請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78694完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙玲 | zh_TW |
| dc.contributor.advisor | Ling Chao | en |
| dc.contributor.author | 陳冠銘 | zh_TW |
| dc.contributor.author | Kevin Tanady | en |
| dc.date.accessioned | 2021-07-11T15:12:44Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2019-08-06 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Sezgin, E.; Kaiser, H.-J.; Baumgart, T.; Schwille, P.; Simons, K.; Levental, I., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature Protocols 2012, 7, 1042.
2. Rygula, A.; Majzner, K.; Marzec, K. M.; Kaczor, A.; Pilarczyk, M.; Baranska, M., Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy 2013, 44 (8), 1061-1076. 3. Czamara, K.; Majzner, K.; Pacia, M. Z.; Kochan, K.; Kaczor, A.; Baranska, M., Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy 2015, 46 (1), 4-20. 4. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical Reviews 1999, 99 (10), 2957-2976. 5. G.Dent, W. E. S. a., Modern Raman Spectroscopy - A Practical Approach. John Wiley & Sons, Ltd: 2005. 6. Chemistry LibreTexts The Position of an Absorption Band is Affected by Electron Delocalization, Electron Donation and Withdrawal, and Hydrogen Bonding. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Bruice)/13%3A_Mass_Spectrometry%2C_Infrared_Spectroscopy%2C_and_Ultraviolet%2F%2FVisible_Spectroscopy/13.12%3A_The_Position_of_an_Absorption_Band_is_Affected_by_Electron_Delocalization%2C_Election_Donation_and_Withdrawal%2C_and_Hydrogen_Bonding (accessed 19 Aug). 7. Xu, M.; P Larentzos, J.; Roshdy, M.; Criscenti, L.; Allen, H., Aqueous divalent metal-nitrate interactions: Hydration versus ion pairing. 2008; Vol. 10, p 4793-801. 8. Wong, P. T. T.; Mantsch, H. H., Reorientational and Conformational Ordering Processes at Elevated Pressures in 1,2-Dioleoyl Phosphatidylcholine: A Raman and Infrared Spectroscopic Study. Biophysical Journal 1988, 54 (5), 781-790. 9. Schrader, B., Infrared and Raman Spectroscopy: Methods and Applications. 2007; p 807. 10. Severcan, F., Vibrational Spectroscopy in Diagnosis and Screening. 2012. 11. Rimai, L.; Cole, T.; Parsons, J. L.; Hickmott, J. T.; Carew, E. B., Studies of Raman Spectra of Water Solutions of Adenosine Tri-, Di-, and Monophosphate and Some Related Compounds. Biophysical Journal 1969, 9 (3), 320-329. 12. Ozel, A. E.; Gunduz, S. K.; Celik, S.; Akyuz, S., Structural and Vibrational Study on Monomer and Dimer Forms and Water Clusters of Acetazolamide. Journal of Spectroscopy 2013, 2013, 13. 13. Huang, Z.; McWilliams, A.; Lui, H.; McLean, D. I.; Lam, S.; Zeng, H., Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 2003, 107 (6), 1047-52. 14. Viehoever, A. R.; Anderson, D.; Jansen, D.; Mahadevan-Jansen, A., Organotypic raft cultures as an effective in vitro tool for understanding Raman spectral analysis of tissue. Photochem Photobiol 2003, 78 (5), 517-24. 15. P.R.Carey, Biochemical Applications of Raman and Resonance Raman Spectroscopies. Academic Press: 2012; p 262. 16. Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z., Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters 2010, 10 (2), 553-561. 17. Galarreta, C. I.; Grantham, J. J.; Forbes, M. S.; Maser, R. L.; Wallace, D. P.; Chevalier, R. L., Tubular obstruction leads to progressive proximal tubular injury and atubular glomeruli in polycystic kidney disease. Am J Pathol 2014, 184 (7), 1957-66. 18. Menon, M.; Koul, H., Clinical review 32: Calcium oxalate nephrolithiasis. J Clin Endocrinol Metab 1992, 74 (4), 703-7. 19. A.Glenton, S. R. K. O. W., Heterogeneous nucleation of calcium oxalate crystals in the presence of membrane vesicles. Journal of Crystal Growth 1993, 134 (3-4), 211-218. 20. Finlayson, B.; Reid, F., The expectation of free and fixed particles in urinary stone disease. Invest Urol 1978, 15 (6), 442-8. 21. Khan, S. R.; Glenton, P. A.; Backov, R.; Talham, D. R., Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 2002, 62 (6), 2062-72. 22. Liu, K. H.; Tsay, Y. F., Switching between the two action modes of the dual‐affinity nitrate transporter CHL1 by phosphorylation. The EMBO Journal 2003, 22 (5), 1005-1013. 23. Ho, C.-H.; Lin, S.-H.; Hu, H.-C.; Tsay, Y.-F., CHL1 Functions as a Nitrate Sensor in Plants. Cell 2009, 138 (6), 1184-1194. 24. Sun, J.; Bankston, J. R.; Payandeh, J.; Hinds, T. R.; Zagotta, W. N.; Zheng, N., Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 2014, 507 (7490), 73-7. 25. Wiki, S. o. B. S. Protein Kinase A. https://teaching.ncl.ac.uk/bms/wiki/index.php/Protein_kinase_A. 26. Huang, S.; Pandey, R.; Barman, I.; Kong, J.; Dresselhaus, M., Raman Enhancement of Blood Constituent Proteins Using Graphene. ACS Photonics 2018, 5 (8), 2978-2982. 27. Rusciano, G.; Pesce, G.; Zito, G.; Sasso, A.; Gaglione, R.; Del Giudice, R.; Piccoli, R.; Monti, D. M.; Arciello, A., Insights into the interaction of the N-terminal amyloidogenic polypeptide of ApoA-I with model cellular membranes. Biochimica et Biophysica Acta (BBA) - General Subjects 2016, 1860 (4), 795-801. 28. Seddon, A. M.; Curnow, P.; Booth, P. J., Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta (BBA) - Biomembranes 2004, 1666 (1), 105-117. 29. Jackson, M.; Mantsch, H. H., The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Critical Reviews in Biochemistry and Molecular Biology 1995, 30 (2), 95-120. 30. Scientific, H. Raman Spectroscopy for Proteins. http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/HORIBA_webinar_proteins.pdf. 31. Chemistry, C. The Structure of Proteins. http://www.chim.lu/. 32. Iverson Amide Structure. http://iverson.cm.utexas.edu/courses/310N/POTDSp06/POTDLecture%2017.html. 33. Norman B. Colthup, L. H. D., Stephen E. Wiberley, Introduction to Infrared and Raman Spectroscopy. 3 ed.; Academic Press: 1990; p 547. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78694 | - |
| dc.description.abstract | 膜蛋白在細胞內扮演著重要角色,但目前其研究仍受限於缺乏適當的工具來使膜蛋白在其自然狀態中被觀測其結構及功能。傳統方法通常需要添加清潔劑來從細胞膜萃取出膜蛋白做後續觀測以及研究,然而這樣的方法常被詬病可能會破壞其功能或結構。為了突破這個困境,我們利用共軛焦拉曼光譜儀來對在支撐式細胞膜平台中的脂質和膜蛋白進行研究。我們利用石墨烯增強脂雙層和膜蛋白微弱的拉曼光譜訊號。但因為石墨烯存在消光效應,我們利用光蝕刻得到孔洞圖案以實現其偵測和觀察。首先我們應用拉曼光譜來研究腎結石疾病中最常見的草酸鈣(CaOx)結晶如何保留在脂質膜上。我們製備了具有不同膜流動性的人工脂質膜,發現附著在具有高流動性的脂質膜上的晶體會誘導其下脂質膜重新排列,並增強晶體附著。拉曼光譜結果顯示了脂質膜發生了從流體相到凝膠相的相變。而此由晶體誘導之相變可能使得脂質分子可以匹配晶格排列,降低系統能量,進而顯著增強晶體附著。此外,我們運用發泡法從青蛙卵細胞獲得了具有硝酸鹽運輸蛋白(CHL1)的巨型單層囊泡,並在石墨烯上形成了支撐式細胞膜平台。我們觀察到硝酸鹽運輸蛋白Amide III特徵峰的變化,並發現其與硝酸鹽運輸蛋白的磷酸化相關,我們也對這些特徵峰變化和結構變化之間的連結做出解讀。我們的結果顯示此技術不僅提供了一種非侵入性研究生物材料的新方法,也在研究膜蛋白結構變化方面具有巨大潛力。 | zh_TW |
| dc.description.abstract | While membrane proteins play important roles in various cellular processes, there are still limited tools and techniques to study them. The traditional method is to disrupt cell membranes by adding detergents to extract the membrane proteins for further study. However, the method usually would disrupt the function or structure of the membrane proteins.
In this study, we used confocal Raman spectroscopy to study supported lipid membranes and the embedded membrane proteins. Our analytical technique enables us to obtain a precise focal plane so that we can obtain robust Raman signals from a few nanometer-thick supported lipid membranes. The weak Raman signals were enhanced with graphene. We used the photolithography method to pattern graphene so that we can observe the location of the cell membrane in spite of the fluorescence quenching effect of graphene. We first applied Raman spectroscopy to examine the retention mechanism of calcium oxalate (CaOx) crystals on lipid membranes, which is related to kidney stone diseases. We prepared lipid membranes with different membrane fluidity and found that crystal formation on the lipid membrane with high fluidity can induce phase transition. The Raman result suggests that the crystal may induce phase transition of lipid membrane from the liquid phase to the gel phase which results in lipid molecules to closely align to match the crystal lattice to reduce the system energy and therefore significantly enhance the crystal attachment. In addition, we also derived giant unilamellar vesicles with nitrate transporter CHL1 from oocytes and formed supported plasma membranes on graphene supports. We observed the characteristic peaks of amide III from CHL1 in the supported plasma membrane, and found the correlation between the spectrum change and the phosphorylation. We also interpreted how the spectrum change may be correlated to the structural change. The results show that this technique not only offers a new way to study biomaterials noninvasively but also has potential in studying changes of protein structure in the native membrane environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:12:44Z (GMT). No. of bitstreams: 1 ntu-108-R06524099-1.pdf: 5507155 bytes, checksum: e2e7ba88c450c1676dc303421a23b543 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table of Contents
口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Table of Contents vi Figure Captions x Table Captions xv Chapter 1. Introduction 1 1.1 Overview 1 1.2 Giant Plasma Membrane Vesicles (GPMVs) 1 1.3 Raman Spectroscopy 2 1.3.1 Overview 2 1.3.2 Raman Scattering Theory5-6 3 1.3.3 Surface Enhanced Raman Spectroscopy5 9 1.3.4 Graphene Enhanced Raman Spectroscopy 10 1.4 Introduction of the Lipid Membrane Influenced by Calcium Oxalate Monohydrate Crystals 10 1.5 CHL1 Membrane Protein as a Dual-Affinity Nitrate Transporter Regulated by Phosphorylation22-24 14 Chapter 2. Materials and Methods 26 2.1 Materials 26 2.2 Apparatus 28 2.3 Preparation of Large Unilamellar Vesicles for Lipid Vesicles Deposition 29 2.4 Preparation of Giant Plasma Membrane Vesicles (GPMVs) from Cells 30 2.5 Preparation of Polydimethylsiloxane (PDMS) Well 31 2.6 Preparation of Solid Substrates 32 2.6.1 Glass Coverslip 32 2.6.2 Transferring Graphene to Glass Coverslip 33 2.6.3 Fabrication of hole-patterned graphene 33 2.6.4 33 2.7 Supported Lipid Bilayer (SLB) Formation 34 2.7.1 Deposition of Large Unilamellar Vesicles 34 2.7.2 Deposition of GPMVs 34 2.8 Immunostaining of GPMVs 34 2.9 Crystal Formation on Lipid Membrane 35 2.10 Images by Microscopy 35 2.11 Raman Spectroscopy 35 2.11.1 Attachment of Calcium oxalate monohydrate crystals on lipid membrane experiment 36 2.11.2 CHL1 as dual affinity transporter regulated by phosphorylation experiment 36 Chapter 3. Raman Spectroscopy to Examine New Phase Formation in Supported Lipid Bilayers Induced by Calcium Crystals 37 3.1 Preparation of Clean Hole-Patterned Graphene 37 3.2 Graphene-Enhanced Raman Spectroscopy to Examine the Physical State of New Phase Formation Induced by Calcium Crystal 39 3.2.1 Graphene Enhanced Raman Spectroscopy on Lipid Membrane 39 3.3 Effect of New Phase Formation Induced by Calcium Crystal on Skeletal Bond Observed with Raman Spectroscopy 42 3.4 Mechanism of Calcium Crystal-Induced New Phase Formation on Fluid Lipid Membrane 45 Chapter 4. Raman Spectroscopy to Examine CHL1 Membrane Proteins in Supported Cell Membrane Patches 46 4.1 Preparation of Giant Plasma Membrane Vesicles (GPMVs) 46 4.1.1 Giant Plasma Membrane Vesicles (GPMVs) Blebbing and Dialysis 46 4.1.2 GPMV and dye-labeled DOPC Deposition 47 4.1.2.1 Deposition on Glass 47 4.1.2.2 Deposition on hole-patterned graphene 48 4.2 Examination of Plasma Membrane Orientation on Platform by Using Antibodies 49 4.3 Raman Shift in Different Secondary Structure of Protein29 51 4.4 Structure Change of CHL1 Examined by Raman Spectroscopy 53 4.4.1 Addition of ATP to Observe the Dual-Affinity of CHL1 53 4.4.2 Effect of Protein Kinase A Activator and Inhibitor in the Low and High Nitrate Concentration Conditions 54 4.4.3 Phosphorylated State of CHL1 (T101D) and Dephosphorylated State of CHL1 (T101A) in the Low and High Nitrate Concentration Conditions 57 4.5 The interpretation of the observed Raman shift 60 Chapter 5. Conclusions 62 References 63 | - |
| dc.language.iso | en | - |
| dc.subject | 拉曼光譜 | zh_TW |
| dc.subject | 及膜蛋白 | zh_TW |
| dc.subject | 脂質膜 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | Raman spectroscopy | en |
| dc.subject | graphene | en |
| dc.subject | lipid membrane | en |
| dc.subject | membrane proteins | en |
| dc.title | 利用拉曼光譜來檢測於支撐式脂質膜中之脂質以及膜蛋白 | zh_TW |
| dc.title | Using Raman Spectroscopy to Study Lipid and Membrane Proteins in Supported Lipid Membranes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝之真;蔡宜芳 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Chen Hsieh;Yi-Fang Tsay | en |
| dc.subject.keyword | 拉曼光譜,石墨烯,脂質膜,及膜蛋白, | zh_TW |
| dc.subject.keyword | Raman spectroscopy,graphene,lipid membrane,membrane proteins, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU201902249 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-12-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
