請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方俊民 | zh_TW |
| dc.contributor.advisor | Jim-Min Fang | en |
| dc.contributor.author | 劉明芳 | zh_TW |
| dc.contributor.author | Ming-Fang Liu | en |
| dc.date.accessioned | 2021-07-11T15:17:13Z | - |
| dc.date.available | 2024-07-29 | - |
| dc.date.copyright | 2019-07-29 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Moyes, R. B.; Reynolds, J.; Breakwell, D. P. Differentail staining of bacteria: gram stain. Curr. Protoc. Microbiol. 2009, 15, A.3C.1‒A.3C.8
2. Silhavy, T. J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, 1‒16 3. Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783‒801 4. Typas, A.; Banzhaf, M.; Gross, C. A.; Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2011, 10, 123‒36 5. Barreteau, H.; Kovac, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 168‒207 6. Bouhss, A.; Trunkfield, A. E.; Bugg, T. D. H.; Mengin-Lecreulx, D. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 2008, 32, 208233 7. Teo, A. C. K.; Roper, D. I. Core steps of membrane-bond peptidoglycan biosynthesis: recent advances, insight and opportunities. Antibiotics 2015, 4, 495‒520 8. Sham, L. T.; Butler, E. K.; Lebar, M. D.; Kahne, D.; Bernhardt, T. G.; Ruiz, N. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 2014, 345, 220‒222 9. Lovering, A. L.; Safadi, S. S.; Strynadka, N. C. J. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 2012, 81, 451‒478 10. Goffin, C.; Ghuysen, J. M. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev. 2002, 66, 702‒38 11. Lovering, A. L.; De Castro, L.; Lim D.; Strynadka, N. C. Structural analysis of an “open” form of PBP1B from Streptococcus pneumoniae. Protein Sci. 2006, 15, 1701‒1709 12. Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J. A.; Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234‒258 13. Den Blaauwen, T.; de Pedro, M. A.; Nguyen-Dissteche, M.; Ayala, J. A. Morphogenesis of rod-shaped sacculi. FEMS Microbiol. Rev. 2008, 32, 321‒344 14. Lovering, A. L.; de Castro, L. H.; Lim, D.; Strynadka, N. C. J. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 2007, 315, 1402‒1405 15. Terrak, M.; Ghosh, T. K.; Heijenoort, J. V.; Beeumen, J. V.; Lampilas, M.; Aszodi, J; Ayala J. A.; Ghuysen, J.-M.; Nguyen-Disteche, M. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 1999, 34, 350‒364 16. Lovering, A. L.; Gretes, M.; Strynadka, N. C. J. Structural details of the glycosyltransferase step of peptidoglycan assembly Curr. Opin. Struct. Biol. 2008, 18, 534‒543 17. Sung, M.-T.; Lai, Y.-T.; Huang, C.-Y.; Chou, L.-Y.; Shih, H.-W.; Cheng, W.-C.; Wong, C.-H.; Ma, C. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl. Acad. Sci. USA 2009, 106, 8824‒8829 18. Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71‒109 19. Goffin, C.; Ghuysen, J.-M. Multimodular Penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 2008, 62, 1079‒1093 20. Bush, K.; Bradford, P. A. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247 21. Boneca, I. G.; Chiosis, G. Vancomycin resistance: occurrence, mechamisms and strategies to combat it. Expert Opin. Ther. Targets 2003, 7, 311‒328 22. Ostash, B.; Walker, S. Bacterial transglycosylase inhibitors Curr. Opin. Chem. Bio. 2005, 9, 459‒466 23. Ostash, B.; Walker, S. Moenomycin family antibiotics: chemical synthesis, biosynthesis, biological activity. Nat. Prod. Rep. 2010, 11, 1594‒1617 24. Welzel, P.; Kunisch, F.; Kruggel, F.; Stein, H.; Scherkenbeck, J.; Hiltmann, A.; Duddeck, H.; Muller, D.; Maggio, J. E.; Fehihaber, H.-W.; Seibert, G.; van Heijenoort, Y.; van Heijenoort, J. Moenomycin A: minimum structural requirements for biological activity. Tetrahedron 1987, 43, 585‒598 25. Cheng, T.-J R.; Wu, Y.-T.; Yang, S.-T.; Lo, K.-H.; Chen, S.-K.; Chen, Y.-H.; Huang, W.-I; Yuan, C.-H.; Guo, C.-W.; Huang, L.-Y.; Chen, K.-T.; Shih, H.-W.; Cheng, Y.-S. E.; Cheng, W.-C.; Wong, C.-H. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorg. Med. Chem. 2010, 18, 8512‒8529 26. Smith, E.; Collins, I. Photoaffinity labeling in target- and binding-site identification. Future Medicinal chem. 2015, 7, 159‒183 27. Sumranjit, J.; Chung, S. J. Recent advances in target characterization and identification by photoaffinity probes. Molecules 2013, 18, 10425‒10451 28. Hatanaka, Y. Development and leading-edge application of innovative photoaffinity labeling. Chem. Pharm. Bull. 2015, 63, 1‒12 29. Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R. D. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 2012, 3, 243‒250 30. Georg, H. C.; Coutinho, K.; Canuto, S. Solvent effects on the UV-visible absorption spectrum of benzophenone in water: a combined Mote Carlo quantum mechanics study including solute polarization. J. Chem. Phys. 2007, 126, 034507 31. W. L. Dilling; The effect of solvent on the electronic transitions of benzophenone and Its o- and p-hydroxy derivatives. J. Org. Chem. 1966, 31, 1045‒1050 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78757 | - |
| dc.description.abstract | 使用抗生素是一種常見的方式用以治療細菌引起的疾病,在多種能有效殺死細菌的機轉中,抑制細菌細胞壁的生合成擁有最佳的結果,一旦細菌的喪失了細胞壁,便失去了喪失承受外界嚴峻環境的能力。細菌的肽聚醣細胞壁是由透過轉醣酶與轉肽酶催化由單體lipid II聚合而成,盤尼西林與萬古黴素便是兩個有效的抗生素,盤尼西林透過抑制轉肽酶催化的交聯反應終止細胞壁的合成,而萬古黴素則透過與受質lipid II結合而使其與無法與酵素作用。在過去數十年間,抗生素的濫用已導致具有抗藥性的細菌出現,開發出新型態的抗生素已經成為現在的重要議題。
我們的研究主要針對細菌轉醣酶的抑制。轉醣酶屬於盤尼西林結合蛋白的一部分,屬於位在細胞膜的外側的膜蛋白。因此,抑制劑在與轉醣酶作用的過程中可面對較少的阻礙。此外,合成細胞壁的蛋白並不存在於哺乳動物的細胞之中,抑制劑可望面臨較少的副作用。 透過高通量篩選系統,中央研究院基因體研究中心的研究團隊發現一系列的水楊醯替苯胺衍生物具有對轉醣酶的抑制能力。其中一個具有二苯基酮的抑制劑可以透過激發光照射產生自由基而進行光親和標記。在此研究中,我們合成出該抑制劑進行光親和標記,再透過質譜分析以了解結合位置。為研究新型態抗生素提供更多資訊。 | zh_TW |
| dc.description.abstract | Using antibiotics is a common method for treatment of bacterial-induced diseases. Inhibiting the biosynthesis of bacterial cell wall is one of several mechanisms for antibiotics to eliminate bacteria. Under catalysis of transglycosylase (TGase) and transpeptidase (TPase), peptidoglycan cell wall is synthesized from the monomeric substrate, lipid II. Once bacterium cannot synthesize the cell wall, it loses the ability to sustain severe surrounding. Penicillin and vancomycin are two effective antibiotics. Penicillin kills bacteria by suppressing the TPase-catalyzed cross-link reaction, whereas vancomycin binds lipid II to block it from transpeptidation. In past decades, abuse of antibiotics has caused the occurrence of antibiotic-resistant bacteria. Developing new antibiotics becomes an important issue.
Instead of targeting TPase, our research focuses on TGase inhibition. TGase belongs to penicillin-binding protein, which is a membrane protein located on the surface of bacteria, thus inhibitors can face less obstacles to access the enzyme. Besides, the enzymes involved in bacterial cell wall synthesis do not exist in human body, thus TGase inhibitors are expected to cause fewer side effects. By high throughput screening, a research team in the Genomics Research center of Academia Sinica found a series of salicylanilide-based compounds having potential to act as TGase inhibitors. One of the potential inhibitors contains a benzophenone moiety, which can be used to generate a radical by irradiation for photoaffinity labeling. We thus synthesize this salicylanilide-based compound to conduct the photoaffinity labeling experiment, and analyze the bound peptides by mass spectrometry to get more information about the binding mode. This study can inspire a new way to develop new antibiotics. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:17:13Z (GMT). No. of bitstreams: 1 ntu-108-R06223122-1.pdf: 4172852 bytes, checksum: f0a36ca7b111699aee0babf5093111d0 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 II
Abstract II Index of Contents IV Index of Figures VII Index of Tables IX Index of schemes X Abbreviations XI Chapter 1. Introduction 1 1.1 Background 1 1.2 Gram-positive and Gram-negative bacteria 1 1.3 Bacterial peptidoglycan cell-wall biosynthetic pathway 3 1.4 Penicillin-binding proteins (PBPs) and transglycosylase 7 1.5 Development of antibiotics 9 1.6 Antibiotics targeting peptidoglycan biosynthesis 11 1.7 Development of transglycosylase inhibitors 14 1.8 Photoaffinity labeling (PAL) 16 1.9 Aim of this study 18 Chapter 2. Results and Discussion 20 2.1 Synthesis of salicylanilide photoaffinity probe 20 2.2 LC-MS/MS identification 23 2.3 MALDI‒MS identification 28 2.4 Synthesis of new photoaffinity probe 15 containing a biotin reporter 29 2.5 Photoaffinity labeling with new photoaffinity probe 15 32 2.6 Conclusion and future prospects 34 Chapter 3. Experimental Section 36 3.1 General Part 36 3.2 Synthetic procedures and characterization of compounds 37 3.3 Procedure for photoaffinity labeling (PAL) 46 3.4 Procedure for protein digestion 46 3.5 General procedure of LC–MS/MS 47 3.6 General procedure of MALDI identification 48 3.7 Affinity chromatography 49 3.8 SDS-PAGE and silver staining 50 Reference 51 Appendix 1H and 13C NMR Spectra 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二苯基酮 | zh_TW |
| dc.subject | 光親和標記 | zh_TW |
| dc.subject | 轉醣? | zh_TW |
| dc.subject | transglycosylase | en |
| dc.subject | photoaffinity labeling | en |
| dc.subject | benzophenone | en |
| dc.title | 使用含有二苯基酮之抑制劑作為細菌轉醣酶之光親和探針 | zh_TW |
| dc.title | Using Benzophenone Containing Inhibitor as Photoaffinity Probe of Bacterial Transglycosylase | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王中興;徐丞志;戴桓青;鄭婷仁 | zh_TW |
| dc.contributor.oralexamcommittee | ;;; | en |
| dc.subject.keyword | 二苯基酮,光親和標記,轉醣?, | zh_TW |
| dc.subject.keyword | benzophenone,photoaffinity labeling,transglycosylase, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU201901641 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-23 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2024-07-29 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
