請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑怡 | zh_TW |
| dc.contributor.advisor | Shu-I Lin | en |
| dc.contributor.author | 吳弘宇 | zh_TW |
| dc.contributor.author | Hung-Yu Wu | en |
| dc.date.accessioned | 2021-07-11T15:15:50Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2019-08-23 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 董克宝. 何俊仕. 2007. 淺析現代節水農業. 安徽農業科學. 35(16):4937-4938.
行政院水利署. 2016. 水資源運用實況. <https://www.wra.gov.tw/media/27074/t1.pdf>. 2019. 張強. 徐飛. 王榮富. 束良佐. 劉瑞. 張德雨. 2014. 控制性分根交替灌溉下氮形態對番茄生長,果實產量及品質的影響. 應用生態學報 25:3547-3555. 艾群. 2010. 農業生產節水技術與系統研發, p21-37. 農業工程與節能減碳學術研討會專刊. 行政院農業委員會農業試驗所編印, 臺中, 臺灣. 楊偉甫. 2013. 台灣地區水資源利用現況與未來發展問題. < http://www.ctci.org.tw/media/2256/%E5%8F%B0%E7%81%A3%E5%9C%B0%E5%8D%80%E6%B0%B4%E8%B3%87%E6%BA%90%E5%88%A9%E7%94%A8%E7%8F%BE%E6%B3%81%E8%88%87%E6%9C%AA%E4%BE%86%E7%99%BC%E5%B1%95%E5%95%8F%E9%A1%8C-%E6%9C%AC%E6%96%87-%E6%A5%8A%E5%81%89%E7%94%AB.pdf>. 2019. A.R. Sepaskhah, S.H.A. 2010. A review on partial root-zone drying irrigation. Int. J Plant Prod. 4:241-258. Affi, N., A. El Fadl, M. El Otmani, M. Benismail, L. Idrissi, R. Salghi, and A. El Mastor. 2012. Comparative effects of partial rootzone drying and deficit irrigation on physiological parameters of tomato crop. Der Pharma Chemica 4:2402-2407. Ahmadi, S.H., M.N. Andersen, F. Plauborg, R.T. Poulsen, C.R. Jensen, A.R. Sepaskhah, and S. Hansen. 2010. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agr. Water Manage. 97:1923-1930. Arias, R., T.-C. Lee, L. Logendra, and H. Janes. 2000. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agr. Food Chem. 48:1697-1702. ASAE. 2007. Standard S526.3: Soil and water terminology. St. Joseph, Mich.: ASAE. Badr, M., W. El-Tohamy, S. Abou Hussein, and N. Gruda. 2018. Tomato yield, physiological response, water and nitrogen use efficiency under deficit and partial root zone drying irrigation in an arid region. J. Appl. Bot. Food Qual. 91:332-340. Bogale, A., M. Nagle, S. Latif, M. Aguila, and J. Müller. 2016. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Sci. Hortic.-Amsterdam 213:115-124. Brandt, S., Z. Pék, É. Barna, A. Lugasi, and L. Helyes. 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agr. 86:568-572. Casa, R. and Y. Rouphael. 2014. Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato. J. Hortic. Sci. Biotech. 89:389-396. Chai, Q., Y. Gan, C. Zhao, H.-L. Xu, R.M. Waskom, Y. Niu, and K.H. Siddique. 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 36:3. Chen, J., S. Kang, T. Du, R. Qiu, P. Guo, and R. Chen. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agr. Water Manage. 129:152-162. Coyago-Cruz, E., A.J. Meléndez-Martínez, A. Moriana, I.F. Girón, M.J. Martín-Palomo, A. Galindo, D. López-Pérez, A. Torrecillas, E. Beltrán-Sinchiguano, and M. Corell. 2019. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agric. Water Manage. 213:212-221. D'Souza, M.C., S. Singha, and M. Ingle. 1992. Lycopene concentration of tomato fruit can be estimated from chromaticity values. Hortscience 27:465-466. Du, T., S. Kang, J. Zhang, and W.J. Davies. 2015. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 66:2253-2269. FAO. 2017. Food and agriculture data. <http://www.fao.org/faostat/en/#home>. Fereres, E. and M.A. Soriano. 2006. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58:147-159. Forouzani, M. and E. Karami. 2011. Agricultural water poverty index and sustainability. Agronomy for Sustainable Development 31:415-431. Grimes, D., V. Walhood, and W. Dickens. 1968. Alternate-furrow irrigation for San Joaquin valley cotton. Calif. Agr. 22:4-6. Hou, M., Q. Jin, X. Lu, J. Li, H. Zhong, and Y. Gao. 2017. Growth, water use, and nitrate-15N uptake of greenhouse tomato as influenced by different irrigation patterns, 15N labeled depths, and transplant times. Frontiers in plant science 8:666. Huffaker, R., Hamilton, J., 2007. Conflict. In: Irrigation of agricultural crops (Lascano, R.J., and Sojka, R.E.eds.), 2nd edition, Agronomy Monograph no. 30. ASA-CSSA-SSSA publishing, 664p. Kang, S. and J. Zhang. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot 55:2437-2446. Kang, S., L. Zhang, X. Hu, Z. Li, and P. Jerie. 2001. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots. Sci. Hortic.-Amsterdam 89:257-267. Kriedemann, P.E. and I. Goodwin. 2003. Regulated deficit irrigation and partial rootzone drying: an overview of principles and applications. Land & Water Australia Canberra, Australia. Kumar, P.S., Y. Singh, D. Nangare, K. Bhagat, M. Kumar, P. Taware, A. Kumari, and P. Minhas. 2015. Influence of growth stage specific water stress on the yield, physico-chemical quality and functional characteristics of tomato grown in shallow basaltic soils. Scientia Horticulturae 197:261-271. Kuşçu, H., A. Turhan, and A.O. Demir. 2014. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agr. Water Manage. 133:92-103. Lamm, F.R. 2016. Cotton, tomato, corn, and onion production with subsurface drip irrigation: A review. T. ASABE 59:263-278. Lascano, R.J., R.E. Sojka, F. Adamsen, J. Hook, G. Cardon, J. Letey, D. Baltensperger, M. Ransom, H. Krishnan, and A. Ulery. 2007. Irrigation of agricultural crops. American Society of Agronomy Madison. Madison, Wisconsin, USA. Liu, F., C. R. Jensen, A. Shahanzari, M. N. Andersen, and S. E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science. 168(3):831-836. Loveys, B., P. Dry, M. Stoll, and M. McCarthy. 2000. Using plant physiology to improve the water use efficiency of horticultural crops. Acta Hortic.:187-197. Morison, J., N. Baker, P. Mullineaux, and W. Davies. 2007. Improving water use in crop production. Philos. T. R. SOC. B. 363:639-658. Phene, C., R. Hutmacher, K. Davis, and R. McCormick. 1989. Water-fertilizer management of processing tomatoes. In: III International Symposium on Processing Tomatoes 277. p137-144. Savić, S., R. Stikić, B.V. Radović, B. Bogičević, Z. Jovanović, and V.H.-T. Šukalović. 2008a. Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Sci. Hortic.-Amsterdam 117:15-20. Savić, S., R. Stikić, B.V. Radović, B. Bogičević, Z. Jovanović, and V.H.-T. Šukalović. 2008b. Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Scientia Horticulturae 117:15-20. Sepaskhah, A. and S. Sichani. 1976. Evaluation of subsurface irrigation spacings for bean production. Can. Agr. Eng. 18:23-26. Shao, H.-B., L.-Y. Chu, C.A. Jaleel, and C.-X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. C. R. Biol. 331:215-225. Sun, Y., P.E. Holm, and F. Liu. 2014. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes. Horticultural Science 41:185-191. USDA-NASS. 2004. Farm and ranch irrigation survey (2003). 2002 Census of Agriculture, Vol. 3, Special Studies, Part 1 (AC-02-SS-1). Washington, D.C.: USDA National Agricultural Statistics Service. USDA-NASS. 2010. Farm and ranch irrigation survey (2008). 2007 Census of Agriculture, Vol. 3, Special Studies, Part 1 (AC-07-SS-1). Washington, D.C.: USDA National Agricultural Statistics Service. USDA-NASS. 2014. Farm and ranch irrigation survey (2013). 2012 Census of Agriculture, Vol. 3, Special Studies, Part 1 (AC-12-SS-1). Washington, D.C.: USDA National Agricultural Statistics Service. Wang, C., L. Shu, S. Zhou, H. Yu, and P. Zhu. 2019. Effects of alternate partial root-zone irrigation on the utilization and movement of nitrates in soil by tomato plants. Sci. Hortic.-Amsterdam 243:41-47. Wang, Y., C.R. Jensen, and F. Liu. 2017. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation. Agr. Water Manage. 179:254-259. Wang, Y., F. Liu, M.N. Andersen, and C.R. Jensen. 2010. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Funct. Plant Biol. 37:175-182. Wei, Z., T. Du, X. Li, L. Fang, and F. Liu. 2018. Interactive effects of elevated CO2 and N fertilization on yield and quality of tomato grown under reduced irrigation regimes. Frontiers in plant science 9:328. WRI. 2014. Aqueduct water risk atlas. <https://www.wri.org/applications/maps/aqueduct-atlas/#x=-11.34&y=-16.30&s=ws!20!28!c&t=waterrisk&w=def&g=0&i=BWS-16!WSV-4!SV-2!HFO-4!DRO-4!STOR-8!GW-8!WRI-4!ECOS-2!MC-4!WCG-8!ECOV-2!&tr=ind-1!prj-1&l=3&b=terrain&m=group>. Zegbe, J., M. Behboudian, and B. Clothier. 2004. Partial rootzone drying is a feasible option for irrigating processing tomatoes. Agr. Water Manage. 68:195-206. Zegbe, J.A., M.H. Behboudian, and B.E. Clothier. 2006. Responses of ‘Petopride’processing tomato to partial rootzone drying at different phenological stages. Irrigation Science 24:203-210. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78738 | - |
| dc.description.abstract | 小果番茄栽培過程中需要消耗大量水分,在臺灣西半部雨量分配不均、缺水嚴重的影響下,節水灌溉的使用將會越加頻繁。根系分區交替灌溉(partial root-zoon irrigation, PRI)或稱Partial root-zone drying irrigation (PRD)是一特別的節水灌溉方法,透過根系分區、乾濕交替,誘發植物內部產生逆境,使氣孔關閉,減少水分散失,但能夠維持光合作用並促使次生根生長。PRD處理後的番茄植株,表現出水分利用效率提升,果實品質提高等有利於作物栽培的特性。本研究以農友種苗股份有限公司之‘玉女’小番茄作為試驗材料,期望找出最適合生產‘玉女’小番茄的根系分區交替灌溉方法與水分含量,達到提高水分利用效率、維持或提升果實品質效果。試驗一結果顯示2017年秋季栽培番茄於開花期開始進行PRD處理能夠有效增加果實總抗壞血酸含量達309 mg·L-1、總可溶性固形物含量達9.09 oBrix,且提高水分利用效率及維持產量,說明PRD處理對‘玉女’小番茄是有提高果實品質且維持產量的效果。試驗二結果顯示2018年春季栽培番茄於果實綠熟期開始進行PRD處理能夠提高果實單果重並同時維持產量及果實品質。試驗三結果顯示2018年秋季栽培番茄於開花期開始進行PRD處理,在多數測量項目中表現最佳,特別是擁有最高的總可溶性固形物含量,可達到11.64 oBrix。綜合上述試驗結果,‘玉女’小番茄可以透過PRD處理達到維持果實產量、提高果實品質且減少灌溉用水,而春季推薦綠熟期開始進行PRD處理,秋季則建議開花期開始進行PRD處理。 | zh_TW |
| dc.description.abstract | Cherry tomato needs to consume a lot of water during cultivation. Because of the uneven rainfall distribution and water shortage in western side of Taiwan, water-saving irrigation will be used more frequently. Partial root-zone irrigation (PRI) or partial root-zone drying irrigation (PRD) is a special deficit irrigation method, through root-zone dividing and dry-wet alternating to induces internal stress in the plant, so that the stomatal closure reduces water loss, but still maintain photosynthesis and promote secondary root growth. The tomato plants treated with PRD showed improved water use efficiency (WUE) and improved fruit quality, which were beneficial to crop cultivation. This research used cherry tomato ‘Rosada’ from Known-You Seed Co., Ltd as material, and hopes to find the method and water content of PRD which is most suitable for production of ‘Rosada’ tomato to improve WUE and maintain or enhance the fruit quality. The results in experiment I showed that tomato plants cultivated in the fall of 2017 treated with PRD start at the flowering stage could effectively improve the fruit total ascorbic acid content to 309 mg·L-1, fruit total soluble solid content to 9.09 oBrix and enhance WUE and maintain fruit yield, indicating that PRD treatment has the effect of improving fruit quality and maintaining yield for cherry tomato ‘Rosada’. The results in experiment II showed that tomato plants cultivated in the spring of 2018 treated with PRD beginning from the mature green stage of fruit can increase single fruit weight while maintaining the yield and fruit quality. The results in experiment III showed that tomato plants cultivated in the fall of 2018 treated with PRD start at the flowering stage performed best in most of the measurement items, especially with the highest total soluble solid content. It reached 11.64 oBrix. Based on the above results, cherry tomato ‘Rosada’ can maintain fruit yield, improve fruit quality and reduce irrigation water through PRD treatment. In spring, it is recommended to start PRD treatment from mature green stage of fruit. In fall, it is recommended to start PRD treatment from flowering period. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:15:50Z (GMT). No. of bitstreams: 1 ntu-108-R05628135-1.pdf: 5025549 bytes, checksum: ad5f493335a4d0faccdf5141c76c966c (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 表目錄 vii 圖目錄 ix 前言 1 前人研究 2 一、番茄種植現況 2 二、節水農業之定義與優點 2 三、提升水分利用效率之節水灌溉作法 3 (1)調缺灌溉(Regulated Deficit Irrigation, RDI) 3 (2)根系分區交替灌溉(Partial Root-Zone irrigation, PRI) 4 四、調缺灌溉和根系分區交替灌溉之比較 4 五、根系分區灌溉對番茄果實產量及品質之影響 5 六、節水灌溉與品種之關聯 5 七、番茄於不同生長期節水之效應 6 材料與方法 8 一、植物材料 8 二、栽培方式與栽培地點 8 三、試驗方法及試驗設計 9 四、調查項目與分析方法 11 五、統計分析 13 試驗結果 20 試驗一、2017年秋季於開花期進行不同水分處理 20 試驗二、2018年春季於不同生長時期進行不同水分含量處理 22 試驗三、2018年秋季於不同生長時期進行不同水分含量處理 23 討論 26 結論 30 參考文獻 66 附錄 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 調缺灌溉 | zh_TW |
| dc.subject | 生長時期 | zh_TW |
| dc.subject | 根系分區交替灌溉 | zh_TW |
| dc.subject | growing stage | en |
| dc.subject | partial root-zone irrigation | en |
| dc.subject | regulated deficit irrigation | en |
| dc.title | 根系分區交替灌溉與調缺灌溉對‘玉女’小果番茄果實產量與品質之影響 | zh_TW |
| dc.title | Effects of Partial Root-Zone Irrigation and Regulated Deficit Irrigation on Fruit Yield and Quality of Cherry Tomato ‘Rosada’ | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅筱鳳;許少瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Feng Lo;Shao-Yu Hsu | en |
| dc.subject.keyword | 調缺灌溉,根系分區交替灌溉,生長時期, | zh_TW |
| dc.subject.keyword | regulated deficit irrigation,partial root-zone irrigation,growing stage, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU201901573 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-25 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2024-08-23 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
