Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲zh_TW
dc.contributor.advisorLing Chaoen
dc.contributor.author李博汎zh_TW
dc.contributor.authorBo-Fan Leeen
dc.date.accessioned2021-07-11T15:13:29Z-
dc.date.available2024-07-31-
dc.date.copyright2019-08-06-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Chu, B., et al., Bring on the bodyNET. Nature News, 2017. 549(7672): p. 328.
2. Chen, H., et al., Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials, 2008. 20(18): p. 3557-3561.
3. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
4. Mohanty, N. and V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano letters, 2008. 8(12): p. 4469-4476.
5. Matyba, P., et al., Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. Acs Nano, 2010. 4(2): p. 637-642.
6. Lemme, M.C., et al., A graphene field-effect device. IEEE Electron Device Letters, 2007. 28(4): p. 282-284.
7. Williams, J., L. DiCarlo, and C. Marcus, Quantum Hall effect in a gate-controlled pn junction of graphene. Science, 2007. 317(5838): p. 638-641.
8. Jang, S., et al., Graphene–graphene oxide floating gate transistor memory. Small, 2015. 11(3): p. 311-318.
9. Echtermeyer, T.J., et al., Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Letters, 2008. 29(8): p. 952-954.
10. Kim, S.M., et al., Transparent and flexible graphene charge-trap memory. ACS nano, 2012. 6(9): p. 7879-7884.
11. Zheng, Y., et al., Gate-controlled nonvolatile graphene-ferroelectric memory. Applied Physics Letters, 2009. 94(16): p. 163505.
12. Song, E.B., et al., Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Applied Physics Letters, 2011. 99(4): p. 042109.
13. Xiaomu, W., X. Weiguang, and X. Jian‐Bin, Graphene Based Non‐Volatile Memory Devices. Advanced Materials, 2014. 26(31): p. 5496-5503.
14. Sup Choi, M., et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Communications, 2013. 4: p. 1624.
15. Roy, K., et al., Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotechnology, 2013. 8: p. 826.
16. Bertolazzi, S., D. Krasnozhon, and A. Kis, Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures. ACS Nano, 2013. 7(4): p. 3246-3252.
17. Meena, J.S., et al., Overview of emerging nonvolatile memory technologies. Nanoscale research letters, 2014. 9(1): p. 526.
18. Goniszewski, S., et al., Correlation of p-doping in CVD Graphene with Substrate Surface Charges. Scientific reports, 2016. 6: p. 22858.
19. Chen, F., J. Xia, and N. Tao, Ionic screening of charged-impurity scattering in graphene. Nano Letters, 2009. 9(4): p. 1621-1625.
20. Lee, M.J., et al., Characteristics and effects of diffused water between graphene and a SiO 2 substrate. Nano Research, 2012. 5(10): p. 710-717.
21. Lee, D., G. Ahn, and S. Ryu, Two-dimensional water diffusion at a graphene–silica interface. Journal of the American Chemical Society, 2014. 136(18): p. 6634-6642.
22. Zhang, Y., et al., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2005. 72(1): p. 156-165.
23. Li, J.K., N. Wang, and X.S. Wu, Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. Journal of microencapsulation, 1998. 15(2): p. 163-172.
24. Choi, Y.S., et al., Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999. 20(5): p. 409-417.
25. Chiu, U.T. and L. Chao, Electron transfer through protein-bound water and its bioelectronic application. Biosensors and Bioelectronics, 2019.
26. Wickstrand, C., et al., Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochimica et Biophysica Acta (BBA)-General Subjects, 2015. 1850(3): p. 536-553.
27. Kimura, Y., et al., Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature, 1997. 389(6647): p. 206-211.
28. Lozier, R.H., R.A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophysical journal, 1975. 15(9): p. 955-962.
29. Subramaniam, S. and R. Henderson, Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature, 2000. 406(6796): p. 653-657.
30. Lanyi, J.K., Proton transfers in the bacteriorhodopsin photocycle. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006. 1757(8): p. 1012-1018.
31. Hampp, N., Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews, 2000. 100(5): p. 1755-1776.
32. Jin, Y., et al., Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 2008. 37(11): p. 2422-2432.
33. He, J.A., et al., Bacteriorhodopsin Thin‐Film Assemblies—Immobilization, Properties, and Applications. Advanced Materials, 1999. 11(6): p. 435-446.
34. Chu, L.-K., C.-W. Yen, and M.A. El-Sayed, Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics, 2010. 26(2): p. 620-626.
35. Rao, S., et al., A Light‐Powered Bio‐Capacitor with Nanochannel Modulation. Advanced Materials, 2014. 26(33): p. 5846-5850.
36. Heeg, B., et al. Bacteriorhodopsin as a chemical and biological sensor. in Chemical and Biological Sensing IV. 2003. International Society for Optics and Photonics.
37. Sharkany, J., et al., Bacteriorhodopsin-based biochromic films for chemical sensors. Sensors and Actuators B: Chemical, 2005. 107(1): p. 77-81.
38. Walczak, K.A., P.L. Bergstrom, and C.R. Friedrich, Light sensor platform based on the integration of bacteriorhodopsin with a single electron transistor. Active and Passive Electronic Components, 2011. 2011.
39. Sharkany, Y.P., et al. Sensitive elements based on bacteriorhodopsin for fiber-optics sensors of chemical components. in 17th International Conference on Optical Fibre Sensors. 2005. International Society for Optics and Photonics.
40. Mohammadpour, R. and S. Janfaza, Efficient nanostructured biophotovoltaic cell based on bacteriorhodopsin as biophotosensitizer. ACS Sustainable Chemistry & Engineering, 2015. 3(5): p. 809-813.
41. Thavasi, V., et al., Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report. Journal of nanoscience and nanotechnology, 2009. 9(3): p. 1679-1687.
42. Roy, S., et al., All-optical switching with bacteriorhodopsin. Optics communications, 2004. 237(4-6): p. 251-256.
43. Roy, S., et al., All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. Journal of Applied Physics, 2010. 107(5): p. 053115.
44. Chen, Z., et al., Advances in protein-based three-dimensional optical memories. BioSystems, 1995. 35(2-3): p. 145-151.
45. Janfaza, S., et al., Bacteriorhodopsin embedded in gelatin and polyvinyl alcohol films as recording materials for holographic memories. Turkish Journal of Biochemistry/Turk Biyokimya Dergisi, 2013. 38(4).
46. Stuart, J.A., et al., Volumetric optical memory based on bacteriorhodopsin. Synthetic metals, 2002. 127(1-3): p. 3-15.
47. Medhi, C., et al., Electrostatic factors in DNA intercalation. Biopolymers: Original Research on Biomolecules, 1999. 52(2): p. 84-93.
48. Baler, K., et al., Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study. The Journal of Physical Chemistry B, 2014. 118(4): p. 921-930.
49. Cocco, S., et al., Force-extension behavior of folding polymers. The European Physical Journal E, 2003. 10(3): p. 249-263.
50. Stigter, D., An electrostatic model of B-DNA for its stability against unwinding. Biophysical chemistry, 1998. 75(3): p. 229-233.
51. Boyden, E.S., et al., Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience, 2005. 8(9): p. 1263.
52. Fenno, L., O. Yizhar, and K. Deisseroth, The development and application of optogenetics. Annual review of neuroscience, 2011. 34.
53. Goncalves, S., et al., Design and manufacturing challenges of optogenetic neural interfaces: a review. Journal of neural engineering, 2017. 14(4): p. 041001.
54. Nabika, H., A. Fukasawa, and K. Murakoshi, Control of the structure of self-spreading lipid membrane by changing electrolyte concentration. Langmuir, 2006. 22(26): p. 10927-10931.
55. Cremer, P.S. and S.G. Boxer, Formation and spreading of lipid bilayers on planar glass supports. The Journal of Physical Chemistry B, 1999. 103(13): p. 2554-2559.
56. Oleson, T.A. and N. Sahai, Interaction energies between oxide surfaces and multiple phosphatidylcholine bilayers from extended-DLVO theory. Journal of Colloid and Interface Science, 2010. 352(2): p. 316-326.
57. Tero, R., T. Ujihara, and T. Urisu, Lipid bilayer membrane with atomic step structure: Supported bilayer on a step-and-terrace TiO2 (100) surface. Langmuir, 2008. 24(20): p. 11567-11576.
58. Israelachvili, J.N., Intermolecular and Surface Forces. 2015: Elsevier Science. 395-421.
59. Chiou, Y.-C., et al., Direct Measurement of the Magnitude of van der Waals interaction of Single and Multilayer Graphene. arXiv preprint arXiv:1806.05027, 2018.
60. Shearer, C.J., et al., Accurate thickness measurement of graphene. Nanotechnology, 2016. 27(12): p. 125704.
61. Petrache, H.I., et al., Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences, 2006. 103(21): p. 7982-7987.
62. Peng, P.-Y., P.-C. Chiang, and L. Chao, Controllable occurrence of free-standing lipid membranes on nanograting structured supports. ACS applied materials & interfaces, 2014. 6(15): p. 12261-12269.
63. Fu, H.-Y., et al., A novel six-rhodopsin system in a single archaeon. Journal of bacteriology, 2010. 192(22): p. 5866-5873.
64. Anand, A., et al., Detection of k+ efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS sensors, 2017. 2(1): p. 69-79.
65. Piazza, A., et al., Substrate and atmosphere influence on oxygen p-doped graphene. Carbon, 2016. 107: p. 696-704.
66. Zhang, Z., et al., Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements. Applied Physics Letters, 2012. 101(21): p. 213103.
67. Anothumakkool, B., et al., Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart. Nanoscale, 2014. 6(11): p. 5944-5952.
68. Choi, M.S., et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature communications, 2013. 4: p. 1624.
69. Pisana, S., et al., Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature materials, 2007. 6(3): p. 198.
70. Yan, J., et al., Electric field effect tuning of electron-phonon coupling in graphene. Physical review letters, 2007. 98(16): p. 166802.
71. Lee, J.E., et al., Optical separation of mechanical strain from charge doping in graphene. Nature communications, 2012. 3: p. 1024.
72. Dollekamp, E., et al., Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore. Langmuir, 2017. 33(43): p. 11977-11985.
73. Onofri, A. Routine statistical analyses of field experiments by using an Excel extension. in 6th National Conference of the Italian Biometric Society. 2007.
74. Unal, M., S. Yang, and O. Akkus, Molecular spectroscopic identification of the water compartments in bone. Bone, 2014. 67: p. 228-236.
75. Leikin, S., et al., Raman spectral evidence for hydration forces between collagen triple helices. Proceedings of the National Academy of Sciences, 1997. 94(21): p. 11312-11317.
76. Cavatorta, F., M.P. Fontana, and A. Vecli, Raman spectroscopy of protein–water interactions in aqueous solutions. The Journal of Chemical Physics, 1976. 65(9): p. 3635-3640.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78705-
dc.description.abstract隨著人工智能與智慧醫療的發展,找尋合適的材料去溝通生物系統與電子產品已經成為重要的目標。電子產品一般在水溶液的環境容易受到潮濕的環境或是電解質水溶液存在的影響,導致漏電或腐蝕進而影響其功能的運作。在本論文中,我們利用具有生物相容性的材料來發展多元的生物電子的相關應用,期望未來能應用在穿戴式裝置或是人機介面的溝通工具。
首先,我們利用石墨烯電晶體來發展水相記憶體。我們發現在石墨烯與支撐的玻璃之間的奈米厚度水層會影響石墨烯的導電特性。我們藉由控制正負不同的閘極電壓來完成寫入和刪除的過程,並成功達成穩定的高導電度態(開)與低導電度態(關)。此石墨烯水相記憶體也展現能至少進行9次的重複寫入-讀取-刪除-讀取,且其高低導電狀態都至少能維持104秒。我們更進一步使用原子力顯微鏡與拉曼光譜來檢驗此兩狀態下水層的厚度的差異,也使用了延伸式DLVO理論去解釋水層厚度變化的形成原因。此利用奈米水層來調控石墨烯與玻璃間相互作用的技術,未來有機會應用於發展水中操作之極薄二維型態的非揮發性記憶體。
接著,我們結合先前在本實驗室研究的蛋白質明膠記憶體與視紫蛋白來增加其導電度和提升其記憶體表現。視紫蛋白為光驅動氫離子幫浦,在吸收光能後可以製造細胞膜兩側的氫離子濃度差異。我們的實驗結果顯示在明膠記憶體中間入一層具有視紫蛋白的脂質膜可以顯著的增加蛋白-結和水網絡的導電能力。我們認為視紫蛋白在光驅動後,會讓脂質膜兩側的電性因為氫離子的移動,而發生兩側非電中性的狀態,我們認為這樣的狀態會更進一步造成明膠整體結構的變化,進而產生更多的蛋白-結和水來增加電子傳遞的能力。加入視紫蛋白的明膠記憶體具有穩定且可重複操作的能力,且其開關電流比純明膠記憶體高了2倍。
最後,我們利用視紫蛋白的脂質膜改變膜電位的能力,來研究並控制目標神經細胞的活性。我們將具有視紫蛋白的脂質膜覆蓋住神經細胞群並使用雷射做為光源來刺激視紫蛋白改變神經細胞外的電位,並使用鈣離子影像來觀測螢光亮度變化並推測神經細胞是否因電位改變而發生變化。為了驗證視紫蛋白改變電位的能力,我們使用COMSOL軟體去建構模型,其結果說明紫蛋白能在至少10微米的位置內製造出0.06V的電位變化。這些初步的研究結果都支持我們建構之具有視紫蛋白的脂質膜能影響神經細胞活性。我們相信這個嶄新、非侵入性的方法具有可以控制神經細胞的潛力,以幫助建構電子元件與人體系統之間溝通的橋樑。
zh_TW
dc.description.abstractWith the development of artificial intelligence and health sensing, developing suitable materials to bridge between biological systems and electronics has become an important goal. Electronic devices are generally susceptible to the presence of a moist environment or an aqueous electrolyte solution, resulting in leakage current or corrosion that affects the electronic function. In this thesis, we use flexible, biocompatible materials to develop a variety of bioelectronic applications and show them potentially to be applied to wearable devices and human-machine interfaces in the future.
First, we demonstrated a solution-gated graphene memory device. We found that the nano-thickness water layer between graphene and the silica support can greatly affect the conductivity of graphene. We underwent the process of writing and erasing by applying the positive and negative gate voltages to the device and successfully achieved a stable high conductivity state (on) and low conductivity state (off). The water-based graphene memory also showed that it can undergo at least 9 WRER cycles, and its high and low conductivity states were maintained at least to 104 s. We further used AFM and Raman spectroscopy to confirm the difference of the water layer thickness between two states and also applied the extended DLVO theory to explain the formation and variation of the water layer thickness. The manipulation of the interaction between a graphene sheet and silica support through a thin water layer can also facilitate the realization of a 2D water-based non-volatile memory.
Second, we combined a previously studied gelatin memory with bacteriorhodopsin (BR) to increase its conductivity and enhance its memory performance. After the light illumination, BRs can create additional protons on one side of the membrane and proton vacancies on the other side. We hypothesize the proton accumulation or proton deficiency could affect the structure of the gelatin-bound water metastructure by creating electrical non-neutrality. The non-neutrality could cause gelatin polypeptides to unwind to a greater extent and therefore cause more bound water to be trapped in the polypeptide-bound water network, enhancing the electron transport in the device. The BR-incorporated gelatin memory device also features long-term stability and reprogrammability. The ON/OFF current ratio is increased by 2 folds compared to the gelatin memory device with no BR-lipid-membrane. Using BR-incorporated gelatin thin film as a memory provides a new pathway for writing, reading, and erasing by controlling the structure and the water content in the gelatin, which could be further used for various bioelectronic applications.
In addition, we prepared a BR membrane sheet to change the electric potential around target neuron cells to control their activity. We covered the neuronal cell with a BR membrane sheet and applied a laser beam as a light source to stimulate BRs to change the electrical potential around target neurons. Our calcium imaging results show that the neuron state did change after the stimulus. To verify the capability of the electric potential change by BRs, we used COMSOL simulation to construct a model, and the results suggest that the BR membrane sheet could produce a potential change of 0.06 V when it is placed at a position of 10 μm from the membrane. We believe that this new, non-invasive method could have potential to control neuron activities and bridge the gap between electronics and biological systems.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:13:29Z (GMT). No. of bitstreams: 1
ntu-108-R06524041-1.pdf: 3742274 bytes, checksum: 9572ebacfb52151504d1614a0eb29cd8 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
Acknowledgement i
摘要 ii
Abstract iv
Table of Content vi
Figure Captions x
Table Caption xiv
Chapter 1 Introduction 1
1.1 Introduction to bioelectronics applications 1
1.2 Graphene as a biocompatible material for memory application 1
1.3 Developing graphene memory device by controlling water layer thickness 3
1.4 Electron transfer through gelatin protein-bound water for memory application 4
1.5 Introduction to bacteriorhodopsin 5
1.6 Incorporating BRs into gelatin for memory devices 5
1.7 Introduction to Optogenetics 7
1.8 Using BRs to convert light to electrical energy for bio-applications 7
Chapter 2 Materials and Methods 9
2.1 Materials 9
2.2 Apparatus 11
2.3 Preparation and measurements of graphene memory devices 12
2.3.1 Fabrication of channel graphene 12
2.3.2 Experimental setup of graphene memory devices 13
2.3.3 Atomic force microscopy (AFM) measurements of graphene on silica 14
2.3.4 Raman spectroscopy observation of water intercalation 15
2.3.5 Using the extended DLVO theory to calculate the total potential energy between graphene and its silica support 15
2.4 Preparation and measurements of BR-incorporated gelatin memory device 19
2.4.1 BR-incorporated liposome preparation 19
2.4.2 Formation of BR-Supported lipid bilayer on solid support 20
2.4.3 Gelatin solution preparation 20
2.4.4 Fabrication of BR-incorporated gelatin memory devices 21
2.4.5 Light source setup 22
2.4.6 Electrical performance measurements setup 22
2.5 Using BRs to convert light to electrical energy for bio-applications 22
2.5.1 Kinetics equations for BR photocycle 22
2.5.2 Settings are used to simulate the electrochemical potential change by BR membrane sheet 25
2.5.3 Preparation of Hank’s Balance Salt Solution 28
2.5.4 Preparation of neuron cell 28
2.5.5 Experimental setup of using BR membrane sheet to stimulate neuron activities 29
Chapter 3 Water-Based Non-volatile Graphene Memory Devices 30
3.1 Electrical memory characteristics of graphene devices 30
3.2 Water layer as an insulator to reduce p-doping effect 31
3.3 Derive the electron mobility and trapping density 33
3.4 Writing/erasing mechanism based on the interaction between graphene and its support 35
3.5 Using AFM and Raman spectra to examine the intermediate water layer 38
3.6 Using the extended DLVO theory to explain the interfacial water layer phenomenon and insights into choosing suitable support material 40
Chapter 4 Incorporating BRs with conductive gelatin hydrogel for memory device 43
4.1 Addition of BR membrane to gelatin devices significantly enhance the electron conductivity 43
4.2 BRs pump proton toward the deposited site of gelatin and induce the electrical photocurrent 47
4.3 The enhanced conductivity of BR-incorporated gelatin device is not due to the BR pumping effect but the change of the gelatin metastructure during illumination writing process 49
4.4 The increased conductivity is not just due to the pH change 51
4.5 Using Raman spectroscopy to determine gelatin secondary structure 52
4.6 Proposed mechanism for the effect of electric non-neutrality helping to increase the conductivity 55
Chapter 5 Using BR membrane sheet to convert light to electric signals for bio-applications 58
5.1 Electric potential Simulation 58
5.1.1 Verifying the model by comparing with BR photocurrent experiment results 58
5.1.2 BR gel model simulation results 60
5.2 Experiment Results 62
5.2.1 In vitro neuron activities in fluorescence microscope 62
5.2.2 Using BR membrane sheet to influence the activities of neuron 63
Chapter 6 Conclusions 67
REFERENCE 69
-
dc.language.isozh_TW-
dc.subject電阻式記憶體zh_TW
dc.subject生物相容電子產品zh_TW
dc.subject視紫電白zh_TW
dc.subject明膠zh_TW
dc.subject石墨烯zh_TW
dc.subject光遺傳學zh_TW
dc.subjectbioelectronicsen
dc.subjectresistive-type memoryen
dc.subjectgrapheneen
dc.subjectgelationen
dc.subjectbacteriorhodopsinen
dc.subjectoptogeneticsen
dc.title藉由石墨烯與膜蛋白發展生物電子相關應用zh_TW
dc.titleBioelectronic applications based on graphene and membrane proteinsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王勝仕;謝之真zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword生物相容電子產品,電阻式記憶體,石墨烯,明膠,視紫電白,光遺傳學,zh_TW
dc.subject.keywordbioelectronics,resistive-type memory,graphene,gelation,bacteriorhodopsin,optogenetics,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU201902245-
dc.rights.note未授權-
dc.date.accepted2019-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2024-08-06-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved