margaillan, and C. Bressy, Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chemical Reviews, 2012. 112(8): p. 4347-4390.
154. Hoffman, A.S., Non-fouling surface technologies. Journal of Biomaterials Science-Polymer Edition, 1999. 10(10): p. 1011-1014.
155. Chen, S.F. and S.Y. Jiang, A new avenue to nonfouling materials. Advanced Materials, 2008. 20(2): p. 335-+.
156. Huang, N.P., et al., Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir, 2001. 17(2): p. 489-498.
157. Brady, M.A., F.T. Limpoco, and S.S. Perry, Solvent-Dependent Friction Force Response of Poly(ethylenimine)-graft-poly(ethylene glycol) Brushes Investigated by Atomic Force Microscopy. Langmuir, 2009. 25(13): p. 7443-7449.
158. Wang, R., et al., Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. Carbohydrate Polymers, 2017. 168: p. 310-319.
159. Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
160. Yang, W., et al., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir, 2008. 24(17): p. 9211-9214.
161. Karanikolopoulos, N., et al., pH-responsive aggregates from double hydrophilic block copolymers carrying zwitterionic groups. Encapsulation of antiparasitic compounds for the treatment of leishmaniasis. Langmuir, 2007. 23(8): p. 4214-4224.
162. Gui, Z.L., et al., Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. European Polymer Journal, 2009. 45(5): p. 1403-1411.
163. Georgiev, G.S., et al., Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules, 2006. 7(4): p. 1329-1334.
164. Liu, Q.S., et al., A Facile Method of Using Sulfobetaine-Containing Copolymers for Biofouling Resistance. Journal of Applied Polymer Science, 2014. 131(18): p. 9.
165. Aerdts, A.M., J.W. Dehaan, and A.L. German, PROTON AND CARBON NMR-SPECTRA OF ALTERNATING AND STATISTICAL STYRENE METHYL-METHACRYLATE COPOLYMERS REVISITED. Macromolecules, 1993. 26(8): p. 1965-1971.
166. Ku, S.H., et al., General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 2010. 31(9): p. 2535-2541.
167. Cole, M.A., et al., Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials, 2009. 30(9): p. 1827-1850.
168. Tadmor, R., et al., Solid-Liquid Work of Adhesion. Langmuir, 2017. 33(15): p. 3594-3600.
169. Zhao, Y., et al., Fabrication of robust biomimetic coating by integrated physisorption/chemical crosslinking technique. Applied Surface Science, 2018. 453: p. 37-47.
170. Zhang, C., et al., CuSO4/H2O2-Triggered Polydopamine/Poly(sulfobetaine methacrylate) Coatings for Antifouling Membrane Surfaces. Langmuir, 2017. 33(5): p. 1210-1216.
171. Zhang, C., et al., CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie-International Edition, 2016. 55(9): p. 3054-3057.
172. Chang, C.C., et al., Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings. Advanced Materials Interfaces, 2016. 3(6): p. 9.
173. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
174. Ostuni, E., et al., A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620.
175. Ishihara, K., et al., PROTEIN ADSORPTION FROM HUMAN PLASMA IS REDUCED ON PHOSPHOLIPID POLYMERS. Journal of Biomedical Materials Research, 1991. 25(11): p. 1397-1407.
176. Li, Q., et al., Making polymeric membranes antifouling via "grafting from" polymerization of zwitterions. Journal of Applied Polymer Science, 2015. 132(21): p. 14.
177. Zhu, L.J., et al., Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration. Journal of Membrane Science, 2015. 475: p. 469-479.
178. Chien, H.W., et al., Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion. Biomaterials and Biomechanics in Bioengineering, 2016. 3(1): p. 59-69.
179. Hong, S., et al., Pyrogallol 2-Aminoethane: A Plant Flavonoid-Inspired Molecule for Material-Independent Surface Chemistry. Advanced Materials Interfaces, 2014. 1(4): p. 6.
180. Bernsmann, F., J.-C. Voegel, and V. Ball, Different synthesis methods allow to tune the permeability and permselectivity of dopamine–melanin films to electrochemical probes. Electrochimica Acta, 2011. 56(11): p. 3914-3919.
181. Riahi, S., et al., Determination of the oxidation potentials of pyrogallol and some of its derivatives: Theory and experiment. Journal of Theoretical & Computational Chemistry, 2007. 6(2): p. 331-340.
182. Shi, Q. and S. Mu, Preparation of Pt/poly(pyrogallol)/graphene electrode and its electrocatalytic activity for methanol oxidation. Journal of Power Sources, 2012. 203: p. 48-56.
183. Carter, M.K., Correlation of electronic transitions and redox potentials measured for pyrocatechol, resorcinol, hydroquinone, pyrogallol, and gallic acid with results of semi-empirical molecular orbital computations - A useful interpretation tool. Journal of Molecular Structure, 2007. 831(1-3): p. 26-36.
184. Abdel-Hamid, R. and E.F. Newair, Electrochemical behavior of antioxidants: I. Mechanistic study on electrochemical oxidation of gallic acid in aqueous solutions at glassy-carbon electrode. Journal of Electroanalytical Chemistry, 2011. 657(1-2): p. 107-112.
185. Qu, X.J., et al., Electrochemical oxidation and voltammetric determination of tannic acid. Chinese Journal of Analytical Chemistry, 2002. 30(2): p. 192-194.
186. Goda, T. and Y. Miyahara, Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces. Langmuir, 2019. 35(5): p. 1126-1133.
187. Chilkoti, A., P.H. Tan, and P.S. Stayton, SITE-DIRECTED MUTAGENESIS STUDIES OF THE HIGH-AFFINITY STREPTAVIDIN-BIOTIN COMPLEX - CONTRIBUTIONS OF TRYPTOPHAN RESIDUE-79, RESIDUE-108, AND RESIDUE-120. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(5): p. 1754-1758.
188. Wang, J., M. Jiang, and F. Lu, Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation. Journal of Electroanalytical Chemistry, 1998. 444(1): p. 127-132.
189. Pranantyo, D., et al., Tea Stains-Inspired Initiator Primer for Surface Grafting of Antifouling and Antimicrobial Polymer Brush Coatings. Biomacromolecules, 2015. 16(3): p. 723-732.
190. Pezzella, A., et al., Free Radical Coupling of o-Semiquinones Uncovered. Journal of the American Chemical Society, 2013. 135(32): p. 12142-12149.
191. Randles, J.E.B., A CATHODE RAY POLAROGRAPH .2. THE CURRENT-VOLTAGE CURVES. Transactions of the Faraday Society, 1948. 44(5): p. 327-&.
192. Nady, H., M.M. El-Rabiei, and G.M.A. El-Hafez, Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egyptian Journal of Petroleum, 2017. 26(3): p. 669-678.
193. Maerten, C., et al., Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry. Langmuir, 2015. 31(49): p. 13385-93.
194. Chen, S.F., et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
195. Xia, Y.J., H.M. Zhang, and J.Y. Ouyang, Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. Journal of Materials Chemistry, 2010. 20(43): p. 9740-9747.
196. Jung, L.S., et al., Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir, 2000. 16(24): p. 9421-9432.
197. Reznik, G.O., et al., A streptavidin mutant useful for directed immobilization on solid surfaces. Bioconjugate Chemistry, 2001. 12(6): p. 1000-1004.
198. Pradier, C.M., et al., Specific binding of avidin to biotin immobilised on modified gold surfaces - Fourier transform infrared reflection absorption spectroscopy analysis. Surface Science, 2002. 502: p. 193-202.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78781-
dc.description.abstract表面改質在醫療產業中如骨科、牙科、眼科及生物感測中十分廣泛的被應用。由於生醫材料的表面和體內環境有第一時間的接觸,其表面的性質將會決定此生醫材料成效,因此許多人利用表面改質技術來改變或改善生醫材料的性質。為了要避免蛋白質吸附及進一步的細胞貼附而導致醫療器材的效能降低或者疾病之產生,表面修飾抗污塗層被用來解決這類問題。然而現今許多表面改質的方式對於不同的基材有極大的專一性,因此我們發展出一步驟共聚塗佈的方式,將抗污高分子聚乙烯醇及兩性高分子磺基甜菜鹼藉由鄰苯三酚自我聚合方式固定在各類表面上。當聚乙烯醇末端含有醛基或兩性磺基甜菜鹼共聚高分子含有胺基單體時,這些抗污高分子能和鄰苯三酚進行反應進而固定於表面上,對纖維母細胞及蛋白質產生極佳的抗污作用。
我們在浸泡塗佈法中控制不同的塗佈時間,以期能得到表面性質和細胞貼附行為間的關係。此抗污塗層的效果和表面的親水性呈現正相關,當此抗污塗層厚度達到50奈米或表面抗污高分子嫁接比例超過50%時,此抗污塗層將會有很好的抑制細胞貼附效果。同時,我們也發現抗污高分子在溶液中比鄰苯三酚更先消耗完畢,因此在浸泡塗佈法中塗佈時間必須精準地控制以達到最佳的抗汙效果。此外,此抗污塗層在經過高壓釜滅菌處理後能保持很好的抗細胞貼附效果。另外,由於此塗佈的薄膜十分的透明,我們期望此技術能應用在需要高度透光性的塗層的醫療器材上像是人工水晶體。
藉由一步驟多酚類電沉積法,此抗污塗佈處理時間能大幅縮短至800秒。我們將導電玻璃上塗佈兩性高分子抗污塗層後能使表面對於生物分子有良好的抗貼附效果,同時也能維持基材既有的優良導電性。當我們再將生物素嫁接於兩性高分子上時並進一步驟鄰苯三酚電沉積,此系統能對特定抗生物素分子具有捕獲效果,但卻可以對其他非特定性蛋白干擾有很大的抗汙效果,因此我們希望此技術能在將來被應用生物感測器上。
zh_TW
dc.description.abstractSurface modification has become a routine procedure in designing and developing bio-friendly implants for orthopedic, dental and ophthalmology applications as well as other bio-sensing applications. The surface of biomaterial affects its performance in a host environment. Many techniques have been utilized to modify the surfaces of biomaterials to obtain innovative or improved properties. In order to prevent protein adsorption and further cell adhesion, which decreased sensitivity of medical device or caused disease on patients, surface modification for anti-fouling purpose is an important strategy to address this issue. However, many methods for conjugation of anti-fouling materials on surfaces are substrate-dependent. We developed a simple one-step coating method for surface immobilization of antifouling polymers sulfobetaine methacrylate (SBMA) or poly (ethylene glycol) (PEG) via deposition of self-polymerized pyrogallol (PG). The anti-fouling polymers were successfully anchored on various substrates when the SBMA conjugation of monomers containing amine groups or PEG tailing with aldehyde groups. The modified surfaces exhibited excellent resistance to fibroblast cells and proteins.
Controlling the coating for an array of incubation time in dip coating method, we investigated through the surface properties corresponding to cells adhesion behaviors. The antifouling effect on the surfaces is positive correlation with the surface wettability. When the antifouling film reached 50 nm and the grafting ratio of antifouling polymers reached 50%, the surfaces can inhibit cell growth effectively. Meanwhile, we found antifouling polymers are consumed faster than PG in the coating solution, so the required coating time for antifouling surface fabricated by dip coating should be controlled precisely. Besides, this coating treatment is robust enough for the duration of harsh environment such as autoclave. We also believe the high transparency of this coating can allow this strategy applied on the development of new generation medical devices such as intraocular lens.
The required coating time can be significantly reduced to only 800 seconds by the one-step polyphenol electrodeposition method. The ITO surfaces are endowed with antifouling feature to repel biomolecules attachment but maintain the intrinsic good conductivity of the substrates. With the grafting of biotins on the zwitterionic copolymers, followed by the co-electrodeposition with PG, the surfaces can capture specific target avidin but resist the interference non-specific protein adsorption in complex media. We hope this treatment can also be applied into the area of biosensor.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:18:54Z (GMT). No. of bitstreams: 1
ntu-108-R06524081-1.pdf: 5159521 bytes, checksum: 3ecb3931c07ad022f48cea9efb4f36ea (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
Content VII
List of figures XII
List of tables XIX

Chapter 1 Introduction 1
1.1 Surface Modification of Biomaterials 1
1.1.1 Grafting from and grafting to method 2
1.1.2 Deposition of catechol or polyphenol molecules by dip coating 6
1.1.3 Electrodeposition of catechol and polyphenol molecules 18
1.2 Antifouling treatment 21
1.2.1 PEG (poly(ethylene glycol)) 25
1.2.2 Zwitterionic polymers 28
1.2.3 Antifouling treatments to medical devices 37
1.2.4 Antifouling treatments on membrane 41
1.3 Research motivation and objective 45

Chapter 2 Experimental Section 48
2.1 Chemicals 48
2.1.1 Synthesis of Polymers 48
2.1.2 Polyphenol molecules assisted coating 48
2.1.3 Cell culture and proteins 49
2.2 Experimental instrument 50
2.3 Experimental materials and substrates 52
2.3.1 Experimental materials and solvents 52
2.3.2 Substrates preparation 53
2.4 Solution formula 54
2.5 Experimental Methods 56
2.5.1 Synthesis of zwitterionic copolymers and biotinylated copolymers 56
2.5.2 Polyphenol deposition of antifouling polymers onto various substrates by dip coating 57
2.5.3 Electrodeposition of polyphenol-based molecules with zwitterionic copolymer 58
2.5.4 Surface hydrophilicity test (WCA) 59
2.5.5 Surface element and chemical bonds characterization 60
2.5.6 Surface morphology and topology characterization 62
2.5.7 Film thickness 62
2.5.8 Cell culture and adhesion test 63
2.5.9 Fibrinogen adsorption test 64
2.5.10 Optical transmittance test 65
2.5.11 Film impedance test 65
2.5.12 Stability test 68
2.5.13 Sterilization 68
2.5.14 Statistic Analysis 70

Chapter 3 Surface immobilization of PEG via pyrogallol-based chemistry for application on intraocular lens material 75
3.1 Pyrogallol coating and deposition of the PEG 76
3.2 Antifouling efficacy of PG/PEG-aldehyde coating 78
3.3 Coating time-dependence on surface properties and antifouling abilities of PG/PEG-aldehyde coating 81
3.4 PG/PEG0.1 modified intraocular lens (PMMA) properties evaluation 86
3.5 Discussion 87
3.6 Conclusion 93

Chapter 4 Surface conjugation of polysulfobetaine via pyrogallol deposition for antifouling treatment 104
4.1 Synthesis and characterization of pSBAE 105
4.2 Deposition of the PG/pSBAE coating 106
4.3 Antifouling efficacy of PG/pSBAE coating 107
4.4 Coating time-dependence on surface properties and antifouling abilities of PG/pSBAE0.1 coating 110
4.5 Stability of PG/PEG0.1 modified surface 112
4.6 Discussion 113
4.7 Conclusion 118

Chapter 5 Electrodeposition of zwitterionic polymer via polyphenol-based chemistry 129
5.1 Electrodeposition of zwitterion surfaces via polyphenol molecules 130
5.2 Surface characterization and anti-cell adhesion of zwitterion surfaces 133
5.3 Electrochemical characterizations and sensing performance of zwitterionbiotinylated surfaces 135
5.4 Antifouling features and reduction of non-specific binding on the biosensors 138
5.5 Discussion 139
5.6 Conclusion 145

Chapter 6 Conclusion and Future Work 156

Reference 160
Appendix 176
-
dc.language.isoen-
dc.subject抗污zh_TW
dc.subject塗佈zh_TW
dc.subject聚乙烯醇zh_TW
dc.subject兩性高分子zh_TW
dc.subject鄰苯三酚zh_TW
dc.subject人工水晶體zh_TW
dc.subject電沉積zh_TW
dc.subject生物感測器zh_TW
dc.subjectbiosensoren
dc.subjectantifoulingen
dc.subjectcoatingen
dc.subjectpoly (ethylene glycol)en
dc.subjectsulfobetaine methacrylateen
dc.subjectpyrogallolen
dc.subjectintraocular lensen
dc.subjectelectrodepositionen
dc.title多酚類分子輔助高分子之抗污表面改質處理zh_TW
dc.titlePolyphenol Molecules Assisted Deposition of Polymers for Antifouling Treatmentsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游佳欣;王孟菊zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword抗污,塗佈,聚乙烯醇,兩性高分子,鄰苯三酚,人工水晶體,電沉積,生物感測器,zh_TW
dc.subject.keywordantifouling,coating,poly (ethylene glycol),sulfobetaine methacrylate,pyrogallol,intraocular lens,electrodeposition,biosensor,en
dc.relation.page181-
dc.identifier.doi10.6342/NTU201901309-
dc.rights.note未授權-
dc.date.accepted2019-07-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2024-07-18-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-107-2.pdf
  Restricted Access
5.04 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved