Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建彰(Jian-Zhang Chen)
dc.contributor.authorTE-EN LIen
dc.contributor.author力得恩zh_TW
dc.date.accessioned2021-07-11T15:15:15Z-
dc.date.available2022-07-31
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-26
dc.identifier.citation[1] W. Hicks, 'Claims for solar cell efficiency put to test at NREL,' ed: Phys. org, 2016.
[2] D. M. Chapin, C. Fuller, and G. Pearson, 'A new silicon p‐n junction photocell for converting solar radiation into electrical power,' Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
[3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,' Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[4] W. S. Yang et al., 'Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,' Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[5] L. Meng, J. You, T.-F. Guo, and Y. Yang, 'Recent advances in the inverted planar structure of perovskite solar cells,' Accounts of chemical research, vol. 49, no. 1, pp. 155-165, 2015.
[6] T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong, 'Inverted perovskite solar cells: progresses and perspectives,' Advanced Energy Materials, vol. 6, no. 17, 2016.
[7] F. Hou et al., 'Efficient and stable planar heterojunction perovskite solar cells with an MoO 3/PEDOT: PSS hole transporting layer,' Nanoscale, vol. 7, no. 21, pp. 9427-9432, 2015.
[8] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp, and K. Leo, 'Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells,' Advanced Functional Materials, vol. 21, no. 6, pp. 1076-1081, 2011.
[9] W. v. Siemens, 'Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten,' Annalen der Physik, vol. 178, no. 9, pp. 66-122, 1857.
[10] R. Brandenburg, 'Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments,' Plasma Sources Science and Technology, vol. 26, no. 5, p. 053001, 2017.
[11] G.-F. Wang, X.-M. Tao, and R.-X. Wang, 'Fabrication and characterization of OLEDs using PEDOT: PSS and MWCNT nanocomposites,' Composites Science and Technology, vol. 68, no. 14, pp. 2837-2841, 2008.
[12] H. Yan, T. Kagata, and H. Okuzaki, 'Micrometer-scaled OFET channel patterns fabricated by using PEDOT/PSS microfibers,' Synthetic Metals, vol. 159, no. 21-22, pp. 2229-2232, 2009.
[13] W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, 'Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells,' Electrochemistry Communications, vol. 10, no. 10, pp. 1555-1558, 2008.
[14] S. H. Eom et al., 'Polymer solar cells based on inkjet-printed PEDOT: PSS layer,' Organic Electronics, vol. 10, no. 3, pp. 536-542, 2009.
[15] D. D. Fung et al., 'Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer,' Journal of Materials Chemistry, vol. 21, no. 41, pp. 16349-16356, 2011.
[16] S. Jönsson et al., 'The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,' Synthetic metals, vol. 139, no. 1, pp. 1-10, 2003.
[17] J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. Bradley, 'Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films,' Synthetic Metals, vol. 139, no. 3, pp. 569-572, 2003.
[18] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, 'On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment,' Polymer, vol. 45, no. 25, pp. 8443-8450, 2004.
[19] G. Park et al., 'Atmospheric-pressure plasma sources for biomedical applications,' Plasma Sources Science and Technology, vol. 21, no. 4, p. 043001, 2012.
[20] J.-O. Jo, S. D. Kim, H.-J. Lee, and Y. S. Mok, 'Decomposition of taste-and-odor compounds produced by cyanobacteria algae using atmospheric pressure plasma created inside a porous hydrophobic ceramic tube,' Chemical Engineering Journal, vol. 247, pp. 291-301, 2014.
[21] J. Shen et al., 'Sterilization of Bacillus subtilis spores using an atmospheric plasma jet with argon and oxygen mixture gas,' Applied Physics Express, vol. 5, no. 3, p. 036201, 2012.
[22] K. P. Arjunan, V. K. Sharma, and S. Ptasinska, 'Effects of atmospheric pressure plasmas on isolated and cellular DNA—a review,' International journal of molecular sciences, vol. 16, no. 2, pp. 2971-3016, 2015.
[23] B. Surowsky, O. Schlüter, and D. Knorr, 'Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review,' Food Engineering Reviews, vol. 7, no. 2, pp. 82-108, 2015.
[24] A. Ananth and Y. S. Mok, 'Synthesis of RuO2 nanomaterials under dielectric barrier discharge plasma at atmospheric pressure–Influence of substrates on the morphology and application,' Chemical Engineering Journal, vol. 239, pp. 290-298, 2014.
[25] N. Kramer, E. Aydil, and U. Kortshagen, 'Requirements for plasma synthesis of nanocrystals at atmospheric pressures,' Journal of Physics D: Applied Physics, vol. 48, no. 3, p. 035205, 2015.
[26] J. Patel, L. Němcová, P. Maguire, W. Graham, and D. Mariotti, 'Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,' Nanotechnology, vol. 24, no. 24, p. 245604, 2013.
[27] H. Jung et al., 'Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas: application to flexible dye-sensitized solar cells,' Nanoscale, vol. 5, no. 17, pp. 7825-7830, 2013.
[28] N.-Y. Cui and N. M. Brown, 'Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma,' Applied surface science, vol. 189, no. 1-2, pp. 31-38, 2002.
[29] M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, 'Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,' International journal of adhesion and adhesives, vol. 24, no. 2, pp. 171-177, 2004.
[30] I. Motrescu and M. Nagatsu, 'Nanocapillary atmospheric pressure plasma jet: a tool for ultrafine maskless surface modification at atmospheric pressure,' ACS applied materials & interfaces, vol. 8, no. 19, pp. 12528-12533, 2016.
[31] M.-H. Chiang et al., 'Effects of oxygen addition and treating distance on surface cleaning of ITO glass by a non-equilibrium nitrogen atmospheric-pressure plasma jet,' Plasma Chemistry and Plasma Processing, vol. 30, no. 5, pp. 553-563, 2010.
[32] T. Homola et al., 'Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning,' Applied Surface Science, vol. 258, no. 18, pp. 7135-7139, 2012.
[33] T. Homola, J. Matoušek, M. Kormunda, L. Y. Wu, and M. Černák, 'Plasma treatment of glass surfaces using diffuse coplanar surface barrier discharge in ambient air,' Plasma Chemistry and Plasma Processing, vol. 33, no. 5, pp. 881-894, 2013.
[34] G. Fridman et al., 'Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,' Plasma Chemistry and Plasma Processing, vol. 26, no. 4, pp. 425-442, 2006.
[35] A. Mishra and P. Bäuerle, 'Small molecule organic semiconductors on the move: promises for future solar energy technology,' Angewandte Chemie International Edition, vol. 51, no. 9, pp. 2020-2067, 2012.
[36] L. Etgar, 'Semiconductor nanocrystals as light harvesters in solar cells,' Materials, vol. 6, no. 2, pp. 445-459, 2013.
[37] J. Czochralski, 'Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der metalle,' Zeitschrift für physikalische Chemie, vol. 92, no. 1, pp. 219-221, 1918.
[38] A. F. Andreev et al., 'Zhores Ivanovich Alferov (on his seventieth birthday),' Physics-Uspekhi, vol. 43, no. 3, p. 307, 2000.
[39] J. D. Meakin and J. Bragagnolo, 'Thin film photovoltaic cell,' ed: Google Patents, 1982.
[40] A. G. Aberle, 'Overview on SiN surface passivation of crystalline silicon solar cells,' Solar energy materials and solar cells, vol. 65, no. 1-4, pp. 239-248, 2001.
[41] B. O'regan and M. Grätzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' nature, vol. 353, no. 6346, p. 737, 1991.
[42] B. M. Kayes, L. Zhang, R. Twist, I.-K. Ding, and G. S. Higashi, 'Flexible thin-film tandem solar cells with> 30% efficiency,' IEEE Journal of Photovoltaics, vol. 4, no. 2, pp. 729-733, 2014.
[43] M. A. Green, 'Australian Photovoltaics Research and Development,' ACS Energy Letters, vol. 1, no. 3, pp. 516-520, 2016.
[44] M. A. Green, K. Emery, K. Bücher, D. L. King, and S. Igari, 'Solar cell efficiency tables (version 11),' Progress in Photovoltaics: Research and Applications, vol. 6, no. 1, pp. 35-42, 1998.
[45] R. Abbassi, A. Abbassi, M. Jemli, and S. Chebbi, 'Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches,' Renewable and Sustainable Energy Reviews, vol. 90, pp. 453-474, 2018.
[46] S. J. Fonash, 'Chapter One - Introduction,' in Solar Cell Device Physics (Second Edition). Boston: Academic Press, 2010, pp. 1-8.
[47] E. C. C. d. Souza and R. Muccillo, 'Properties and applications of perovskite proton conductors,' Materials Research, vol. 13, no. 3, pp. 385-394, 2010.
[48] H. J. Snaith, 'Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells,' The Journal of Physical Chemistry Letters, vol. 4, no. 21, pp. 3623-3630, 2013/11/07 2013.
[49] H. Kim, K.-G. Lim, and T.-W. Lee, 'Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,' Energy & Environmental Science, vol. 9, no. 1, pp. 12-30, 2016.
[50] Y. Jiao et al., 'Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation,' Rsc Advances, vol. 5, no. 100, pp. 82346-82350, 2015.
[51] Y. Han et al., 'Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity,' Journal of Materials Chemistry A, vol. 3, no. 15, pp. 8139-8147, 2015.
[52] Y. Li et al., 'Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film,' The Journal of Physical Chemistry C, vol. 121, no. 7, pp. 3904-3910, 2017.
[53] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, 'Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,' Science, p. 1228604, 2012.
[54] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, 'Low-temperature processed meso-superstructured to thin-film perovskite solar cells,' Energy & Environmental Science, vol. 6, no. 6, pp. 1739-1743, 2013.
[55] S. Guarnera et al., 'Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer,' The journal of physical chemistry letters, vol. 6, no. 3, pp. 432-437, 2015.
[56] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, 'Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,' Science, vol. 338, no. 6107, pp. 643-647, 2012-11-02 00:00:00 2012.
[57] H.-S. Kim et al., 'Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,' Scientific reports, vol. 2, p. 591, 2012.
[58] A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Grätzel, 'Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency,' Nano Letters, vol. 14, no. 5, pp. 2591-2596, 2014/05/14 2014.
[59] H. Zhou et al., 'Interface engineering of highly efficient perovskite solar cells,' Science, vol. 345, no. 6196, pp. 542-546, 2014.
[60] H. Tan et al., 'Efficient and stable solution-processed planar perovskite solar cells via contact passivation,' Science, vol. 355, no. 6326, pp. 722-726, 2017.
[61] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, 'Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,' Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
[62] J. Y. Jeng et al., 'CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells,' (in English), Advanced Materials, Article vol. 25, no. 27, pp. 3727-3732, Jul 2013.
[63] M. Saliba et al., 'Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,' Science, vol. 354, no. 6309, pp. 206-209, 2016.
[64] L. Zhao et al., 'High‐Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%,' Advanced Functional Materials, vol. 26, no. 20, pp. 3508-3514, 2016.
[65] Y. Lin et al., 'π‐Conjugated Lewis Base: Efficient Trap‐Passivation and Charge‐Extraction for Hybrid Perovskite Solar Cells,' Advanced Materials, vol. 29, no. 7, 2017.
[66] Q. Dong, J. Song, Y. Fang, Y. Shao, S. Ducharme, and J. Huang, 'Lateral‐Structure Single‐Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling,' Advanced Materials, 2016.
[67] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, 'Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,' Nature communications, vol. 5, 2014.
[68] D. Wöhrle and D. Meissner, 'Organic solar cells,' Advanced Materials, vol. 3, no. 3, pp. 129-138, 1991.
[69] H. Hoppe and N. S. Sariciftci, 'Organic solar cells: An overview,' Journal of materials research, vol. 19, no. 7, pp. 1924-1945, 2004.
[70] F. C. Krebs, 'Fabrication and processing of polymer solar cells: a review of printing and coating techniques,' Solar energy materials and solar cells, vol. 93, no. 4, pp. 394-412, 2009.
[71] S. Günes, H. Neugebauer, and N. S. Sariciftci, 'Conjugated polymer-based organic solar cells,' Chemical reviews, vol. 107, no. 4, pp. 1324-1338, 2007.
[72] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, 'Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process,' Energy & Environmental Science, vol. 7, no. 7, pp. 2359-2365, 2014.
[73] D. Liu and T. L. Kelly, 'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature photonics, vol. 8, no. 2, p. 133, 2014.
[74] J. You et al., 'Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,' 2014.
[75] F. L. De La Puente and J.-F. Nierengarten, Fullerenes: principles and applications. Royal Society of Chemistry, 2011.
[76] C. Tian, K. Kochiss, E. Castro, G. Betancourt-Solis, H. Han, and L. Echegoyen, 'A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability,' Journal of Materials Chemistry A, vol. 5, no. 16, pp. 7326-7332, 2017.
[77] D.-X. Yuan et al., 'A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells,' Physical Chemistry Chemical Physics, vol. 17, no. 40, pp. 26653-26658, 2015.
[78] J. Ciro et al., 'Optimization of the Ag/PCBM interface by a rhodamine interlayer to enhance the efficiency and stability of perovskite solar cells,' Nanoscale, vol. 9, no. 27, pp. 9440-9446, 2017.
[79] I. Hill and A. Kahn, 'Organic semiconductor heterointerfaces containing bathocuproine,' Journal of Applied Physics, vol. 86, no. 8, pp. 4515-4519, 1999.
[80] M. Vosgueritchian, D. J. Lipomi, and Z. Bao, 'Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,' Advanced functional materials, vol. 22, no. 2, pp. 421-428, 2012.
[81] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, and K. Reuter, PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, 2010.
[82] Z. Hu, J. Zhang, and Y. Zhu, 'Effects of solvent-treated PEDOT: PSS on organic photovoltaic devices,' Renewable Energy, vol. 62, pp. 100-105, 2014.
[83] S.-F. Tseng, W.-T. Hsiao, K.-C. Huang, and D. Chiang, 'Electrode patterning on PEDOT: PSS thin films by pulsed ultraviolet laser for touch panel screens,' Applied Physics A, vol. 112, no. 1, pp. 41-47, 2013.
[84] S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, 'Efficient and flexible ITO‐free organic solar cells using highly conductive polymer anodes,' Advanced Materials, vol. 20, no. 21, pp. 4061-4067, 2008.
[85] J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, and Y. Yang, 'High‐conductivity poly (3, 4‐ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices,' Advanced Functional Materials, vol. 15, no. 2, pp. 203-208, 2005.
[86] J. Saghaei, A. Fallahzadeh, and T. Saghaei, 'ITO-free organic solar cells using highly conductive phenol-treated PEDOT: PSS anodes,' Organic Electronics, vol. 24, pp. 188-194, 2015.
[87] A. Fallahzadeh, J. Saghaei, and M. H. Yousefi, 'Effect of alcohol vapor treatment on electrical and optical properties of poly (3, 4-ethylene dioxythiophene): poly (styrene sulfonate) films for indium tin oxide-free organic light-emitting diodes,' Applied Surface Science, vol. 320, pp. 895-900, 2014.
[88] J. Saghaei, A. Fallahzadeh, and M. H. Yousefi, 'Improvement of electrical conductivity of PEDOT: PSS films by 2-Methylimidazole post treatment,' Organic Electronics, vol. 19, pp. 70-75, 2015.
[89] S. Timpanaro, M. Kemerink, F. Touwslager, M. De Kok, and S. Schrader, 'Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy,' Chemical Physics Letters, vol. 394, no. 4-6, pp. 339-343, 2004.
[90] J. Heinlin et al., 'Plasma medicine: possible applications in dermatology,' JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol. 8, no. 12, pp. 968-976, 2010.
[91] H. Conrads and M. Schmidt, 'Plasma generation and plasma sources,' Plasma Sources Science and Technology, vol. 9, no. 4, p. 441, 2000.
[92] B. Eliasson and U. Kogelschatz, 'Nonequilibrium volume plasma chemical processing,' IEEE transactions on plasma science, vol. 19, no. 6, pp. 1063-1077, 1991.
[93] 游. 郭. 黃. 洪. 徐逸明, '常壓電漿原理、技術與應用,' http://www.creating-nanotech.com/big5/download/20110520145713437.pdf, [Accessed: 25 Jun. 2016]
[94] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,' IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
[95] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,' IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
[96] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, 'Atmospheric pressure plasmas: A review,' Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
[97] R. W. Smith, D. Wei, and D. Apelian, 'Thermal plasma materials processing—Applications and opportunities,' Plasma Chemistry and Plasma Processing, vol. 9, no. 1, pp. 135S-165S, 1989// 1989.
[98] M. Goldman and R. S. Sigmond, 'Corona and Insulation,' IEEE Transactions on Electrical Insulation, vol. EI-17, no. 2, pp. 90-105, 1982.
[99] U. Kogelschatz, 'Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications,' Plasma Chemistry and Plasma Processing, vol. 23, no. 1, pp. 1-46, 2003// 2003.
[100] G. Selwyn, H. Herrmann, J. Park, and I. Henins, 'Materials processing using an atmospheric pressure, RF-generated plasma source,' (in English), Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001.
[101] O. Godoy-Cabrera et al., 'Effect of air-oxygen and argon-oxygen mixtures on dielectric barrier discharge decomposition of toluene,' Brazilian journal of physics, vol. 34, no. 4B, pp. 1766-1770, 2004.
[102] N. Tran, N. Harada, T. Sasaki, and T. Kikuchi, 'Effect of Dielectric in a Plasma Annealing System at Atmospheric Pressure,' in Dielectric Material: InTech, 2012.
[103] J.-H. Tsai, I.-C. Cheng, C.-C. Hsu, C.-C. Chueh, and J.-Z. Chen, 'Feasibility study of atmospheric-pressure dielectric barrier discharge treatment on CH3NH3PbI3 films for inverted planar perovskite solar cells,' Electrochimica Acta, vol. 293, pp. 1-7, 2019.
[104] K. Vijayalakshmi and D. Sivaraj, 'Substrate effect on the properties of functionalized multiwalled carbon nanotubes grown by e-beam evaporation for high performance H 2 O 2 detection,' Analyst, vol. 141, no. 21, pp. 6149-6159, 2016.
[105] 羅聖全, '掃描式電子顯微鏡(SEM),' 科學研習, vol. 52-5, 2013.
[106] F.-Y. Zhu, Q.-Q. Wang, X.-S. Zhang, W. Hu, X. Zhao, and H.-X. Zhang, '3D nanostructure reconstruction based on the SEM imaging principle, and applications,' Nanotechnology, vol. 25, no. 18, p. 185705, 2014.
[107] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[108] 黄赛棠, '化学分析用电子能谱 ESCA 或 XPS 的基本原理,' 化学世界, no. 4, p. 11, 1982.
[109] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/System2.gif/350px-System2.gif.
[110] http://www.omacom.co.kr/download/Solar/solar%20configuration.jpg.
[111] http://www.eternalsun.com/wp-content/uploads/2012/10/AM1.5.png.
[112] K. Wang et al., 'Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells,' The journal of physical chemistry letters, vol. 6, no. 5, pp. 755-759, 2015.
[113] D. Liu, J. Yang, and T. L. Kelly, 'Compact layer free perovskite solar cells with 13.5% efficiency,' Journal of the American Chemical Society, vol. 136, no. 49, pp. 17116-17122, 2014.
[114] Q. Dong et al., 'Insight into perovskite solar cells based on SnO2 compact electron-selective layer,' The Journal of Physical Chemistry C, vol. 119, no. 19, pp. 10212-10217, 2015.
[115] H. Zhang et al., 'Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility,' ACS Nano, vol. 10, no. 1, pp. 1503-1511, 2016/01/26 2016.
[116] J. James and R. Sternberg, 'The design of optical spectrometers, 1969,' ed: Chapman and Hall Ltd, London.
[117] NAREN, 'Spectroscopy - principle, procedure & application,' 2016.
[118] D. Liu, J. Niu, and N. Yu, 'Optical emission characteristics of medium-to high-pressure N2 dielectric barrier discharge plasmas during surface modification of polymers,' Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 6, p. 061506, 2011.
[119] Y. Sakiyama, D. B. Graves, H.-W. Chang, T. Shimizu, and G. E. Morfill, 'Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species,' Journal of Physics D: Applied Physics, vol. 45, no. 42, p. 425201, 2012.
[120] B. Vaagensmith et al., 'Environmentally friendly plasma-treated PEDOT: PSS as electrodes for ITO-free perovskite solar cells,' ACS applied materials & interfaces, vol. 9, no. 41, pp. 35861-35870, 2017.
[121] M. Yu et al., 'Enhancing performance of inverted planar perovskite solar cells by argon plasma post-treatment on PEDOT: PSS,' vol. 7, no. 28, pp. 17398-17402, 2017.
[122] F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, and O. Inganäs, 'Polymer photovoltaic cells with conducting polymer anodes,' Advanced Materials, vol. 14, no. 9, pp. 662-665, 2002.
[123] D. Huang et al., 'Perovskite solar cells with a DMSO-treated PEDOT: PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability,' Nanoscale, vol. 9, no. 12, pp. 4236-4243, 2017.
[124] D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, 'Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,' Energy & environmental science, vol. 5, no. 11, pp. 9662-9671, 2012.
[125] P. L. Girard‐Lauriault, P. Desjardins, W. E. Unger, A. Lippitz, and M. R. Wertheimer, 'Chemical Characterisation of Nitrogen‐Rich Plasma‐Polymer Films Deposited in Dielectric Barrier Discharges at Atmospheric Pressure,' Plasma Processes and Polymers, vol. 5, no. 7, pp. 631-644, 2008.
[126] G. Greczynski, T. Kugler, and W. Salaneck, 'Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,' Thin Solid Films, vol. 354, no. 1-2, pp. 129-135, 1999.
[127] G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman, and W. R. Salaneck, 'Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: a mini-review and some new results,' Journal of Electron Spectroscopy and Related Phenomena, vol. 121, no. 1-3, pp. 1-17, 2001.
[128] X. Crispin et al., 'The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)− poly (styrenesulfonate)(PEDOT− PSS) plastic electrodes,' Chemistry of Materials, vol. 18, no. 18, pp. 4354-4360, 2006.
[129] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, 'Electro-optics of perovskite solar cells,' Nature Photonics, vol. 9, no. 2, p. 106, 2015.
[130] W. H. Nguyen, C. D. Bailie, E. L. Unger, and M. D. McGehee, 'Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro (TFSI) 2 in perovskite and dye-sensitized solar cells,' Journal of the American Chemical Society, vol. 136, no. 31, pp. 10996-11001, 2014.
[131] D. Liu, M. K. Gangishetty, and T. L. Kelly, 'Effect of CH 3 NH 3 PbI 3 thickness on device efficiency in planar heterojunction perovskite solar cells,' Journal of Materials Chemistry A, vol. 2, no. 46, pp. 19873-19881, 2014.
[132] J. H. Kim et al., 'High‐performance and environmentally stable planar heterojunction perovskite solar cells based on a solution‐processed copper‐doped nickel oxide hole‐transporting layer,' Advanced Materials, vol. 27, no. 4, pp. 695-701, 2015.
[133] S. Ryu et al., 'Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,' Energy & Environmental Science, vol. 7, no. 8, pp. 2614-2618, 2014.
[134] B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, 'Recombination study of combined halides (Cl, Br, I) perovskite solar cells,' The journal of physical chemistry letters, vol. 5, no. 10, pp. 1628-1635, 2014.
[135] J. A. Christians, R. C. Fung, and P. V. Kamat, 'An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,' Journal of the American Chemical Society, vol. 136, no. 2, pp. 758-764, 2013.
[136] W. Yan et al., 'High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials,' Nano Energy, vol. 16, pp. 428-437, 2015.
[137] D. H. Kang and N. G. Park, 'On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis,' Advanced Materials, p. 1805214, 2019.
[138] Q. Jiang et al., 'Surface passivation of perovskite film for efficient solar cells,' Nature Photonics, p. 1, 2019.
[139] P. Yadav, M. H. Alotaibi, N. Arora, M. I. Dar, S. M. Zakeeruddin, and M. Grätzel, 'Influence of the Nature of A Cation on Dynamics of Charge Transfer Processes in Perovskite Solar Cells,' Advanced Functional Materials, vol. 28, no. 8, p. 1706073, 2018.
[140] J.-H. Tsai, I.-C. Cheng, C.-C. Hsu, and J.-Z. Chen, 'DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application,' Journal of Physics D: Applied Physics, vol. 51, no. 2, p. 025502, 2017.
[141] F. Zabihi, Y. Xie, S. Gao, and M. Eslamian, 'Morphology, conductivity, and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating,' Applied Surface Science, vol. 338, pp. 163-177, 2015.
[142] T. Ino, T. Hayashi, K. Ueno, and H. Shirai, 'Atmospheric-pressure argon plasma etching of spin-coated 3, 4-polyethylenedioxythiophene: polystyrenesulfonic acid (PEDOT: PSS) films for cupper phtalocyanine (CuPc)/C60 heterojunction thin-film solar cells,' Thin Solid Films, vol. 519, no. 20, pp. 6834-6839, 2011.
[143] J. F. Watts, 'High resolution XPS of organic polymers: The Scienta ESCA 300 database. G. Beamson and D. Briggs. 280pp.,£ 65. John Wiley & Sons, Chichester, ISBN 0471 935921,(1992),' Surface and Interface Analysis, vol. 20, no. 3, pp. 267-267, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78730-
dc.description.abstract本研究中使用表面擴散式介電質放電電漿(SDDBD)以及氬氣介電質放電噴射電漿(Argon DBD jet)對導電高分子聚合物PEDOT:PSS進行表面處理,並進行材料分析,SDDBD所處理之PEDOT:PSS並用於反結構(Inverted structure)鈣鈦礦太陽能電池的電洞傳輸層。
實驗一的部分是透過表面擴散式介電質放電電漿(SDDBD)進行PEDOT:PSS的處理。電漿在介電質及鐵網之間產生後,擴散至PEDOT:PSS表面,和PEDOT:PSS反應。處理後之PEDOT:PSS並應用於反結構鈣鈦礦太陽能電池的電洞傳輸層(Hole transport layer)。由於其SDDBD可攜式的特性,SDDBD電漿系統是置入充滿氮氣的手套箱內操作。隨著SDDBD處理時間的增加,PEDOT:PSS的電阻率隨時間先降低然後增加。X射線光電子能譜(XPS)之S2p結合能峰面積比的變化顯示SDDBD處理可以移除表面過量的PSS並改變PEDOT與PSS的比例,從而改變PEDOT:PSS的電阻率,而其功函數也可能隨之改變。當此電漿處理的PEDOT:PSS作為反結構鈣鈦礦太陽能電池(Perovskite solar cell, PSC)之電洞傳輸層,可能影響到介面電荷傳輸和電荷蒐集,從而使PSC性能轉換效率得到改善以及減低遲滯效應。使用30秒SDDBD處理可以實現PSC的最佳效率。
實驗二的部分是透過氬氣介電質放電噴射電漿在大氣壓的環境下對PEDOT:PSS薄膜做表面改質,並於經由噴射電漿處理後的PEDOT:PSS做薄膜的材料分析,因電漿噴流的口徑較小,只約1 mm左右,故往復掃描的次數方式作為改變參數,分別以水接觸角、SEM俯瞰圖、薄膜導電率量測其表面性質的改變,從結果中得到電漿與表面薄膜反應性比實驗一所述的SDDBD還要高,其在掃瞄5次、7次、9次後表面有很大的變化,進一步以XPS之S2p能譜分析得到此電漿密度較高的Ar DBD jet系統能夠與表面快速反應且移除材料,由SEM剖面圖觀察到厚度隨著電漿處理次數變化,可能可做為材料的微蝕刻或應用在需要高反應性的材料改質上。因此電漿和PEDOT:PSS的反應劇烈,處理過後之PEDOT:PSS做成之鈣鈦礦太陽能電池的效能極差或沒有太陽能電池特徵曲線,因此本部分沒有做鈣鈦礦太陽能電池的探討。
zh_TW
dc.description.abstractThis study investigates the PEDOT:PSS films treated by surface-diffusion dielectric barrier discharge (SDDBD) and Ar DBDjet. SDDBD-treted PEDOT:PSS is then used as the hole transport layer (HTL) of perovskite solar cells (PSCs).
In the first part of the experiment, SDDBD-treated PEDOT:PSS is characterized. The plasma is generated between the dielectric layer and the stainless steel mesh and and diffuses to the materials being treated. The whole SDDBD device is used inside a nitrogen-filled glove box. As the SDDBD treatment time increases, the resistivity decreases and the increases. XPS analyses indicate the removal of the excess PSS on the surface, revealing the PEDOT phase. This change the ratio of PEDOT/PSS, which thereby varies the resistivity and the work function. This could influence the charge transport across the interface and the charge collection, which thereby improve the performance of PSCs and reduce the hysteresis. 30-s SDDBD treatment leads to the best efficiency of PSCs.
Second part of the experiment applies Ar dielectric barrier discharge jet (DBDjet) to treat PEDOT:PSS. Because the jet size is ~1 mm, number of scanning times is the parameter. The reaction of Ar DBDjet plasma and PEDOT:PSS is vigorous. XPS S2p results indicate Ar DBDjet effectively removal the whole PEDOT:PSS. DBDjet-treated PEDOT:PSS is not functioning to act as the HTL of PSCs. Therefore, in this part of experiment, no PSC results are presented.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:15:15Z (GMT). No. of bitstreams: 1
ntu-108-R06543086-1.pdf: 5774453 bytes, checksum: 6459ed235fd08e2d9678592899ef91d8 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
誌謝 II
中文摘要 III
Abstract V
圖目錄 IX
表目錄 XII
第1章 13
1.1 前言 13
1.2 研究動機 15
1.3 論文大綱 17
第2章 18
2.1 太陽能電池 18
2.1.1 太陽能電池發展 18
2.1.2 太陽能電池特性參數 21
2.2 鈣鈦礦太陽能電池 24
2.2.1 鈣鈦礦太陽能電池之介紹 24
2.2.2 中孔性結構(mesoporous structure) 25
2.2.3 正規結構(n-i-p structure) 26
2.2.4 倒置結構(p-i-n structure) 27
2.3 反結構鈣鈦礦太陽能電池各層材料 28
2.3.1 透明導電玻璃基板 28
2.3.2 電子傳輸層 28
2.3.3 電洞傳輸層 29
2.4 電漿 31
2.4.1 電漿簡介 31
2.4.2 電漿工作原理 31
2.4.3 電漿操作電壓與溫度 34
2.4.4 常壓電漿 36
第3章 38
3.1 實驗材料與儀器 38
3.2 實驗架構 40
3.3 製程儀器 41
3.3.1 表面擴散式常壓介電質放電電漿系統 41
3.3.2 噴射式常壓介電質放電電漿系統 43
3.3.3 氮氣手套箱 44
3.3.4 旋轉塗佈機 45
3.3.5 電子束蒸鍍機 46
3.4 量測儀器 47
3.4.1 掃描式電子顯微鏡 47
3.4.2 X光子能譜儀 48
3.4.3 太陽光模擬器 49
3.4.4 電化學阻抗分析儀 50
3.4.5 光譜分析儀 51
3.5 實驗流程 53
3.5 實驗一 53
3.5 實驗二 58
第4章 60
4.1 實驗一 60
4.1.1 表面擴散式常壓介電質放電電漿之溫度變化 60
4.1.2 表面擴散式常壓介電質放電電漿之光放射光譜 61
4.1.3 PEDOT:PSS導電性 62
4.1.4 PEDOT:PSS之表面型貌 64
4.1.5 PEDOT:PSS之水接觸角 66
4.1.6 PEDOT:PSS之XPS化學組成 67
4.1.7反結構鈣鈦礦太陽能電池之電性表現 70
4.1.8 PSC元件之電化學阻抗分析 76
4.2 實驗二 79
4.2.1噴射式常壓介電質放電電漿之溫度變化 79
4.2.2噴射式常壓介電質放電電漿之光放射光譜 80
4.2.3 PEDOT:PSS導電性 81
4.2.4 PEDOT:PSS之水接觸角 82
4.2.5 PEDOT:PSS之表面型貌 83
4.2.6 PEDOT:PSS之XPS化學組成 85
第5章 89
附錄A:SDDBD改質之元件效率統計 90
附錄B:常壓噴射電漿(APPJ)處理NiO 92
附錄C:Helium介電質放電噴射電漿(He DBD jet)處理PEDOT:PSS之分析 95
參考文獻 97
dc.language.isozh-TW
dc.title表面擴散式及噴射式介電質放電電漿處理聚二氧乙基噻吩-聚苯乙烯磺酸zh_TW
dc.titleSurface-diffusion and jet-type dielectric barrier discharge plasma treatments on PEDOT:PSSen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君(I-Chun Cheng),徐振哲(Cheng-Che Hsu),王孟菊(Meng-Jiy Wang)
dc.subject.keywordPEDOT:PSS,表面改質,常壓介電質放電電漿,鈣鈦礦太陽能電池,zh_TW
dc.subject.keywordPEDOT: PSS,surface modification,atmospheric dielectric barrier discharge plasma,perovskite solar cell,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201901916
dc.rights.note有償授權
dc.date.accepted2019-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06543086-1.pdf
  目前未授權公開取用
5.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved