Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻zh_TW
dc.contributor.author許雅翔zh_TW
dc.contributor.authorYa-Hsiang Hsuen
dc.date.accessioned2021-07-11T15:16:03Z-
dc.date.available2024-07-29-
dc.date.copyright2019-07-29-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] N.G. McCrum, C. Buckley, C.B. Bucknall, C. Bucknall, Principles of polymer engineering, Oxford University Press, USA1997.
[2] E.S. Place, J.H. George, C.K. Williams, M.M. Stevens, Synthetic polymer scaffolds for tissue engineering, Chemical society reviews 38(4) (2009) 1139-1151.
[3] J.S. Huston, D. Levinson, M. Mudgett-Hunter, M.-S. Tai, J. Novotný, M.N. Margolies, R.J. Ridge, R.E. Bruccoleri, E. Haber, R. Crea, Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli, Proceedings of the National Academy of Sciences 85(16) (1988) 5879-5883.
[4] K. Guan, J.E. Dixon, Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase, Analytical biochemistry 192(2) (1991) 262-267.
[5] K.A. Dill, Dominant forces in protein folding, Biochemistry 29(31) (1990) 7133-7155.
[6] J.P. Cole, A.M. Hanlon, K.J. Rodriguez, E.B. Berda, Protein‐like structure and activity in synthetic polymers, Journal of Polymer Science Part A: Polymer Chemistry 55(2) (2017) 191-206.
[7] B.V. Schmidt, N. Fechler, J. Falkenhagen, J.-F. Lutz, Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges, Nature chemistry 3(3) (2011) 234.
[8] D.E. Fullenkamp, L.H. He, D.G. Barrett, W.R. Burghardt, P.B. Messersmith, Mussel-Inspired Histidine-Based Transient Network Metal Coordination Hydrogels, Macromolecules 46(3) (2013) 1167-1174.
[9] C.H. Schein, Production of soluble recombinant proteins in bacteria, Bio/technology 7(11) (1989) 1141.
[10] J.K. Ma, P.M. Drake, P. Christou, Genetic modification: the production of recombinant pharmaceutical proteins in plants, Nature reviews genetics 4(10) (2003) 794.
[11] F. Baneyx, Recombinant protein expression in Escherichia coli, Current opinion in biotechnology 10(5) (1999) 411-421.
[12] D. Mattanovich, P. Branduardi, L. Dato, B. Gasser, M. Sauer, D. Porro, Recombinant protein production in yeasts, Recombinant gene expression, Springer2012, pp. 329-358.
[13] D.B.T.G. Raj, N.A. Khan, S. Venkatachalam, S. Arumugam, BacMam System for Rapid Recombinant Protein Expression in Mammalian Cells, (2019).
[14] S. Weisman, V.S. Haritos, J.S. Church, M.G. Huson, S.T. Mudie, A.J. Rodgers, G.J. Dumsday, T.D. Sutherland, Honeybee silk: Recombinant protein production, assembly and fiber spinning, Biomaterials 31(9) (2010) 2695-2700.
[15] J.S. Church, M.G. Huson, T.D. Sutherland, Artificial Honeybee Silk: A Recombinant Protein as a Biomimetic Structural Material, Biophysical Journal 104(2) (2013) 48a.
[16] A. Lazaris, S. Arcidiacono, Y. Huang, J.-F. Zhou, F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, C.N. Karatzas, Spider silk fibers spun from soluble recombinant silk produced in mammalian cells, Science 295(5554) (2002) 472-476.
[17] S. Rammensee, U. Slotta, T. Scheibel, A. Bausch, Assembly mechanism of recombinant spider silk proteins, Proceedings of the National Academy of Sciences 105(18) (2008) 6590-6595.
[18] K. Spiess, A. Lammel, T. Scheibel, Recombinant spider silk proteins for applications in biomaterials, Macromolecular bioscience 10(9) (2010) 998-1007.
[19] K. Schacht, T. Jüngst, M. Schweinlin, A. Ewald, J. Groll, T. Scheibel, Biofabrication of cell‐loaded 3D spider silk constructs, Angewandte Chemie International Edition 54(9) (2015) 2816-2820.
[20] L.J. Berliner, Thrombin: structure and function, Springer Science & Business Media2012.
[21] C.M. Wells, E. Di Cera, Thrombin is a sodium ion activated enzyme, Biochemistry 31(47) (1992) 11721-11730.
[22] S.R. Coughlin, Thrombin signalling and protease-activated receptors, Nature 407(6801) (2000) 258.
[23] J. Weitz, Factor Xa or thrombin: is thrombin a better target?, Journal of Thrombosis and Haemostasis 5 (2007) 65-67.
[24] H.A. Scheraga, The thrombin–fibrinogen interaction, Biophysical chemistry 112(2-3) (2004) 117-130.
[25] D.H. Hogg, B. Blombäck, The mechanism of the fibrinogen-thrombin reaction, Thrombosis research 12(6) (1978) 953-964.
[26] A.S. Wolberg, Thrombin generation and fibrin clot structure, Blood Rev 21(3) (2007) 131-42.
[27] Y. Dargaud, S. Béguin, A. Lienhart, R. Al Dieri, C. Trzeciak, J.C. Bordet, C.H. Hemker, C. Negrier, Evaluation of thrombin generating capacity in plasma from patients with haemophilia A and B, Thrombosis and haemostasis 93(03) (2005) 475-480.
[28] D. Monroe, M. Hoffman, H. Roberts, Transmission of a procoagulant signal from tissue factor-bearing cell to platelets, Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis 7(4) (1996) 459-464.
[29] D.J. Hakes, J.E. Dixon, New vectors for high level expression of recombinant proteins in bacteria, Analytical biochemistry 202(2) (1992) 293-298.
[30] D.E. Meyer, A. Chilkoti, Purification of recombinant proteins by fusion with thermally-responsive polypeptides, Nature biotechnology 17(11) (1999) 1112.
[31] R.J. Jenny, K.G. Mann, R.L. Lundblad, A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa, Protein expression and purification 31(1) (2003) 1-11.
[32] J.Y. CHANG, Thrombin specificity: Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate, European journal of biochemistry 151(2) (1985) 217-224.
[33] Y.J. Kang, D.C. Park, H.H. Shin, J. Park, S. Kang, Incorporation of thrombin cleavage peptide into a protein cage for constructing a protease-responsive multifunctional delivery nanoplatform, Biomacromolecules 13(12) (2012) 4057-64.
[34] G.M. Chertow, S.K. Burke, J.M. Lazarus, K.H. Stenzel, D. Wombolt, D. Goldberg, J.V. Bonventre, E. Slatopolsky, Poly [allylamine hydrochloride](RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure, American journal of kidney diseases 29(1) (1997) 66-71.
[35] O.I. Vinogradova, O.V. Lebedeva, K. Vasilev, H. Gong, J. Garcia-Turiel, B.-S. Kim, Multilayer DNA/poly (allylamine hydrochloride) microcapsules: assembly and mechanical properties, Biomacromolecules 6(3) (2005) 1495-1502.
[36] M.R. Kreke, A.S. Badami, J.B. Brady, R.M. Akers, A.S. Goldstein, Modulation of protein adsorption and cell adhesion by poly (allylamine hydrochloride) heparin films, Biomaterials 26(16) (2005) 2975-2981.
[37] M.R. Awual, A. Jyo, Rapid column-mode removal of arsenate from water by crosslinked poly (allylamine) resin, water research 43(5) (2009) 1229-1236.
[38] H.T. Xing, J.H. Chen, X. Sun, Y.H. Huang, Z.B. Su, S.R. Hu, W. Weng, S.X. Li, H.X. Guo, W.B. Wu, Y.S. He, F.M. Li, Y. Huang, NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution, Chem. Eng. J. 263 (2015) 280-289.
[39] T. Yoshimura, K. Matsuo, R. Fujioka, Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization, Journal of Applied Polymer Science 99(6) (2006) 3251-3256.
[40] T.Q. Bui, V.D. Cao, N.B.D. Do, T.E. Christoffersen, W. Wang, A.L. Kjoniksen, Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels, ACS Appl Mater Interfaces 10(26) (2018) 22218-22225.
[41] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Advanced drug delivery reviews 53(3) (2001) 321-339.
[42] M. Vert, S. Li, G. Spenlehauer, P. Guérin, Bioresorbability and biocompatibility of aliphatic polyesters, Journal of materials science: Materials in medicine 3(6) (1992) 432-446.
[43] E. Piskin, Biodegradable polymers as biomaterials, Journal of Biomaterials Science, Polymer Edition 6(9) (1995) 775-795.
[44] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science 32(8-9) (2007) 762-798.
[45] D. Katti, S. Lakshmi, R. Langer, C. Laurencin, Toxicity, biodegradation and elimination of polyanhydrides, Advanced drug delivery reviews 54(7) (2002) 933-961.
[46] H. He, J. Wang, H. Wang, N. Zhou, D. Yang, D.R. Green, B. Xu, Enzymatic Cleavage of Branched Peptides for Targeting Mitochondria, J Am Chem Soc 140(4) (2018) 1215-1218.
[47] R. Ghaffari, N. Eslahi, E. Tamjid, A. Simchi, Dual-Sensitive Hydrogel Nanoparticles Based on Conjugated Thermoresponsive Copolymers and Protein Filaments for Triggerable Drug Delivery, ACS Appl Mater Interfaces 10(23) (2018) 19336-19346.
[48] <PrestoTM Mini Plasmid Kit to extract DNA plasmid.pdf>.
[49] H. Schagger, Tricine-SDS-PAGE, Nat Protoc 1(1) (2006) 16-22.
[50] J.A. Glasel, VALIDITY OF NUCLEIC-ACID PURITIES MONITORED BY 260NM 280NM ABSORBENCY RATIOS, Biotechniques 18(1) (1995) 62-63.
[51] B.H. Zimm, S.D. Levene, PROBLEMS AND PROSPECTS IN THE THEORY OF GEL-ELECTROPHORESIS OF DNA, Quarterly Reviews of Biophysics 25(2) (1992) 171-204.
[52] A.J.F. Griffiths, S.R. Wessler, S.B. Carroll, J. Doebley, An Introduction to Genetic Analysis, Macmillan Learning2015.
[53] J. Porath, Immobilized metal ion affinity chromatography, Protein expression and purification 3(4) (1992) 263-281.
[54] P.N. Hengen, Purification of His-Tag fusion proteins from Escherichia coli, Trends in biochemical sciences 20(7) (1995) 285-286.
[55] X. Ma, X. Sun, D. Hargrove, J. Chen, D. Song, Q. Dong, X. Lu, T.H. Fan, Y. Fu, Y. Lei, A Biocompatible and Biodegradable Protein Hydrogel with Green and Red Autofluorescence: Preparation, Characterization and In Vivo Biodegradation Tracking and Modeling, Sci Rep 6 (2016) 19370.
[56] W. Tong, C. Gao, H. Möhwald, Manipulating the properties of polyelectrolyte microcapsules by glutaraldehyde cross-linking, Chemistry of materials 17(18) (2005) 4610-4616.
[57] X. Zhu, W. Yang, M.C. Hatzell, B.E. Logan, Energy recovery from solutions with different salinities based on swelling and shrinking of hydrogels, Environmental science & technology 48(12) (2014) 7157-7163.
[58] F. Horkay, I. Tasaki, P.J. Basser, Osmotic swelling of polyacrylate hydrogels in physiological salt solutions, Biomacromolecules 1(1) (2000) 84-90.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78741-
dc.description.abstract一般而言,相較於天然高分子,合成高分子的機械性質與化學性質更具有彈性,能夠透過化學反應來控制,但天然高分子也具有一些合成高分子無法取代的特性,如:專一性配對、專一性酵素切位、自組裝結構等。在本研究中,我們希望能結合合成高分子與天然高分子,建立在合成高分子良好的物理性質上,賦予其天然高分子才具有的特性-特定酵素可切割性。本研究將質粒pET32b(+)轉型入大腸桿菌BL21(DE3)藉此產出具有凝血酶切位與腸激酶切位的目標蛋白質,將此蛋白質與聚電解質─聚烯丙胺鹽酸鹽聚合,製作出高吸水性複合水膠,我們希望能夠將凝血酶與水膠反應,藉由切割蛋白質上的凝血酶切位,讓水膠結構崩解。在蛋白質生產過程中,透過洋菜糖凝膠電泳與十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE),我們確認了由大腸桿菌產出的蛋白質確實為分子量2萬道爾頓的目標蛋白質。在蛋白質純化的部分,我們藉由蛋白質上的組氨酸標籤與鎳離子的親和力,透過將鎳離子固定在樹脂上將目標蛋白從雜蛋白溶液分離開,最後透過與不同濃度的凝血酶反應證實目標蛋白確實能被酵素切割。純化後的蛋白質與聚烯丙胺鹽酸鹽透過不同比例混合並利用戊二醛進行交聯形成水膠。在降解測試中,在某些特定比例,凝血酶的加入確實能使水膠有更大程度上的降解。而在澎潤測試中,由於聚烯丙胺鹽酸鹽為聚電解質,其製成的水膠具有超吸水性但會受環境因素,如:酸鹼值、離子濃度等影響。結合了降解特性與澎潤特性,我們設計了細管堵塞疏導實驗作為應用端的體外測試,在實驗結果中可看到,對10P15TP水膠而言,凝血酶的加入確實能使其結構變得鬆散而更易被沖開。本實驗為一合成高分子與天然高分子成功結合的案例,複合水膠保有原本聚烯丙胺鹽酸鹽水膠的澎潤能力又具有目標蛋白的可降解特性。相信這種賦予合成高分子新特性的材料在未來定能更加蓬勃發展。zh_TW
dc.description.abstractGenerally, synthetic polymers are more flexible to control the mechanical properties and chemical properties than natural polymers. However, some natural polymers have unique features, such as the ability of specific binding, specific cleavage, and self-assemble, which synthetic polymers do not have. Therefore, in this research, we try to combine the synthetic polymers and the natural polymers to create a composite polymer which has well physical properties as synthetic polymer and could be cleaved by enzyme as natural polymers. By transforming pET32b(+) plasmid into the E. coli strain of BL21(DE), the target protein with thrombin cleavage site and enterokinase cleavage site is producted. The target protein crosslinks to polyallylamine hydrochloride (PAH) to create a superabsorbent composite hydrogel. We hypothesize the target protein on the composite hydrogel could be cleaved by thrombin and trigger the structure of the composite hydrogel collapse. In the process of protein production, the characterization of the target protein is carried out by the electrophoresis of agarose gel and SDS-PAGE. In the purification of the target protein, the purification of the target protein is carried out using HisTrap column. Last, the cleavage test of the target protein is accomplished to verify the target protein is enzymatically cleavable. The pure target protein blends with PAH in different ratios and is crosslinked by glutaraldehyde. In the degradation test, the presence of thrombin indeed triggers a better degradation in some of the composite hydrogels. In the swelling test, the composite hydrogels still maintain great ability to swell and the swelling ratios are apt to influence by the condition of environment. Basing on the result of degradation test and swelling test, the blocked tube test is established as one of the application of the composite hydrogels. In the blocked tube study, the blocked pressure of the 10P15TP composite hydrogels truly decreases after the reaction of thrombin. This study illustrates a new pattern to combining synthetic polymers and natural polymers successfully. We believe it is promising to integrate the unique element of synthetic polymers and natural polymers to create new materials in the future.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:16:03Z (GMT). No. of bitstreams: 1
ntu-108-R06548002-1.pdf: 2985493 bytes, checksum: 5b674229480fa803be65cfb0a1f21764 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 ii
中文摘要 iv
Abstract v
List of Figures ix
List of Tables x
Chapter 1. Introduction 1
Chapter 2. Background 3
2.1. Recombinant protein 3
2.2. Thrombin 4
2.3. Poly allylamine hydrochloride (PAH) 7
2.4. Enzymatic degradation 8
Chapter 3. Materials and Methods 11
3.1 Materials: 11
3.2 Experiment apparatus: 14
3.3 Production of target protein(TP): 15
3.3.1 Transformation of pET-32b(+) plasmid DNA 15
3.3.2 IPTG induction 17
3.3.3 Disruption of bacteria 17
3.3.4 Purification of target protein 18
3.4 Characterization of target protein 19
3.4.1 Agarose gel electrophoresis 19
3.4.2 Tricine-Sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) 20
3.4.3 Coomassie staining 21
3.4.4 Western blot 22
3.4.5 Protein cleavage test 23
3.5 Synthesis of TP-PAH composite hydrogel 23
3.6 Characterization of TP-PAH composite hydrogel 24
3.6.1 Degradation test 24
3.6.2 Swelling test 24
3.6.3 Blocked tube test 24
1. Prepare composite hydrogels in eppendoffs. 24
2. Take out composite hydrogels and lyophilize. 24
3. Place the composite hydrogels in tubes and flow with TBS buffer for 1 hr. 25
4. Check whether the composite hydrogel blocked the tubes and prepare thrombin solution with final concentration of 2.5U/ml in thrombin cleavage buffer. 25
5. Inject 100 l thrombin solution in the tubes in front of the hydrogel and incubate at 37℃ for 72 hr. 25
6. Set up the equipment of the pressure test as , push the syringe and record the maximum of the supported pressure. 25
Chapter 4. Results and Discussions 26
4.1 Characterization of pET32b(+) plasmid 26
4.2 Characterization of target protein 27
4.2.1 Time sequence induction 27
4.2.2 Confirmation of solubility 28
4.2.3 Purification with his-tag trapped column 29
4.2.4 Cleavage test 30
4.3 Gel formation of composite hydrogel 31
4.4 Degradation of composite hydrogel 32
4.5 Swelling ratio of composite hydrogel 33
4.6 Tube blocked test 34
Chapter 5. Conclusion 36
Reference 37
Figure 42
Tables 52
-
dc.language.isoen-
dc.subject凝血?zh_TW
dc.subject複合水膠zh_TW
dc.subject重組蛋白zh_TW
dc.subject聚烯丙胺鹽酸鹽zh_TW
dc.subject酵素降解zh_TW
dc.subjectpolyallylamine hydrochlorideen
dc.subjectenzymatic degradationen
dc.subjectcomposite hydrogelen
dc.subjectthrombinen
dc.subjectRecombinant proteinen
dc.title可受特定酵素觸發降解之複合水膠之研究:製備、鑑定與降解測試zh_TW
dc.titleA Specific Enzyme-triggered Degradable Composite Hydrogel: Preparation, Characterization and Degradationen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃琮瑋;李玫樺;林宏殷zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword重組蛋白,凝血?,聚烯丙胺鹽酸鹽,複合水膠,酵素降解,zh_TW
dc.subject.keywordRecombinant protein,thrombin,polyallylamine hydrochloride,composite hydrogel,enzymatic degradation,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU201901905-
dc.rights.note未授權-
dc.date.accepted2019-07-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2024-07-29-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved