Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78734
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊泮池zh_TW
dc.contributor.author林佳儀zh_TW
dc.contributor.authorChia-Yi Linen
dc.date.accessioned2021-07-11T15:15:31Z-
dc.date.available2024-07-29-
dc.date.copyright2019-07-31-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2):p. 87-108.
2. Nguyen, K.S., S. Kobayashi, and D.B. Costa, Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer, 2009. 10(4): p. 281-9.
3. Nguyen, K.S. and J.W. Neal, First-line treatment of EGFR-mutant non-small-cell lung cancer: the role of erlotinib and other tyrosine kinase inhibitors. Biologics, 2012. 6: p. 337-45.
4. Oxnard, G.R., A. Binder, and P.A. Janne, New targetable oncogenes in non-small-cell lung cancer. J Clin Oncol, 2013. 31(8): p. 1097-104.
5. Sequist, L.V., et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013. 31(27): p. 3327-34.
6. Mok, T.S., et al., Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009. 361(10): p. 947-57.
7. Rosell, R., et al., Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2012. 13(3): p. 239-46.
8. Giaccone, G., Epidermal growth factor receptor inhibitors in the treatment of non-small-cell lung cancer. J Clin Oncol, 2005. 23(14): p. 3235-42.
9. Takano, T., et al., EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: a historical comparison of patients treated before and after gefitinib approval in Japan. J Clin Oncol, 2008. 26(34): p. 5589-95.
10. Adjei, A.A., What is the right dose? The elusive optimal biologic dose in phase I clinical trials. Journal of Clinical Oncology, 2006. 24(25): p. 4054-4055.
11. Lai, A.C. and C.M. Crews, Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov, 2017. 16(2): p. 101-114.
12. Cong, L., et al., Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 2013. 339(6121): p. 819-823.
13. Jinek, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012. 337(6096): p. 816-21.
14. de Smidt, P.C., et al., Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res, 1991. 19(17): p. 4695-700.
15. Geary, R.S., et al., Pharmacokinetic properties of 2'-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther, 2001. 296(3): p. 890-7.
16. Marques, J.T. and B.R. Williams, Activation of the mammalian immune system by siRNAs. Nat Biotechnol, 2005. 23(11): p. 1399-405.
17. Krieg, A.M., CpG motifs in bacterial DNA and their immune effects. Annual Review of Immunology, 2002. 20: p. 709-760.
18. Grunewald, J., et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature, 2019.
19. Moulick, K., et al., Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nature Chemical Biology, 2011. 7(11): p. 818-826.
20. Grenert, J.P., et al., The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. Journal of Biological Chemistry, 1997. 272(38): p. 23843-23850.
21. Prodromou, C., et al., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997. 90(1): p. 65-75.
22. Schneider, C., et al., Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(25): p. 14536-14541.
23. Mimnaugh, E.G., C. Chavany, and L. Neckers, Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem, 1996. 271(37): p. 22796-801.
24. Huang, K.Y., et al., Small Molecule T315 Promotes Casitas B-Lineage Lymphoma-Dependent Degradation of Epidermal Growth Factor Receptor via Y1045 Autophosphorylation. Am J Respir Crit Care Med, 2016. 193(7): p. 753-66.
25. Pickart, C.M. and R.E. Cohen, Proteasomes and their kin: Proteases in the machine age. Nature Reviews Molecular Cell Biology, 2004. 5(3): p. 177-187.
26. Hoeller, D., C.M. Hecker, and I. Dikic, Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer, 2006. 6(10): p. 776-88.
27. Schulman, B.A. and J.W. Harper, Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nature Reviews Molecular Cell Biology, 2009. 10(5): p. 319-331.
28. Ye, Y.H. and M. Rape, Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 2009. 10(11): p. 755-764.
29. Deshaies, R.J. and C.A. Joazeiro, RING domain E3 ubiquitin ligases. Annu Rev Biochem, 2009. 78: p. 399-434.
30. Komander, D., M.J. Clague, and S. Urbe, Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol, 2009. 10(8): p. 550-63.
31. Skaar, J.R., J.K. Pagan, and M. Pagano, SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov, 2014. 13(12): p. 889-903.
32. Swinney, D.C. and J. Anthony, How were new medicines discovered? Nat Rev Drug Discov, 2011. 10(7): p. 507-19.
33. Arteaga, C.L. and D.H. Johnson, Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr Opin Oncol, 2001. 13(6): p. 491-8.
34. Moyer, J.D., et al., Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res, 1997. 57(21): p. 4838-48.
35. Cui, J.J., et al., Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem, 2011. 54(18): p. 6342-63.
36. Buchdunger, E., et al., Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res, 1996. 56(1): p. 100-4.
37. Hartford, C.M. and M.J. Ratain, Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther, 2007. 82(4): p. 381-8.
38. Medina, T., M.N. Amaria, and A. Jimeno, Dabrafenib in the treatment of advanced melanoma. Drugs Today (Barc), 2013. 49(6): p. 377-85.
39. Moffat, J.G., J. Rudolph, and D. Bailey, Phenotypic screening in cancer drug discovery - past, present and future. Nat Rev Drug Discov, 2014. 13(8): p. 588-602.
40. Marks, P.A. and R. Breslow, Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol, 2007. 25(1): p. 84-90.
41. Nakajima, H., et al., FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res, 1998. 241(1): p. 126-33.
42. O'Dwyer, K. and P. Maslak, Azacitidine and the beginnings of therapeutic epigenetic modulation. Expert Opin Pharmacother, 2008. 9(11): p. 1981-6.
43. Kotla, V., et al., Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol, 2009. 2: p. 36.
44. Gintant, G.A. and C.H. George, Introduction to biological complexity as a missing link in drug discovery. Expert Opin Drug Discov, 2018. 13(8): p. 753-763.
45. Ishimi, Y., et al., Enhanced expression of Mcm proteins in cancer cells derived from uterine cervix. Eur J Biochem, 2003. 270(6): p. 1089-101.
46. Giaginis, C., et al., Clinical significance of MCM-2 and MCM-5 expression in colon cancer: association with clinicopathological parameters and tumor proliferative capacity. Dig Dis Sci, 2009. 54(2): p. 282-91.
47. Bravou, V., et al., Expression of the licensing factors, Cdt1 and Geminin, in human colon cancer. Int J Oncol, 2005. 27(6): p. 1511-8.
48. Marnerides, A., et al., Immunohistochemical expression and prognostic significance of CCND3, MCM2 and MCM7 in Hodgkin lymhoma. Anticancer Res, 2011. 31(10): p. 3585-94.
49. Kikuchi, J., et al., Minichromosome maintenance (MCM) protein 4 as a marker for proliferation and its clinical and clinicopathological significance in non-small cell lung cancer. Lung Cancer, 2011. 72(2): p. 229-237.
50. Pacek, M., et al., Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell, 2006. 21(4): p. 581-7.
51. Chong, J.P.J., et al., Purification of an Mcm-Containing Complexes a Component of the DNA-Replication Licensing System. Nature, 1995. 375(6530): p. 418-421.
52. Bochman, M.L. and A. Schwacha, The Mcm2-7 complex has in vitro helicase activity. Molecular Cell, 2008. 31(2): p. 287-293.
53. Yang, J., et al., Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer, 2006. 6: p. 203.
54. Yang, C., et al., Overexpression of minichromosome maintenance 2 predicts poor prognosis in patients with gastric cancer. Oncol Rep, 2012. 27(1): p. 135-42.
55. Ishimi, Y., et al., Effect of heliquinomycin on the activity of human minichromosome maintenance 4/6/7 helicase. FEBS J, 2009. 276(12): p. 3382-91.
56. Chen, W.J., et al., Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun, 2014. 5: p. 3472.
57. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60.
58. Wang, S.P., et al., p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol, 2009. 11(6): p. 694-704.
59. Tsai, C.F., et al., Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res, 2008. 7(9): p. 4058-69.
60. Mellacheruvu, D., et al., The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods, 2013. 10(8): p. 730-6.
61. Marcon, E., et al., Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat Methods, 2015. 12(8): p. 725-31.
62. Kelley, L.A. and M.J. Sternberg, Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc, 2009. 4(3): p. 363-71.
63. Eswar, N., et al., Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci, 2007. Chapter 2: p. Unit 2 9.
64. Wiederstein, M. and M.J. Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 2007. 35(Web Server issue): p. W407-10.
65. Pronk, S., et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013. 29(7): p. 845-54.
66. Laskowski, R.A., et al., PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993. 26(2): p. 283-291.
67. Wang, Y., et al., PubChem BioAssay: 2014 update. Nucleic Acids Res, 2014. 42(Database issue): p. D1075-82.
68. Trott, O. and A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010. 31(2): p. 455-61.
69. Hsu, K.C., et al., iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011. 12 Suppl 1: p. S33.
70. DeLano, W.L., The PyMOL Molecular Graphics System. 2004, Schrödinger, LLC.
71. Fletcher, R.J., et al., The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Biol, 2003. 10(3): p. 160-7.
72. Kuo, T.C., et al., Purine-Type Compounds Induce Microtubule Fragmentation and Lung Cancer Cell Death through Interaction with Katanin. J Med Chem, 2016. 59(18): p. 8521-34.
73. Croft, D., et al., Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res, 2011. 39(Database issue): p. D691-7.
74. Abe, T., et al., The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem, 2011. 286(35): p. 30504-12.
75. Sha, Z., et al., The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell, 2009. 36(1): p. 141-52.
76. Braun, K.A. and L.L. Breeden, Nascent transcription of MCM2-7 is important for nuclear localization of the minichromosome maintenance complex in G1. Mol Biol Cell, 2007. 18(4): p. 1447-56.
77. Lin, J.J., et al., NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res, 2010. 70(24): p. 10310-20.
78. Emanuele, M.J., et al., Global identification of modular cullin-RING ligase substrates. Cell, 2011. 147(2): p. 459-74.
79. Forsburg, S.L., Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev, 2004. 68(1): p. 109-31.
80. Feng, D., et al., Inhibiting the expression of DNA replication-initiation proteins induces apoptosis in human cancer cells. Cancer Res, 2003. 63(21): p. 7356-64.
81. Sakakibara, N., L.M. Kelman, and Z. Kelman, Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol, 2009. 72(2): p. 286-96.
82. Laskowski, R.A., D.S. Moss, and J.M. Thornton, Main-chain bond lengths and bond angles in protein structures. J Mol Biol, 1993. 231(4): p. 1049-67.
83. Wu, Z.Z., et al., A versatile and practical method for regioselective synthesis of polysubstituted furanonaphthoquinones. Org Biomol Chem, 2013. 11(5): p. 828-34.
84. Yamauchi, M., et al., Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS One, 2012. 7(9): p. e43923.
85. Aldridge, K.E., A. Janney, and C.V. Sanders, Comparison of the activities of coumermycin, ciprofloxacin, teicoplanin, and other non-beta-lactam antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus from various geographical locations. Antimicrob Agents Chemother, 1985. 28(5): p. 634-8.
86. Liu, G., et al., In Vitro Synergy of Biochanin A and Ciprofloxacin against Clinical Isolates of Staphylococcus aureus. Molecules, 2011. 16(8): p. 6656-66.
87. Smith, S.M. and R.H. Eng, Activity of ciprofloxacin against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 1985. 27(5): p. 688-91.
88. Simon, N., et al., Ciprofloxacin is an inhibitor of the Mcm2-7 replicative helicase. Bioscience Reports, 2013. 33: p. 783-U302.
89. Fletcher, R.J. and X.S. Chen, Biochemical activities of the BOB1 mutant in Methanobacterium thermoautotrophicum MCM. Biochemistry, 2006. 45(2): p. 462-7.
90. Chen, S., et al., Norcantharidin inhibits pre-replicative complexes assembly of HepG2 cells. Am J Chin Med, 2013. 41(3): p. 665-82.
91. Liu, Y., et al., MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett, 2013. 221(1): p. 23-30.
92. Szklarczyk, D., et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017. 45(D1): p. D362-D368.
93. Ishida, T. and K. Kinoshita, PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res, 2007. 35(Web Server issue): p. W460-4.
94. Dosztanyi, Z., et al., IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 2005. 21(16): p. 3433-4.
95. Jones, D.T. and D. Cozzetto, DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics, 2015. 31(6): p. 857-63.
96. Kobayashi, S., et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 2005. 352(8): p. 786-92.
97. Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005. 2(3): p. e73.
98. Thress, K.S., et al., Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med, 2015. 21(6): p. 560-2.
99. Song, H.N., et al., Acquired C797S Mutation upon Treatment with a T790M-Specific Third-Generation EGFR Inhibitor (HM61713) in Non-Small Cell Lung Cancer. J Thorac Oncol, 2016. 11(4): p. e45-7.
100. Yu, H.A., et al., Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. JAMA Oncol, 2015. 1(7): p. 982-4.
101. Uchibori, K., et al., Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat Commun, 2017. 8: p. 14768.
102. Niederst, M.J., et al., The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin Cancer Res, 2015. 21(17): p. 3924-33.
103. Guarino, M.J., et al., Dual inhibition of the epidermal growth factor receptor pathway with cetuximab and erlotinib: a phase I study in patients with advanced solid malignancies. Oncologist, 2009. 14(2): p. 119-24.
104. Janjigian, Y.Y., et al., Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. Clin Cancer Res, 2011. 17(8): p. 2521-7.
105. Lin, C.H., et al., Afatinib combined with cetuximab for lung adenocarcinoma with leptomeningeal carcinomatosis. Lung Cancer, 2014. 85(3): p. 479-80.
106. Ribeiro Gomes, J. and M.R. Cruz, Combination of afatinib with cetuximab in patients with EGFR-mutant non-small-cell lung cancer resistant to EGFR inhibitors. Onco Targets Ther, 2015. 8: p. 1137-42.
107. Xu, W., et al., Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A, 2002. 99(20): p. 12847-52.
108. Loffek, S., et al., The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum Mutat, 2010. 31(4): p. 466-76.
109. Yonezawa, T., et al., The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1. J Biol Chem, 2017. 292(30): p. 12528-12541.
110. Ferreira, J.V., et al., STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy, 2013. 9(9): p. 1349-66.
111. Chen, Z., et al., The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity, 2013. 39(2): p. 272-85.
112. Tsvetkov, P., et al., E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem, 2011. 286(11): p. 8839-45.
113. Hou, J., et al., CSN6 controls the proliferation and metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene, 2017. 36(8): p. 1134-1144.
114. Kao, S.H., et al., GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene, 2014. 33(24): p. 3172-82.
115. Chung, C., et al., The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation. Biochem Biophys Res Commun, 2016. 479(2): p. 152-158.
116. Butler, L.M., et al., Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res, 2000. 60(18): p. 5165-70.
117. Yang, Y., et al., Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res, 2008. 68(12): p. 4833-42.
118. Yu, X., et al., Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst, 2002. 94(7): p. 504-13.
119. Mann, B.S., et al., FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007. 12(10): p. 1247-52.
120. Ramalingam, S.S., et al., Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res, 2007. 13(12): p. 3605-10.
121. Fakih, M.G., et al., A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin Cancer Res, 2009. 15(9): p. 3189-95.
122. Li, D., N.D. Marchenko, and U.M. Moll, SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ, 2011. 18(12): p. 1904-13.
123. Ballinger, C.A., et al., Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol, 1999. 19(6): p. 4535-45.
124. Connell, P., et al., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol, 2001. 3(1): p. 93-6.
125. Demand, J., et al., Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol, 2001. 11(20): p. 1569-77.
126. Jiang, J., et al., CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem, 2001. 276(46): p. 42938-44.
127. Sittler, A., et al., Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet, 2001. 10(12): p. 1307-15.
128. Georgakis, G.V. and A. Younes, Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol, 2005. 1(2): p. 273-81.
129. Miyata, Y., Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des, 2005. 11(9): p. 1131-8.
130. Kim, S.A., et al., CHIP interacts with heat shock factor 1 during heat stress. FEBS Lett, 2005. 579(29): p. 6559-63.
131. Stankowski, J.N., et al., C-terminus of heat shock cognate 70 interacting protein increases following stroke and impairs survival against acute oxidative stress. Antioxid Redox Signal, 2011. 14(10): p. 1787-801.
132. Lee, J.S., et al., CHIP has a protective role against oxidative stress-induced cell death through specific regulation of endonuclease G. Cell Death Dis, 2013. 4: p. e666.
133. Jana, N.R., et al., Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem, 2005. 280(12): p. 11635-40.
134. Parsons, J.L., et al., CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell, 2008. 29(4): p. 477-87.
135. Paul, I. and M.K. Ghosh, The E3 ligase CHIP: insights into its structure and regulation. Biomed Res Int, 2014. 2014: p. 918183.
136. Han, F., et al., The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun, 2018. 9(1): p. 4728.
137. Shan, F., et al., Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med, 2016. 5(11): p. 3166-3175.
138. Qian, X., et al., Erlotinib activates mitochondrial death pathways related to the production of reactive oxygen species in the human non-small cell lung cancer cell line A549. Clin Exp Pharmacol Physiol, 2009. 36(5-6): p. 487-94.
139. Okon, I.S., et al., Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem, 2015. 290(14): p. 9101-10.
140. Korashy, H.M., et al., Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: Role of apoptosis and oxidative stress. Toxicol Lett, 2016. 252: p. 50-61.
141. Kwak, E.L., et al., Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A, 2005. 102(21): p. 7665-70.
142. Li, D., et al., BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008. 27(34): p. 4702-11.
143. Solca, F., et al., Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther, 2012. 343(2): p. 342-50.
144. Cavazzoni, A., et al., Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines. Mol Cancer, 2012. 11: p. 91.
145. Kim, S.H., et al., A phase I trial of gefitinib and nimotuzumab in patients with advanced non-small cell lung cancer (NSCLC). Lung Cancer, 2013. 79(3): p. 270-5.
146. Lee, H.J., et al., Noncovalent wild-type-sparing inhibitors of EGFR T790M. Cancer Discov, 2013. 3(2): p. 168-81.
147. Lee, T.G., et al., The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int J Cancer, 2015. 136(11): p. 2717-29.
148. Del Bufalo, D., et al., Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol Cancer, 2014. 13: p. 230.
149. Greve, G., et al., The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer, 2015. 15: p. 947.
150. Vrana, J.A., et al., Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene, 1999. 18(50): p. 7016-25.
151. Gius, D., et al., Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell, 2004. 6(4): p. 361-71.
152. Walton, T.J., et al., DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. Prostate, 2008. 68(2): p. 210-22.
153. Eckschlager, T., et al., Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci, 2017. 18(7).
154. Nakagawa, T., et al., EGFR-TKI resistance due to BIM polymorphism can be circumvented in combination with HDAC inhibition. Cancer Res, 2013. 73(8): p. 2428-34.
155. Chen, M.C., et al., The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis, 2013. 4: p. e810.
156. Reguart, N., et al., Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression. Lung Cancer, 2014. 84(2): p. 161-7.
157. Hu, H.Y., et al., A direct one-pot synthesis of naphtho[2,3-b]furan-4,9-dione derivatives via C,O-dialkylation of beta-dicarbonyl compounds by 2,3-dichloro-1,4-naphthoquinones. Synthesis-Stuttgart, 2005(10): p. 1605-1610.
158. Reynolds, G.A., Vanallan.Ja, and R.E. Adel, Reaction of 2,3-Dichloronaphthoquinone with Nucleophiles .2. Reaction with Ethyl Acetoacetate. Journal of Organic Chemistry, 1965. 30(11): p. 3819-+.
159. Hung, T.C., et al., Investigation of SSEA-4 binding protein in breast cancer cells. J Am Chem Soc, 2013. 135(16): p. 5934-7.
160. Clinical and Laboratory Standards Institute. (2017) Performance standards for antimicrobial susceptibility testing; 27th informational supplement. (Clinical and Laboratory Standards Institute, Wayne, PA, USA). CLSI document M100-S27.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78734-
dc.description.abstract研究表皮生長因子受體酪胺酸抑制劑的抗藥性是肺癌中最主要的研究方向,因此我們欲找尋新的抗癌藥物以及研發新的聯合治療模式來克服抗藥性。首先在本論文中,我們會探討一個以細胞為基底的高通量藥物篩選模式,尋找能夠抑制非小細胞肺癌生長的小分子藥物,藉由表型篩選,尋找目標蛋白以及結構活性相關分析,我們發現一個以furanonaphthoquinone結構為主的小分子AS4583不只對於酪胺酸抑制劑敏感型與抗藥型細胞具有潛在活性(半抑制濃度為77nM),甚至是異體移植的老鼠實驗也有良好效果。多層次蛋白質體分析與機轉研究顯示AS4583抑制細胞週期,降低minichromosomal maintenance protein (MCM) 蛋白複合物表現,進而干擾DNA複製。經由結構活性相關分析與電腦模擬AS4583與MCM接合模型,我們找到RJ-LC-07-48更能夠有效抑制抗藥性肺癌細胞H1975 (半抑制濃度為17nM) 與老鼠腫瘤的生長。第二部分中,最近的研究顯示表皮生長因子受體(EGFR) C797S突變賦予癌細胞對於T790M酪胺酸抑制劑產生抗藥性。為了抗衡C797S突變,新一代酪胺酸抑制劑如brigatinib也被改變用途地視為肺癌新藥,但是在長期治療後產生的抗藥性卻是無法避免的。組織蛋白去乙醯酶抑制劑vorinostat擁有抗增生效果,但是對於vorinostat and brigatinib聯合治療在C797S/T790M/激活突變 (三突變)的肺腺癌中卻從未被評估過。我們的數據顯示聯合 vorinostat and brigatinib的治療在動物實驗中加強抑制EGFR-3M (L858R/T790M/C797S)腫瘤的效果,可能途徑是經由降解EGFR與磷酸化EGFR蛋白表現量。如果在細胞中降低熱休克伴隨蛋白70 (HSP70)相關的泛素連接酶STUB1會增加被vorinostat所調控的EGFR-3M蛋白量。 STUB1 與 HSP70 共同調控EGFR 泛素化作用而降解,此現象在突變型的EGFR(L858R, T790M, Del19, L858R/T790M, L858R/T790M/C797S)更為明顯。而在肺腺癌病人中,低表現 STUB1的病人相較於高表現量的病人則有較差的存活期。因此我們的研究顯示給予vorinostat 與brigatinib藉由引發依賴EGFR的癌細胞死亡來顯著地提高EGFR-3M (L858R/T790M/C797S)癌細胞對於EGFR酪胺酸抑制劑的敏感度。綜合上述,我們的結果顯示針對致癌蛋白(MCM與EGFR)降解的小分子藥物可以提供未來治療肺癌病人的新選擇。zh_TW
dc.description.abstractEpidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) resistance has been a major threat in lung cancer therapies that necessitates the development of new strategies to overcome this problem. Therefore, we identified new anti-cancer drug and develop novel combination therapy to overcome TKI resistance. First, we report here a cell-based high-throughput screen of a library of 2-milliom molecules for the molecules that inhibit the proliferation of non-small-cell lung cancer (NSCLC). Through the process of phenotypic screening, target deconvolution and structure-activity relationship (SAR) analysis, a compound of furanonaphthoquinone-based small molecule, AS4583, was identified which exhibited potent activity in TKI–sensitive and TKI–resistant NSCLC cells (IC50 77 nM) and in xenograft mice. Multilayered proteomic profiling and mechanistic studies revealed that AS4583 inhibited cell-cycle progression and reduced DNA replication by disrupting the formation of the minichromosomal maintenance protein (MCM) complex. Subsequent SAR study and in silico modeling of AS4583 in complex with MCM gave compound RJ-LC-07-48 which exhibited greater potency in drug-resistant NSCLC cells (H1975) with L858R/T790M EGFR mutations (IC50 17nM) and in mice with H1975 xenograft tumor. Moreover, recent reports demonstrated that the C797S mutation confers drug resistance to T790M-targeting EGFR TKIs in lung adenocarcinomas. To contend with the C797S mutation, a new generation of TKIs, including brigatinib, were repurposed for EGFR, but acquired resistance is unavoidable after prolonged treatment. The histone deacetylase inhibitor, vorinostat, possesses anti-proliferative effects but the combined therapeutic effect of vorinostat and brigatinib in C797S/T790M/activating mutations (triple-mutation)-harboring lung adenocarcinomas has not been assessed yet. Our data shows that the combined treatment of vorinostat and brigatinib produces an enhanced anti-tumor effect on xenografts with EGFR-3M (L858R/T790M/C797S) cells by downregulating the total and phosphorylated EGFR expression. Knockdown of the heat shock protein 70 (HSP70) chaperone-associated ubiquitin ligase, STUB1, increases the EGFR-3M level regulated by vorinostat. STUB1 and HSP70 mediates EGFR ubiquitination and degradation, with preferable modulation towards EGFR mutants (L858R, T790M, Del19, L858R/T790M, L858R/T790M/C797S). Low STUB1 expression had a significantly poorer overall survival than high STUB1 expression in patients with lung adenocarcinoma. Therefore, our findings suggest that treatment with vorinostat coupled with brigatinib significantly improved EGFR-TKI sensitivity in EGFR-3M (L858R/T790M/C797S) cells by inducing EGFR-dependent cell death. Collectively, our findings provided evidence of small molecular target oncoproteins, such as MCM and EGFR degradation that may be novel therapeutic strategies.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:15:31Z (GMT). No. of bitstreams: 1
ntu-108-D00b48005-1.pdf: 5566713 bytes, checksum: 9c655667678329871c67fb67e9568d62 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTABLE OF CONTENTS:1
LIST OF FIGURES:3
LIST OF TABLES:6
LIST OF SCHEME:6
ABSTRACT:7
中文摘要:9
CHAPTER 1. General background:10
1.1 Lung cancer and epidermal growth factor receptor:11
1.2 Targeted Protein Degradation by Small Molecules:11
1.3 Protein ubiquitylation and degradation:12
1.4 Hypotheses of this study:13
CHAPTER 2. Targeting Minichromosomal Maintenance Protein to Suppress Drug-Resistant Non-Small-Cell Lung Cancer:14
2.1 Introduction:15
2.2 Materials and Methods:18
2.3 Results:31
2.4 Discussion:44
CHAPTER 3. To Overcome EGFR C797S Acquired Resistance by Vorinostat Combined With Brigatinib in Lung Adenocarcinoma:86
3.1 Introduction:87
3.2 Materials and Methods:89
3.3 Results:94
3.4 Discussion:101
CHAPTER 4. Conclusion and future work:124
REFERENCES:127
APPENDIX:141
-
dc.language.isoen-
dc.subject小分子藥物zh_TW
dc.subjectMCM蛋白zh_TW
dc.subjectDNA複製zh_TW
dc.subject泛素化zh_TW
dc.subjectEGFR C797Szh_TW
dc.subjectVorinostatzh_TW
dc.subject肺癌zh_TW
dc.subjectSmall molecularen
dc.subjectLung canceren
dc.subjectVorinostaten
dc.subjectEGFR C797Sen
dc.subjectUbiquitinationen
dc.subjectDNA replicationen
dc.subjectMinichromosomal maintenance protein (MCM)en
dc.title非小細胞肺癌中小分子藥物調控致癌蛋白質降解之機轉探討zh_TW
dc.titleStudy of the Small Molecules Targeted Oncoprotein Degradation in Non-Small-Cell Lung Canceren
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee周玉山;陳璿宇;王書品;陳琦媛zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword小分子藥物,MCM蛋白,DNA複製,泛素化,EGFR C797S,Vorinostat,肺癌,zh_TW
dc.subject.keywordSmall molecular,Minichromosomal maintenance protein (MCM),DNA replication,Ubiquitination,EGFR C797S,Vorinostat,Lung cancer,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU201901845-
dc.rights.note未授權-
dc.date.accepted2019-07-25-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
dc.date.embargo-lift2024-07-31-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
5.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved