Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝松蒼
dc.contributor.authorHsin-Hui Chiuen
dc.contributor.author邱欣惠zh_TW
dc.date.accessioned2021-07-11T15:17:38Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-07-19
dc.identifier.citation1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76.
2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-72.
3. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008; 321(5889):699-702.
4. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133(2):250-64.
5. Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol. 2008;18(12):890-4.
6. Raab S, Klingenstein M, Liebau S, Linta L. A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells Int. 2014;2014:768391.
7. Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev. 2019;99(1):79-114.
8. Toyohara T, Mae S, Sueta S, Inoue T, Yamagishi Y, Kawamoto T, et al. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Transl Med. 2015;4(9):980-92.
9. Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17(3):170-82.
10. Alshawaf AJ, Viventi S, Qiu W, D'Abaco G, Nayagam B, Erlichster M, et al. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep. 2018;8(1):603.
11. Luo W, Enomoto H, Rice FL, Milbrandt J, Ginty DD. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron. 2009;64(6):841-56.
12. Marmigere F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci. 2007;8(2):114-27.
13. Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, et al. Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron. 2009;64(6):857-70.
14. Honma Y, Kawano M, Kohsaka S, Ogawa M. Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development. 2010;137(14):2319-28.
15. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275-80.
16. Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009;27(4):806-11.
17. Denham M, Dottori M. Neural differentiation of induced pluripotent stem cells. Methods Mol Biol. 2011;793:99-110.
18. Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, et al. Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci. 2010;45(3):258-66.
19. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836-46.
20. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000; 28(1):31-40
21. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells. 2007;25(8):1931-9.
22. Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012;30(7):715-20.
23. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol. 2008;313(1):107-17.
24. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008;14(12):1363-9.
25. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132(6):1273-82.
26. Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K, et al. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci. 2005;96(11):791-800.
27. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002;277(34):30998-1004.
28. García-Castro MI, Marcelle C, Bronner-Fraser M. Ectodermal Wnt function as a neural crest inducer. Science. 2002; 297(5582).
29. Lee HY, Kléber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science. 2004; 303(5660):1020-3.
30. Kondo T, Matsuoka AJ, Shimomura A, Koehler KR, Chan RJ, Miller JM, et al. Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem Cells. 2011;29(5):836-46.
31. Lange C, Mix E, Frahm J, Glass A, Muller J, Schmitt O, et al. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett. 2011;488(1):36-40.
32. Sun L, Tran N, Liang C, Tang F, Rice A, Schreck R, et al. Design, Synthesis, and Evaluations of Substituted 3-[(3- or 4-Carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as Inhibitors of VEGF, FGF, and PDGF Receptor Tyrosine Kinases. Journal of Medicinal Chemistry. 1999;42(25):5120-30.
33. Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell. 2011;8(3):326-34.
34. Greber B, Coulon P, Zhang M, Moritz S, Frank S, Muller-Molina AJ, et al. FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J. 2011;30(24):4874-84.
35. Dovey HF., et al., Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 2001;76(1):173-81.
36. Nelson BR, Gumuscu B, Hartman BH, Reh TA. Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev Neurosci. 2006;28(1-2):128-41.
37. Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, et al. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A. 2011;108(20):8299-304.
38. Woo SM, Kim J, Han HW, Chae JI, Son MY, Cho S, et al. Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells. BMC Neurosci. 2009;10:97.
39. Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol. 2003;53(3):292-304.
40. Schwartzentruber J, Foskolou S, Kilpinen H, Rodrigues J, Alasoo K, Knights AJ, et al. Molecular and functional variation in iPSC-derived sensory neurons. Nat Genet. 2018;50(1):54-61.
41. Bianchi F, Malboubi M, Li Y, George JH, Jerusalem A, Szele F, et al. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res. 2018;32:126-34.
42. Kirino K, Nakahata T, Taguchi T, Saito MK. Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Sci Rep. 2018;8(1):12865.
43. Black JA, Frézel N, Dib-Hajj SD, Waxman SG. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain. 2012;8:82. doi: 10.1186/1744-8069-8-82.
44. Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep. 2013;3(4):1140-52.
45. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell. 2009;136(6):1017-31.
46. Davidson KC, Jamshidi P, Daly R, Hearn MT, Pera MF, Dottori M. Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci. 2007;36(3):408-15.
47. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, et al. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol. 2008;28(24):7427-41.
48. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297(5580):365-9.
49. Viti J, Gulacsi A, Lillien L. Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J Neurosci. 2003;23(13):5919-27.
50. Desiderio S, Vermeiren S, Van Campenhout C, Kricha S, Malki E, Richts S, et al. Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA. Cell Rep. 2019;26(13):3522-36 e5.
51. Liu Y, Ma Q. Generation of somatic sensory neuron diversity and implications on sensory coding. Curr Opin Neurobiol. 2011;21(1):52-60.
52. Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci. 2018;91:25-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78763-
dc.description.abstract誘導性多潛能幹細胞 (Induced pleuripotent stem cell, IPSC)在近年來,逐漸成為一項相當蓬勃發展的研究工具,原因在於具有多重分化和自我更新的能力。在本篇研究中,我們將源自於三位健康個體的誘導性多潛能幹細胞分化為周邊神經。為了確認所分化出的神經細胞是屬於何種亞型的感覺神經細胞,我們使用免疫細胞化學染色和即時聚合酶連鎖反應 (Real-time Polymerase Chain Reaction, Real-time PCR)來檢測蛋白質標記的表現和基因的表現量。peripherin和neurofilament分別作為標定小直徑感覺神經元和大直徑感覺神經元的標記。基因,TrkA、TrkB、TrkC、PRPH和NF作為確認感覺神經分化是偏向何種譜系的指標。分化的感覺神經細胞以同時表現peripherin和neurofilament的細胞為主。在不同基因的表現量具有相當明顯的差異,像是TrkA和PRPH的基因表現量相較於TrkB、TrkC和NF要高出許多。我們調整分化用的培養基質條件,藉由減少CHIR99021,一種肝醣合成酶激酶-3的抑制劑的作用時間,並更進一步改變神經營養因子的添加種類。結果顯示利用不同分化條件所分化出來的細胞,會改變細胞增殖及neurofilament的表現量。本篇研究顯示誘導性多潛能幹細胞成功的分化出感覺神經細胞,並進一步探討小分子抑制劑和神經營養物質對於神經分化的影響。zh_TW
dc.description.abstractInduced pluripotent stem cell (iPSC) has become a promising research tool in recent years due to the abilities of multi-differentiation and self-renewal. In this study, cell lineage of the iPSC from three healthy individuals were used to differentiate into peripheral sensory neurons. To confirm the phenotypes of differentiation, we applied immunocytochemistry and RT-PCR to examine protein and gene expressions. Peripherin and neurofilament were selected as markers for small diameter sensory neurons and large diameter sensory neurons respectively. TrkA, TrkB, TrkC, PRPH, and NF were chosen as indicators of differentiation lineage. The differentiated sensory neurons were mainly expressed peripherin(+)/neurofilament (+). There was a distinct pattern of gene expression i.e. much higher TrkA and PRPH expression than those of TrkB, TrkC, and NF. We modified the medium condition for differentiation by reducing the treatment duration of CHIR99021, a glycogen synthase kinase-3 inhibitor, and further modified the contents of trophic factors. The results indicated a change in cell proliferation and neurofilament expression according to different protocols. This study demonstrated successful differentiation of sensory neurons from iPSC and further investigation for the effect of small molecule inhibitor and neurotrophic factors in neuronal differentiation.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:17:38Z (GMT). No. of bitstreams: 1
ntu-108-R06446003-1.pdf: 6284414 bytes, checksum: 0286d027c8017cee2d2816018999b0a3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Table of Contents v
Chapter 1. Introduction 1
Induced pluripotent stem cell, iPSC 1
Sensory nervous system 1
Induced pluripotent stem cells differentiate into peripheral sensory neurons 2
SB431542 and LDN-193189 2
CHIR99021 3
SU5402 3
DAPT 4
Neurotrophic factors 4
Chapter 2. Materials and Methods 6
Origins of human induced pluripotent stem cells (iPSC) 6
Differentiation of iPSC into sensory neurons 6
RNA extraction 7
Reverse Transcription Polymerase Chain Reaction, RT-PCR 8
Real-time Polymerase Chain Reaction, Real-time PCR 8
Cell viability test 9
Immunocytochemistry 9
Imaging and quantification 10
Chapter 3. Results 11
Phenotypic characterization of complete neuronal differentiation (CND) from iPSC 11
Phenotypic characterization of modifying neuronal differentiation 13
Chapter 4. Discussion 18
Effect of CHIR99021 in differentiation of sensory neurons 18
Association between neurotrophic factors and expression of neurofilament 19
Reference 22
List of Figures 26
List of Tables 78
List of Figures
Figure 1 26
Figure 2 28
Figure 3 30
Figure 4 32
Figure 5 34
Figure 6 36
Figure 7 38
Figure 8 40
Figure 9 42
Figure 10 44
Figure 11 46
Figure 12 48
Figure 13 50
Figure 14 52
Figure 15 54
Figure 16 56
Figure 17 58
Figure 18 60
Figure 19 62
Figure 20 64
Figure 21 66
Figure 22 68
Figure 23 70
Figure 24 72
Figure 25 74
Flow chart 1 76
Flow chart 2 77
List of Tables
Table 1. Origins of three cell lines of human induced pluripotent stem cells (iPSC) 78
Table 2. Sequences of primers in real-time Polymerase Chain Reaction (real-time PCR) 79
Table 3. Primary and secondary antibodies in immunocytochemistry 80
dc.language.isoen
dc.title誘導性多潛能性幹細胞分化為感覺神經細胞的表型特性分析zh_TW
dc.titlePhenotypic characterization of human iPSC- derived sensory neuronsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙啟超,黃祥博,曾拓榮,謝侑霖
dc.subject.keyword誘導性多潛能幹細胞,神經分化,感覺神經,表現型,抑制劑,zh_TW
dc.subject.keywordiPSC,neuronal differentiation,sensory neurons,phenotypes,inhibitor,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201901575
dc.rights.note有償授權
dc.date.accepted2019-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-108-R06446003-1.pdf
  目前未授權公開取用
6.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved