請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方俊民 | zh_TW |
| dc.contributor.advisor | Jim-Min Fang | en |
| dc.contributor.author | 曾育葦 | zh_TW |
| dc.contributor.author | Yu-Wei Tseng | en |
| dc.date.accessioned | 2021-07-11T15:18:16Z | - |
| dc.date.available | 2024-07-18 | - |
| dc.date.copyright | 2019-07-18 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1.https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death access on 5 May 2019.
2.Hecht, S. S. Tabacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer 2003, 3, 733–744. 3.O’Reilly, K. M. A.; McLaughlin, A. M.; Beckett, W. S.; Sime, P. J. Asbestos-related lung disease. Am. Fam. Physician 2007, 75, 683–688. 4.Bender, E. The dominant malignancy. Nature 2014, 513, S2–S3. 5.https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ access on 5 May 2019. 6.Suva, L. J.; Griffin, R. J.; Makhoul, I. Mechanisms of bone metastases of breast cancer. Endocr. Relat. Cancer 2009, 16, 703-713. 7.Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. 8.Cohen, M. H.; Williams, G. A.; Sridhara, R.; Chen, G.; Pazdur, R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 2003, 8, 303–306. 9.https://www.esmo.org/Oncology-News/FDA-Approves-Gefitinib-for-First-Line-Treatment-of-Patients-with-Metastatic-NSCLC access on 15 May 2019. 10.Cohen, M. H.; Johnson, J. R.; Chen, Y. –F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 2005, 10, 461–466. 11.Karaman, S.; Leppänen, V.-M.; Alitalo, K. Vascular endothelial growth factor signaling in development and disease. Development, 2018, 145. 12.Kazaki-Hyseni, F.; Beijnen, J. H.; Schellens, J. H. M. Bevacizumab. Oncologist. 2010, 15, 819–825. 13.Kuo, T.-C.; Li, L.-W.; Pan, S.-H.; Fang, J.-M.; Liu, J.-H; Cheng, T.-J.; Wang, C.-J.; Hung, P.-F.; Chen, H.-Y.; Hong, T.-M.; Hsu, Y.-L.; Wong, C.-H.; Yang, P. C. Purine-type compounds induce microtubule fragmentation and lung cancer cell death through interaction with katanin. J. Med. Chem. 2016, 59, 8521–8534. 14.Sharp, D. J.; Rogers, G. C.; Scholey, J. M. Microtubule motors in mitosis. Nature 2000, 407, 41–47. 15.Gierke, S.; Kumar, P.; Wittmann, T. Analysis of microtubule polymerization dynamics in live cells. Method Cell Biol. 2010, 97, 15–33. 16.Brouhard, G. J.; Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 2018, 19, 451–463. 17.Ramalingam, S.; Belani, C. P. Paclitaxel for non-small cell lung cancer. Expert Opin. Pharmacother. 2004, 5, 1771–1780. 18.Beswick, R. W.; Ambrose, H. E.; Wagner, S. D. Nocodazole, a microtubule depolymerizing agent, induces apoptosis of chronic lymphocytic leukaemia cells associated with changes in Bcl-2 phosphorylation and expression. Leuk. Res. 2006, 30, 427–436. 19.Matus, A. Microtubule-associated proteins and neuronal morphogenesis. J. Cell. Sci. Suppl. 1991, 15, 61–67. 20.Wegiel, B.; Wang, T.-Q.; Li, M.-L.; Jernigan, F.; Sun, L.-J. Novel indolyl-chalcones target stathmin to induce cancer cell death. Cell Cycle 2016, 15, 1288–1294. 21.Rouzier, R.; Rajan, R.; Wagner, P.; Heaa, K. R.; Gold, D. L.; Stec, J.; Ayers, M.; Ross, J. S.; Zhang, P.; Buchholz, T. A.; Kuerer, H.; Green, M.; Arun, B.; Hortobagyi, G. N.; Symmams, W. F.; Pusztai, L. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 8315–8320. 22.Waclawek, E.; Wloga, D. Microtubule severing proteins – structure and activity regulation. Postepy. Biochem. 2016, 62, 46–51. 23.Luptovčiak, V.; Komis, G.; Takáč, T.; Ovečka, M.; Šamaj, J. Microtubules for cellular, developmental, and physiological purposes. Front Plant Sci. 2017, 21, 1982. 24.Ye, X.; Lee, Y. C.; Choueiri, M. Chu, K.; Huang, C. F.; Tsai, W. W.; Kobayashi, R.; Logothetis, C. J.; Yu-Lee, L. Y.; Lin, S. H. Aberrant expression of katanin p60 in prostate cancer bone metastasis. Prostate 2012, 72, 291–300. 25.Fu, W.-R.; Wu, H.; Cheng, Z.-J.; Huang, S.-J.; Rao, H. The role of katanin p60 in breast cancer bone metastasis. Oncol. Lett. 2018, 15, 4963–4969. 26.Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylases inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017, 18, 1414–1438. 27.McClure, J. J.; Li, X.; Chou, C. J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res. 2018, 138, 183–211. 28.Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401, 188–193. 29.Bradner, J. E.; West, N.; Grachan, M. L.; Greenberg, E. F.; Haggarty, S. J.; Warnow, T.; Mazitschek, R. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol. 2010, 6, 238–243. 30.Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylases inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017, 18, 1414–1438. 31.Ocker, M.; Schneider-Stock, R. Histone deacetylase inhibitors: Signalling towards p21cip1/waf1. Int. J. Biochem. Cell Biol. 2007, 39, 1367–1374. 32.Gius, D.; Cui, H.; Bradbury, C. M.; Cook, J.; Smart, D. D. K.; Zhao, S.; Young, L.; Brandenburg, S. A.; Hu, Y.; Bisht, K. S.; Ho, A. S.; Mattson, D.; Sun, L.; Munson, P. J.; Chuang, E. Y.; Mitchell, J. B.; Feingerg, A. P. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 2004, 6, 361–371. 33.Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetulase inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 1505–1529. 34.Hu, E.; Dul, E. Sung, C. M.; Chen, Z.; Kirkpatrick, R.; Zhang, G. F. Johanson, K.; Liu, R.; Lago, A.; Hofmann, G.; Macarron, R. Frailes, M. D. L.; Perez, P.; Lraeiec, J.; Winkler, J. Jave, M. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther. 2003, 307, 720–728. 35.McClure, J. J.; Li, X.; Chou, C. J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res. 2018, 138, 183–211. 36.Rubin, E. H.; Agrawal, N. G.; Friedman, E. J.; Scott, P.; Mazina, K. E.; Sun, L. Du, L.; Ricker, J. L.; Franlel, S. R.; Gottesdiener, K. M.; Wagner, J. A.; Iwamoto, M. A study to determine the effects of food and multiple dosing on the pharmacokinetics of vorinostat given orally to patients with advanced cancer. Clin. Cancer Res. 2006, 12, 7039–7045. 37.Dowdy, S. C.; Jiang, S.; Zhou, X. C.; Hou, X.; Jin, F.; Podratz, K. C.; Jiang, S.-W. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther. 2006, 5, 2767–2776. 38.Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543. 39.Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug. Discov. Today 2004, 9, 641–651. 40.Morphy, R.; Rankovic, Z. Medicinal chemistry approaches for multitarget drugs. Burger's medicinal chemistry and drug discovery. 7th ed. Willy: UK, 2010, 249–273. 41.Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approached to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3-26. 42.Huang, M.-R. Structure-guided development and structure-activity study of purine-type molecules for non-small cell lung cancer. Ph.D. Thesis, National Taiwan University, Taiwan, 2018. 43.Booth, B. L.; Dias, A. M.; Proenca, M. F.; Zaki, M. E. A. The reactions of diaminomaleonitrile with isocyanates and either aldehydes or ketones revisited. J. Org. Chem. 2001, 66, 8436–8441. 44.Usachova, N.; Leitis, G.; Jirgensons, A.; Kalvinsh, I. Synthesis of hydroxamic acid by activation of carboxylic acids with N, N′-carbonyldiimidazole: exploring the efficiency of the method. Synth. Commun. 2010, 40, 927–935. 45.Paterson, I.; Ng, K. K.-H.; Williams, S.; Millican, D. C.; Dalby, S. M. Total synthesis of the antimitotic marine macrolide (–)-Leiodermatolide. Angew. Chem. Int. Ed. 2014, 53, 2692 –2695. 46.Flipo, M.; Charton, J.; Hocine, A.; Dassonneville, S.; Deprez, B.; Deprez-Poulain, R. Hydroxamates: Relationships between structure and plasma stability. J. Med. Chem. 2009, 52, 6790-6802. 47.Suzuki, T.; Miyaya, N. Non-hydroxamate histone deacetylase inhibitors. Curr. Med. Chem. 2005, 12, 2867-2880. 48.Chen, K.; Xu, L.; Wiest, O. Computational exploration of zinc binding groups for HDAC inhibition. J. Org. Chem. 2013, 78, 5051–5055. 49.Jiao, P.; Jin, P.; Li, C.; Cui, L.; Dong, L.; Pan, B,; Song, W.; Ma, L.; Dong, J.; Song, L. Jin, X.; Li, F.; Wan, M.; Lv, Z.; Geng, Q. Design, Synthesis and in vitro evaluation of amidoximes as histone deacetylase inhibitors for cancer therapy. Bioorg. Med. Chem. Lett. 2016, 26, 4679–4683. 50.Vatele, J.-M. One-pot oxidative conversion of alcohols into nitriles by using a TEMPO/PhI(OAc)2/NH4OAc system. Synlett. 2014, 25, 1275–1278. 51.Gu, W.; Nusunzon, I.; Smith; R. D.; Horvath, C. M.; Silverman, R. B. Carbonyl- and sulfur-containing analogs of suberoylanilide hydroxamic acid: potent inhibition of histione deacetylases. Bioorg. Med. Chem. 2006, 14, 3320–3329. 52.Ferraz, H. M. C.; Muzzi, R. M.; Vieira, T. O.; Viertler, H. A simple and efficient protocol for epoxidation of olefins using dimethyldioxirane. Tetrahedron Lett. 2000, 41, 5021–5023. 53.Gros, L.; Lorente, S. O.; Jimenez; Yardley, V.; Rattray, L.; Wharton, H.; Little, S.; Croft, S. L.; Ruiz-Perez, L. M.; Gonzalez-Pacanowska, D.; Gilbert, I. H., Evaluation of azasterols as anti-parasitics. J. Med. Chem. 2006, 49, 6094–6103. 54.Day, J. A.; Cohen, S. M., Investigating the selectivity of metalloenzyme inhibitors. J. Med. Chem. 2013, 56, 7997–8007. 55.Botta, C. B.; Cabri, W.; Cini, E.; De Cesare, L.; Fattorusso, C.; Giannini, G.; Persico, M.; Petrella, A.; Rondinelli, F.; Rodriquez, M.; Russo, A.; Taddei, M., Oxime amides as a novel zinc binding group in histone deacetylase inhibitors: synthesis, biological activity, and computational evaluation. J. Med. Chem. 2011, 54, 2165–2182. 56.Hayashi, T.; Sun, Y.; Tamura, T.; Kuwata, K.; Song, Z.; Takaoka, Y.; Hamachi, I., Semisynthetic lectin–4-dimethylaminopyridine conjugates for labeling and profiling glycoproteins on live cell surfaces. J. Am. Chem. Soc. 2013, 135, 12252–12258. 57.Clave, G.; Boutal, H.; Hoang, A.; Perraut, F.; Volland, H.; Renard, P.-Y.; Romieu, A. A novel heterotrifunctional peptide-based cross-linking reagent for facile access to bioconjugates. applications to peptide fluorescent labelling and immobilisation. Org. Biomol. Chem. 2008, 6, 3065–3078. 58.Li, J.; Yao, S. Q., “Singapore Green”: A new fluorescent dye for microarray and bioimaging applications. Org. Lett. 2009, 11, 405–408. 59.Martínez-Calvo, M.; Kotova, O.; Möbius, M. E.; Bell, A. P.; McCabe, T.; Boland, J. J.; Gunnlaugsson, T. Healable luminescent self-assembly supramolecular metallogels possessing lanthanide (Eu/Tb) dependent rheological and morphological properties. J. Am. Chem. Soc. 2015, 137, 1983–1992. 60.Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J., Highly chemoselective reduction of amides (primary, secondary, tertiary) to alcohols using SmI2/Amine/H2O under mild conditions. J. Am. Chem. Soc. 2014, 136, 2268–2271. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78772 | - |
| dc.description.abstract | 肺癌每年造成約有百萬人死亡,是全世界最常見的的癌症之一。根據細胞組織型態的不同,我們又可以將肺癌分類成小細胞肺癌以及非小細胞肺癌。而其中,約有85%的肺癌患者被診斷為非小細胞肺癌。2012年,位於中央研究院的基因體研究中心利用高通量藥物篩選系統,在化合物資料庫中篩選出了嘌呤類化合物1 (GRC0321),其對於非小細胞肺癌有不錯的抑制效果。
在本篇論文中,我們構想組蛋白脫乙醯酶抑制劑 (HDACIs) 的鋅離子結合部分能與嘌呤類化合物結構進行接合。若將兩個骨架融合為單一化合物,或許能在對抗非小細胞肺癌的治療中產生增效作用。根據此概念,我們設計與合成一系列的雙重抑制劑。其中,異羥肟酸化合物3在生物實驗中對於H1975肺癌細胞、MDA-MB231乳癌細胞以及組蛋白脫乙醯酶的活性都具有良好的抑制效力。未來將會進一步進行小鼠實驗以供後續抗癌藥物的開發。 | zh_TW |
| dc.description.abstract | Lung cancer is one of the most common cancers in the world, causing more than one million deaths per year. Lung cancer can be classified into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Almost 85% of lung cancer patients are diagnosed as NSCLC. In 2012, a high throughput screening in Academia Sinica revealed that the purine-type compound 1 (GRC0321) was a potent agent against NSCLC.
In this study, we conceive that the essential zinc-binding moiety of histone deacetylases inhibitors (HDACIs) can be incorporated into the structure of purine-type compound. Thus, it is possible to merge these two scaffolds into one single conjugate compound, which may exhibit synergistic effect in treatment of NSCLC. This idea prompts us to design and synthesize a series of dual targeting inhibitors. Among the synthesized compounds, hydroxamte compound 3 showed potent toxicity to H1975 lung cancer cells and MDA-MB231 breast cancer cell lines, and also displayed excellent inhibitory activity against HDACs. Thus it was subjected to animal experiments for development of anticancer drug. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:18:16Z (GMT). No. of bitstreams: 1 ntu-108-R06223111-1.pdf: 8817901 bytes, checksum: 357bf2e78d10fe0438efa08cf9f2759a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III Table of Contents IV Index of Figures VIII Index of Schemes IX Index of Tables X Abbreviations XII Chapter 1. Introduction 1 1.1 Introduction of cancer 1 1.1.1 Lung cancer 1 1.1.2 Breast cancer 1 1.2 Targeted therapy for treating cancer 2 1.2.1 Epidermal growth factor receptor (EGFR) 2 1.2.2 Vascular endothelial growth factor (VEGF) 4 1.3 Screening inhibitors against NSCLC 4 1.4 Microtubule and associated proteins 6 1.4.1 Microtubule-targeting agents (MTAs) 8 1.4.2 Microtubule-associated proteins (MAPs) 9 1.5 Histone deacetylases (HDACs) 10 1.6 HDACs inhibition for cancer treatment 12 1.7 Classification of HDACs inhibitors 13 1.8 Clinical trials of HDAC inhibitors in tumors 15 1.9 Designed multiple ligands (DMLs) in drug discovery 17 Chapter 2. Results and Discussion 20 2.1 Research motivation 20 2.1.1 Structural feature and pharmacophore model of purine compounds 20 2.1.2 Merged DMLs of purine compounds and HDAC inhibitors 21 2.2 Synthesis of the dual-targeting agent using merging strategy 22 2.2.1 Synthetic schemes 22 2.2.2 Structure–activity relationship study 26 2.3 Modification of purine structure 29 2.3.1 Synthetic schemes 29 2.3.2 Structure‒activity relationship study 30 2.4 Modification of spacer 32 2.4.1 Synthetic schemes 32 2.4.2 Structure‒activity relationship study 36 2.5 Modification of zinc-binding group 39 2.5.1 Synthetic schemes 39 2.5.2 Structure–activity relationship study 45 2.6 Improving water solubility 47 2.6.1 Preparation of derivatives in salt-form 47 2.6.2 Modification at meta-position of the C2-aryl ring 48 2.6.3 Structure–activity relationship study 52 2.7 Cell studies of conjugate compound 3 (JMF4409) 55 2.7.1 Microtubule fragmentation assay of compound 3 55 2.7.2 Potency of compound 3 against different NSCLC cell lines 56 2.8 Conclusion 57 Chapter 3. Experimental Section 59 3.1 General part 59 3.2 Instrumentation 59 3.3 Bioassays 60 3.4 Cell lines and culture conditions 60 3.5 Determination of IC50 values 61 3.6 HDAC activity assay 62 3.7 Synthetic procedure and characterization of compounds 62 3.7.1. Compound characterization 62 3.7.2. Synthetic procedure and characterization of compounds 63 References 124 Appendices 133 | - |
| dc.language.iso | en | - |
| dc.subject | 嘌呤類小分子 | zh_TW |
| dc.subject | 抗癌藥物 | zh_TW |
| dc.subject | 雙重抑制劑 | zh_TW |
| dc.subject | Dual inhibitors | en |
| dc.subject | Purine-type small molecule | en |
| dc.subject | Anticancer | en |
| dc.title | 設計與合成以嘌呤類小分子作為骨架之抗癌藥物 | zh_TW |
| dc.title | Design and Synthesis of Anticancer Drugs Based on the Scaffold of Purine-type Small Molecules | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅禮強;潘思樺;陳榮傑 | zh_TW |
| dc.contributor.oralexamcommittee | Lee-Chiang Lo;Szu-Hua Pan;Rong-Jie Chein | en |
| dc.subject.keyword | 嘌呤類小分子,抗癌藥物,雙重抑制劑, | zh_TW |
| dc.subject.keyword | Purine-type small molecule,Anticancer,Dual inhibitors, | en |
| dc.relation.page | 193 | - |
| dc.identifier.doi | 10.6342/NTU201901492 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-15 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2024-07-18 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 8.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
