請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余佳慧 | |
| dc.contributor.author | Yu-Ting Hsieh | en |
| dc.contributor.author | 謝毓庭 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:11:55Z | - |
| dc.date.available | 2029-12-31 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-05 | |
| dc.identifier.citation | 1. Gershon, M.D., The enteric nervous system: a second brain. Hosp Pract (1995), 1999. 34(7): p. 31-32, 35-8, 41-2 passim.
2. Schneider, S., C.M. Wright, and R.O. Heuckeroth, Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol, 2019. 81: p. 235-259. 3. Furness, J.B., et al., Intrinsic primary afferent neurons of the intestine. Prog Neurobiol, 1998. 54(1): p. 1-18. 4. Furness, J.B., et al., Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol, 2004. 72(2): p. 143-164. 5. Furness, J.B., The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 2012. 9(5): p. 286-294. 6. Garcia-Larrea, L., The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin, 2012. 42(5): p. 299-313. 7. Sikandar, S. and A.H. Dickenson, Pregabalin modulation of spinal and brainstem visceral nociceptive processing. Pain, 2011. 152(10): p. 2312-2322. 8. Millan, M.J., Descending control of pain. Prog Neurobiol, 2002. 66(6): p. 355-474. 9. Chen, X., et al., Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis. Curr Protein Pept Sci, 2017. 18(6): p. 541-547. 10. Konturek, P.C., T. Brzozowski, and S.J. Konturek, Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol, 2011. 62(6): p. 591-599. 11. Van Oudenhove, L., et al., Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol, 2004. 18(4): p. 663-680. 12. Mayer, E.A. and K. Tillisch, The brain-gut axis in abdominal pain syndromes. Annu Rev Med, 2011. 62: p. 381-396. 13. Ford, A.C., B.E. Lacy, and N.J. Talley, Irritable Bowel Syndrome. N Engl J Med, 2017. 376(26): p. 2566-2578. 14. Defrees, D.N. and J. Bailey, Irritable Bowel Syndrome: Epidemiology, Pathophysiology, Diagnosis, and Treatment. Prim Care, 2017. 44(4): p. 655-671. 15. Drossman, D.A., et al., AGA technical review on irritable bowel syndrome. Gastroenterology, 2002. 123(6): p. 2108-2131. 16. Sultan, S. and A. Malhotra, Irritable Bowel Syndrome. Ann Intern Med, 2017. 166(11): p. ITC81-ITC96. 17. Yamamoto, R., et al., Irritable bowel syndrome among Japanese adolescents: A nationally representative survey. J Gastroenterol Hepatol, 2015. 30(9): p. 1354-1360. 18. Miwa, H., Prevalence of irritable bowel syndrome in Japan: Internet survey using Rome III criteria. Patient Prefer Adherence, 2008. 2: p. 143-147. 19. Yang, T.Y., et al., Risk for Irritable Bowel Syndrome in Fibromyalgia Patients: A National Database Study. Medicine (Baltimore), 2017. 96(14): p. e6657. 20. Lu, C.L., et al., Gender difference on the symptoms, health-seeking behaviour, social impact and sleep quality in irritable bowel syndrome: a Rome II-based survey in an apparent healthy adult Chinese population in Taiwan. Aliment Pharmacol Ther, 2005. 21(12): p. 1497-1505. 21. Lu, C.L., et al., Current patterns of irritable bowel syndrome in Taiwan: the Rome II questionnaire on a Chinese population. Aliment Pharmacol Ther, 2003. 18(11-12): p. 1159-1169. 22. Gwee, K.A., Irritable bowel syndrome in developing countries--a disorder of civilization or colonization? Neurogastroenterol Motil, 2005. 17(3): p. 317-324. 23. Enck, P., et al., Irritable bowel syndrome. Nat Rev Dis Primers, 2016. 2: p. 16014. 24. Bradford, K., et al., Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol, 2012. 10(4): p. 385-390 e1-3. 25. Qin, H.Y., et al., Impact of psychological stress on irritable bowel syndrome. World J Gastroenterol, 2014. 20(39): p. 14126-14131. 26. Posserud, I., et al., Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut, 2004. 53(8): p. 1102-1108. 27. Surdea-Blaga, T., A. Baban, and D.L. Dumitrascu, Psychosocial determinants of irritable bowel syndrome. World J Gastroenterol, 2012. 18(7): p. 616-626. 28. Thabane, M., D.T. Kottachchi, and J.K. Marshall, Systematic review and meta-analysis: The incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther, 2007. 26(4): p. 535-544. 29. Mearin, F., et al., Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology, 2005. 129(1): p. 98-104. 30. Moss-Morris, R. and M. Spence, To 'lump' or to 'split' the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med, 2006. 68(3): p. 463-469. 31. Wang, L.H., X.C. Fang, and G.Z. Pan, Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut, 2004. 53(8): p. 1096-1101. 32. Yang, X., et al., Synaptic plasticity: the new explanation of visceral hypersensitivity in rats with Trichinella spiralis infection? Dig Dis Sci, 2009. 54(5): p. 937-946. 33. Aerssens, J., et al., Alterations in the brain-gut axis underlying visceral chemosensitivity in Nippostrongylus brasiliensis-infected mice. Gastroenterology, 2007. 132(4): p. 1375-1387. 34. Halvorson, H.A., C.D. Schlett, and M.S. Riddle, Postinfectious irritable bowel syndrome--a meta-analysis. Am J Gastroenterol, 2006. 101(8): p. 1894-1899; quiz 1942. 35. Spiller, R.C., Role of infection in irritable bowel syndrome. J Gastroenterol, 2007. 42 Suppl 17: p. 41-47. 36. Neal, K.R., J. Hebden, and R. Spiller, Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ, 1997. 314(7083): p. 779-782. 37. Gwee, K.A., et al., Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet, 1996. 347(8995): p. 150-153. 38. Zhang, Y.Z. and Y.Y. Li, Inflammatory bowel disease: pathogenesis. World J Gastroenterol, 2014. 20(1): p. 91-99. 39. Jonefjall, B., et al., Characterization of IBS-like symptoms in patients with ulcerative colitis in clinical remission. Neurogastroenterol Motil, 2013. 25(9): p. 756-e578. 40. Simren, M., et al., Quality of life in inflammatory bowel disease in remission: the impact of IBS-like symptoms and associated psychological factors. Am J Gastroenterol, 2002. 97(2): p. 389-396. 41. Halpin, S.J. and A.C. Ford, Prevalence of symptoms meeting criteria for irritable bowel syndrome in inflammatory bowel disease: systematic review and meta-analysis. Am J Gastroenterol, 2012. 107(10): p. 1474-1482. 42. Gracie, D.J. and A.C. Ford, IBS-like symptoms in patients with ulcerative colitis. Clin Exp Gastroenterol, 2015. 8: p. 101-109. 43. Teruel, C., E. Garrido, and F. Mesonero, Diagnosis and management of functional symptoms in inflammatory bowel disease in remission. World J Gastrointest Pharmacol Ther, 2016. 7(1): p. 78-90. 44. Long, M.D. and D.A. Drossman, Inflammatory bowel disease, irritable bowel syndrome, or what?: A challenge to the functional-organic dichotomy. Am J Gastroenterol, 2010. 105(8): p. 1796-1798. 45. Ng, Q.X., et al., The role of inflammation in irritable bowel syndrome (IBS). J Inflamm Res, 2018. 11: p. 345-349. 46. Barbara, G., et al., Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology, 2007. 132(1): p. 26-37. 47. Longstreth, G.F., et al., Characteristics of patients with irritable bowel syndrome recruited from three sources: implications for clinical trials. Aliment Pharmacol Ther, 2001. 15(7): p. 959-964. 48. Cenac, N., et al., Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest, 2007. 117(3): p. 636-647. 49. Soderholm, J.D. and M.H. Perdue, Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol, 2001. 280(1): p. G7-G13. 50. Feng, B., et al., Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 2012. 302(10): p. G1085- G1098. 51. Bradesi, S., et al., Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol, 2005. 289(1): p. G42- G53. 52. Wallon, C., et al., Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut, 2008. 57(1): p. 50-58. 53. Wallon, C. and J.D. Soderholm, Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon. Ann N Y Acad Sci, 2009. 1165: p. 206-210. 54. Sagami, Y., et al., Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut, 2004. 53(7): p. 958-964. 55. Ibeakanma, C., et al., Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology, 2011. 141(6): p. 2098-2108 e5. 56. Langford, T.D., et al., Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun, 2002. 70(1): p. 11-18. 57. Chen, T.L., et al., Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog, 2013. 5(1): p. 26. 58. Morch, K., et al., High rate of fatigue and abdominal symptoms 2 years after an outbreak of giardiasis. Trans R Soc Trop Med Hyg, 2009. 103(5): p. 530-532. 59. Nakao, J.H., S.A. Collier, and J.W. Gargano, Giardiasis and Subsequent Irritable Bowel Syndrome: A Longitudinal Cohort Study Using Health Insurance Data. J Infect Dis, 2017. 215(5): p. 798-805. 60. Robertson, L.J., et al., Giardiasis--why do the symptoms sometimes never stop? Trends Parasitol, 2010. 26(2): p. 75-82. 61. Halliez, M.C., et al., Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol, 2016. 310(8): p. G574- G585. 62. Allgayer, H., K. Deschryver, and W.F. Stenson, Treatment with 16,16'-dimethyl prostaglandin E2 before and after induction of colitis with trinitrobenzenesulfonic acid in rats decreases inflammation. Gastroenterology, 1989. 96(5 Pt 1): p. 1290-1300. 63. Grisham, M.B., et al., Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology, 1991. 101(2): p. 540-547. 64. Antoniou, E., et al., The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond), 2016. 11: p. 9-15. 65. Morris, G.P., et al., Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989. 96(3): p. 795-803. 66. Isik, F., et al., Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Dig Dis Sci, 2011. 56(3): p. 721-730. 67. Zhou, Q., et al., Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain, 2008. 134(1-2): p. 9-15. 68. Qin, H.Y., et al., Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol, 2011. 46(2): p. 164-174. 69. Liebregts, T., et al., Effect of E. coli Nissle 1917 on post-inflammatory visceral sensory function in a rat model. Neurogastroenterol Motil, 2005. 17(3): p. 410-414. 70. Gschossmann, J.M., et al., Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig Dis Sci, 2004. 49(1): p. 96-101. 71. Spiller, R.C., Postinfectious irritable bowel syndrome. Gastroenterology, 2003. 124(6): p. 1662-1671. 72. Sengupta, J.N., Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol, 2009(194): p. 31-74. 73. Fuentes, I.M. and J.A. Christianson, Ion channels, ion channel receptors, and visceral hypersensitivity in irritable bowel syndrome. Neurogastroenterol Motil, 2016. 28(11): p. 1613-1618. 74. Farmer, A.D. and Q. Aziz, Gut pain & visceral hypersensitivity. Br J Pain, 2013. 7(1): p. 39-47. 75. de Carvalho Rocha, H.A., et al., Main ion channels and receptors associated with visceral hypersensitivity in irritable bowel syndrome. Ann Gastroenterol, 2014. 27(3): p. 200-206. 76. Hutter, M.M., et al., Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas, 2005. 30(3): p. 260-265. 77. Sugiuar, T., K. Bielefeldt, and G.F. Gebhart, TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci, 2004. 24(43): p. 9521-9530. 78. Mawe, G.M. and J.M. Hoffman, Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol, 2013. 10(8): p. 473-486. 79. Thijssen, A.Y., et al., Alterations in serotonin metabolism in the irritable bowel syndrome. Aliment Pharmacol Ther, 2016. 43(2): p. 272-282. 80. Dunlop, S.P., et al., Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol, 2005. 3(4): p. 349-357. 81. Manocha, M., et al., IL-13-mediated immunological control of enterochromaffin cell hyperplasia and serotonin production in the gut. Mucosal Immunol, 2013. 6(1): p. 146-155. 82. Buhner, S., et al., Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology, 2009. 137(4): p. 1425-1434. 83. Galligan, J.J., et al., Visceral hypersensitivity in female but not in male serotonin transporter knockout rats. Neurogastroenterol Motil, 2013. 25(6): p. e373- e381. 84. Greig, C.J., et al., Enhanced serotonin signaling increases intestinal neuroplasticity. J Surg Res, 2016. 206(1): p. 151-158. 85. Sikander, A., S.V. Rana, and K.K. Prasad, Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta, 2009. 403(1-2): p. 47-55. 86. Terron, J.A. and A. Falcon-Neri, Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol, 1999. 127(3): p. 609-616. 87. Ishine, T., et al., Serotonin 5-HT(7) receptors mediate relaxation of porcine pial veins. Am J Physiol Heart Circ Physiol, 2000. 278(3): p. H907- H912. 88. Tonini, M., et al., 5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology, 2005. 129(5): p. 1557-1566. 89. Yaakob, N.S., et al., Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon. J Neurogastroenterol Motil, 2015. 21(3): p. 361-369. 90. Zou, B.C., et al., Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J (Engl), 2007. 120(23): p. 2069-2074. 91. Guseva, D., et al., Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis, 2014. 20(9): p. 1516-1529. 92. Meuser, T., et al., 5-HT7 receptors are involved in mediating 5-HT-induced activation of rat primary afferent neurons. Life Sci, 2002. 71(19): p. 2279-2289. 93. Pezet, S. and S.B. McMahon, Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci, 2006. 29: p. 507-538. 94. Chao, M.V., Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 2003. 4(4): p. 299-309. 95. Pedraza, C.E., et al., Pro-NGF isolated from the human brain affected by Alzheimer's disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol, 2005. 166(2): p. 533-543. 96. Srinivasan, B., et al., Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem, 2004. 279(40): p. 41839-41845. 97. Teng, H.K., et al., ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci, 2005. 25(22): p. 5455-5463. 98. Lewin, G.R., S.G. Lechner, and E.S. Smith, Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol, 2014. 220: p. 251-282. 99. Ernsberger, U., Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res, 2009. 336(3): p. 349-384. 100. Yang, J., et al., The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur J Pain, 2010. 14(6): p. 574-579. 101. Winston, J., et al., Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain, 2001. 89(2-3): p. 181-186. 102. Ji, R.R., et al., p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002. 36(1): p. 57-68. 103. Zhuang, Z.Y., et al., Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci, 2004. 24(38): p. 8300-8309. 104. Yu, Y.B., et al., Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut, 2012. 61(5): p. 685-694. 105. Dothel, G., et al., Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology, 2015. 148(5): p. 1002-1011 e4. 106. Zhang, Y., et al., Increased expression of brain-derived neurotrophic factor is correlated with visceral hypersensitivity in patients with diarrhea-predominant irritable bowel syndrome. World J Gastroenterol, 2019. 25(2): p. 269-281. 107. Akbar, A., et al., Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut, 2008. 57(7): p. 923-929. 108. Torrents, D., et al., Antinerve growth factor treatment prevents intestinal dysmotility in Trichinella spiralis-infected rats. J Pharmacol Exp Ther, 2002. 302(2): p. 659-665. 109. Barreau, F., et al., Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology, 2004. 127(2): p. 524-534. 110. Valdez-Morales, E.E., et al., Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. Am J Gastroenterol, 2013. 108(10): p. 1634-1643. 111. Kaplan, D.R., et al., Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron, 1993. 11(2): p. 321-331. 112. Ross, R.A., B.A. Spengler, and J.L. Biedler, Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst, 1983. 71(4): p. 741-747. 113. Encinas, M., et al., Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem, 1999. 73(4): p. 1409-1421. 114. Pahlman, S., et al., Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer, 1995. 31A(4): p. 453-458. 115. Simpson, P.B., et al., Retinoic acid evoked-differentiation of neuroblastoma cells predominates over growth factor stimulation: an automated image capture and quantitation approach to neuritogenesis. Anal Biochem, 2001. 298(2): p. 163-169. 116. Oe, T., et al., Differences in gene expression profile among SH-SY5Y neuroblastoma subclones with different neurite outgrowth responses to nerve growth factor. J Neurochem, 2005. 94(5): p. 1264-1276. 117. Palecek, J. and W.D. Willis, The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain, 2003. 104(3): p. 501-507. 118. Cawston, E.E. and L.J. Miller, Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol, 2010. 159(5): p. 1009-1021. 119. Longstreth, G.F., et al., Functional bowel disorders. Gastroenterology, 2006. 130(5): p. 1480-1491. 120. Corazziari, E., Definition and epidemiology of functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol, 2004. 18(4): p. 613-631. 121. Yiangou, Y., et al., Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet, 2001. 357(9265): p. 1338-1339. 122. Baganz, N.L. and R.D. Blakely, A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci, 2013. 4(1): p. 48-63. 123. Arreola, R., et al., Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res, 2015. 2015: p. 401630. 124. Hsu, L.T., et al., Gut-derived cholecystokinin contributes to visceral hypersensitivity via nerve growth factor-dependent neurite outgrowth. J Gastroenterol Hepatol, 2016. 31(9): p. 1594-1603. 125. Suzuki, T., et al., Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst, 1993. 85(5): p. 377-384. 126. Ho, R., et al., The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett, 2011. 305(1): p. 76-85. 127. Higashi, M., et al., Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma. Mol Cancer, 2015. 14: p. 150. 128. Lad, S.P., et al., Individual and combined effects of TrkA and p75NTR nerve growth factor receptors. A role for the high affinity receptor site. J Biol Chem, 2003. 278(27): p. 24808-24817. 129. Ferrer, I., et al., BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia. Brain Pathol, 1998. 8(2): p. 253-261. 130. Faure, C., et al., Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology, 2010. 139(1): p. 249-258. 131. Chen, Y.L., et al., Relieving visceral hyperalgesia effect of Kangtai capsule and its potential mechanisms via modulating the 5-HT and NO level in vivo. Phytomedicine, 2013. 20(3-4): p. 249-257. 132. Yu, Y.C., et al., Resveratrol Improves Brain-Gut Axis by Regulation of 5-HT-Dependent Signaling in the Rat Model of Irritable Bowel Syndrome. Front Cell Neurosci, 2019. 13: p. 30. 133. Wang, P., et al., BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci Rep, 2016. 6: p. 20320. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78682 | - |
| dc.description.abstract | 背景:腸躁症(Irritable Bowel Syndrome, IBS)為功能性腸胃道疾病,亦即腸道無明顯的結構或生化異常,而患者卻出現慢性且反覆性的腹痛,以及排便型態改變的臨床症狀。腸躁症的危險因子包含精神壓力、腸道慢性發炎、腸道感染病史等。然而,多因素的腸躁症疾病其潛在的病生理機制並不清楚,其中在神經-內分泌網絡機制指出,內臟高敏感性與神經內分泌物質的作用有關,如血清素(Serotonin, 5-HT)、神經生長因子(Nerve Growth Factor, NGF)和腦源性神經營養因子(Brain-Derived Neurotrophic Factor, BDNF)。過去文獻指出腸躁症患者結直腸黏膜層檢體中NGF和BDNF表現量高,且有高密度的神經纖維分布,與腹痛程度有正相關性。本篇研究目的為利用化學性誘導結腸炎復原之類腸躁症動物模式探討血清素受器對於腸道痛覺的影響,以及利用人類神經細胞模式探討血清素與神經營養因子共同調控腸道神經纖維延長的機制。
方法:實驗室先前建立兩種類腸躁症動物模式,第一種是結合雙重誘導因子即感染後排除合併避水壓力試驗,稱為GW小鼠;第二種則是使用2, 4, 6-三硝基苯磺酸誘發結腸炎復原後,此組為後腸炎性類腸躁症模式,稱為PT小鼠。經口或腹腔注射給予小鼠血清素受器化合物,進行結直腸撐張刺激所引發的內臟動器反應,測定其疼痛程度,並在結束後給予活性碳試驗,評估腸道蠕動性。在小鼠組織中使用神經標誌 PGP9.5以及血清素受器進行免疫螢光染色。利用SH-SY5Y人類神經細胞株(human neuroblastoma)來探討血清素受器在神經纖維延長的效果與機制,將GW及PT小鼠的腸道組織製成無菌上清液或外加血清素及神經營養因子刺激SH-SY5Y神經細胞,觀察神經纖維延長和細胞中特定基因的表現量。最後,由大腸鏡切片取得腸躁症患者及健康者的結腸黏膜檢體,使用免疫螢光染色觀察神經纖維及血清素受器分布位置及表現。 結果:在正常Ctrl組小鼠中,經口給予特定的血清素受器配體(CYY1005),發現其不會影響生理疼痛感覺;而在PT組小鼠中,則可以有效降低其內臟敏感性。此外,腹腔注射新合成之血清素受器化合物(CYY073、CYY1280-3、CYY1294)於PT組小鼠,只有CYY1280-3在高撐張刺激下能顯著性降低內臟高敏感性反應,且腸道蠕動性也有顯著降低。在免疫螢光染色結果發現GW及PT小鼠結腸黏膜組織之PGP9.5與血清素受器表現量較正常組高,而腸躁症患者降結腸檢體中之PGP9.5與血清素受器表現量比起健康者分布量亦較高。利用類腸躁症動物腸道組織上清液或外加血清素及神經營養因子刺激SH-SY5Y神經細胞後,能使神經細胞纖維延長,而若先給予血清素受器配體(CYY1005)或5-HT7R拮抗劑(SB7)預先處理,則出現抑制神經纖維的延長的效果。同時,以NGF或BDNF刺激SH-SY5Y神經細胞,會促使神經營養因子受器及血清素受器表現量增加。 結論:本篇實驗證實,血清素受器有參與類腸躁症動物模式小鼠中內臟高敏感性的反應。此外,血清素與神經營養因子共同調控神經纖維延長。 | zh_TW |
| dc.description.abstract | Background:Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder, that meaning that there is no obvious structural or biochemical abnormality in the intestine. IBS patient have clinical symptoms of chronic and recurrent abdominal pain associated with bowel habit changes. Risk factors include psychological stress, chronic intestinal inflammation and history of intestinal infection etc. However, the underlying pathophysiological mechanism of multifactorial intestinal disease is unclear. In the neuro-endocrine network, visceral hypersensitivity is related to the action of neuroendocrine substances such as serotonin, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Previous study showed increased NGF and BDNF levels and high density of nerve fiber distribution in colon mucosa of IBS patients, which were correlated to abdominal pain score. Our aim is to investigate the effects of serotonin receptor on intestinal pain sensation in IBS-like mouse model and to explore regulatory mechanisms of nerve fiber elongation caused by serotonin and neurotrophic factors in human neuroblastoma SHSY5Y cells.
Method:Two IBS-like mouse models, one is dual trigger of post- infection combined with water avoidance stress (GW), and the other one is post-inflammatory of TNBS-induced colitis (PT). The Ctrl or PT mice were given serotonin receptor compounds by oral or intraperitoneal injection for measurement of colorectal distension-visceromotor response (CRD-VMR) and charcoal meal test. Immunofluorescence (IF) staining of PGP9.5 (a pan-neuron marker) and serotonin receptors were conducted in mouse colonic tissues. Human neuroblastoma SH-SY5Y cells were incubated with GW and PT mouse colonic supernatant, serotonin and neurotrophic factor to stimulate nerve fiber elongation and to observe the gene expression. Lastly, colonic biopsies of IBS patients and healthy controls were collected to examine mucosal nerve distribution and serotonin receptors (5-HT3R, 5-HT4R and 5-HT7R). Result:Oral administration of a specific serotonin receptor ligand (CYY1005) reduced the visceral hypersensitivity in the PT mice, but did not affect normal pain sensation in control mice. PT mice were intraperitoneal administered serotonin receptor compounds (CYY073、CYY1280-3、CYY1294), and only CYY1280-3 can significantly decrease visceral hypersensitivity. By immunofluorescence staining, higher PGP9.5 and serotonin receptor immunoreactivity was found in the colonic mucosa of GW and PT mice compared to control mice, and those in IBS patients were higher than healthy controls. Pretreatment with serotonin receptor ligand (CYY1005) or 5-HT7R antagonist (SB7) inhibited the induction of nerve fiber outgrowth by GW and PT mouse colonic supernatant, serotonin and neurotrophic factor in SH-SY5Y cells. Lastly, the mRNA expression levels of p75NTR, TrkA, TrkB, and serotonin receptor of SH-SY5Y cells were significantly increased by neurotrophic factors. Conclusion:Our data showed that serotonin receptor was involved in the visceral hypersensitivity response in PT mice. In addition, serotonin and neurotrophic factors regulated nerve fiber elongation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:11:55Z (GMT). No. of bitstreams: 1 ntu-108-R06441013-1.pdf: 4540600 bytes, checksum: dc0610c4fb6191fe815a75ad51c09f4e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝……............................................................................................................................I
摘要……………………………………………………………………………………...II Abstract………………………………………………………………………………...IV 目錄………………………………………………………………………………….…VI 圖目錄……………………………………… X 壹、 前言 1 1. 神經系統對腸道功能之調控 1 2. 內臟痛覺傳遞途徑 2 2.1上行痛覺傳遞(Ascending visceral pain pathway) 2 2.2下行痛覺傳遞(Descending visceral pain pathway) 2 3. 雙向腦腸軸(bidirectional brain-gut axis) 3 4. 腸躁症(Irritable bowel syndrome, IBS) 4 4.1流行病學 4 4.2危險因子探討 4 4.2.1精神壓力 5 4.2.2腸道病原體感染 5 4.2.3慢性腸道發炎 6 4.3類腸躁症動物模式 7 4.3.1避水行為誘發精神壓力模式 7 4.3.2梨形鞭毛蟲感染排除後模式 8 4.3.3三硝基苯黃酸誘導發炎復原模式 9 5. 內臟高敏感性(visceral hypersensitivity)及相關分子機制 10 5.1離子通道及痛覺受器表現量改變 11 5.2神經內分泌物質產量及其接受器的表現量改變 12 5.3神經營養因子表現量改變 14 6. 腸躁症內臟高敏感性與神經細胞功能型態關聯性 16 7. 人類神經母細胞瘤SHSY5Y細胞株作為神經分化與纖維生長的模式 16 8. 研究目的 17 貳、 材料與方法 18 1. 實驗動物 18 2. 後腸炎性類腸躁症模式(Post-TNBS, PT) 18 2.1三硝基苯磺酸(2,4,6-trinitrobenzenesulfonic acid solution,TNBS)誘導小鼠結腸炎模式 18 3. 血清素受器化合物與測試 20 3.1參考標準品(Reference Standard) 20 3.2新合成血清素受器化合物 20 3.3藥物試驗流程 20 3.3.1單一劑量(single dose, s.d.)藥物給予 21 3.3.2多重劑量(multiple dose, m.d.)藥物給予 21 4. 結直腸撐張刺激-內臟動器反應分析(Colorectal distension-Visceromotor response, CRD-VMR) 22 5. 活性碳試驗(charcoal meal test)之腸道蠕動性 24 6. 組織切片與染色 24 6.1冷凍包埋檢體 24 6.2免疫螢光染色(Immunofluorescence, IF) 24 7. 神經細胞實驗 25 7.1 SH-SY5Y細胞株 25 7.2神經纖維生長(neurite outgrowth)實驗 26 7.2.1腸道組織上清液刺激 26 7.2.2血清素刺激 27 7.2.3血清素第七型受器促進劑(5-HT7 receptor agonist)刺激 27 7.2.4神經營養因子刺激 28 7.2.5 雙重因子刺激 29 7.2.6 抑制劑實驗(blockade experiments)和半抑制濃度( IC50)測定 30 7.3腸組織無菌上清液(bacteria-free gut supernatant)製備 32 7.4細胞影像攝影與神經細胞纖維長度測量 32 8. 人體大腸黏膜檢體收集 33 9. 核糖核酸(mRNA)測定 34 9.1萃取細胞核糖核酸技術 34 9.2反轉錄聚合酶連鎖反應(Reverse Transcription Polymerase Chain Reaction, RT-PCR) 35 9.3即時聚合酶連鎖反應(Real time polymerase chain reaction, real-time PCR) 35 10. 統計方法 36 參、 實驗結果 36 一、 後腸炎性類腸躁症模式(Post-TNBS, PT) 與正常對照組(Control, Ctrl)動物中血清素受體對於腸道痛覺的影響 36 1.經口給予單一劑量血清素受器配體對Ctrl及PT組小鼠痛覺與蠕動的影響 37 2.經口給予多重劑量血清素受器配體對Ctrl及PT組小鼠痛覺與蠕動的影響 37 3.腹腔注射給予單一劑量的不同血清素受器配體對PT小鼠痛覺與蠕動的影響 37 二、 後感染合併避水壓力(GW)與後腸炎性(PT)類腸躁症小鼠模式 38 1.後感染合併避水壓力(GW)小鼠模式 38 1.1神經蛋白基因產物9.5(PGP9.5)在腸道黏膜中的表現 38 1.2血清素第七型受體受器(5-HT7R)在腸道黏膜中的表現 38 2.後腸炎性(PT)小鼠模式 39 2.1神經蛋白基因產物9.5(PGP9.5)在腸道黏膜中的表現 39 2.2血清素第七型受體受器(5-HT7R)在腸道黏膜中的表現 39 三、 腸躁症患者大腸黏膜層中神經及血清素受器分佈 39 1.腸道組織中神經(PGP9.5)分布及表現 39 2.腸道組織中血清素第七型受體(5-HT7R)分布 40 3.腸道組織中血清素第三型受體(5-HT3R)分布 40 4.腸道組織中血清素第四型受體(5-HT4R)分布 40 5.腸道組織中神經(PGP9.5)與第七型受體(5-HT7R)共定位分布表現 40 四、 利用SH-SY5Y神經細胞探討神經纖維延長 40 1.GW小鼠腸道上清液對SH-SY5Y神經纖維延長影響 41 1.1血清素受器配體之劑量依賴性 41 1.2參考標準品SB7(血清素第七型受器拮抗劑)之劑量依賴性 41 1.3比較兩種血清素受器配體對於GW小鼠腸道上清液刺激的半抑制濃度(IC50) 42 2.PT小鼠腸道上清液對SH-SY5Y神經纖維延長影響 42 2.1血清素受器配體之劑量依賴性 42 2.2參考標準品SB7(血清素第七型受器拮抗劑)之劑量依賴性 43 2.3比較兩種血清素受器配體對於PT小鼠腸道上清液刺激的半抑制濃度(IC50) 44 3.血清素對SH-SY5Y神經細胞纖維延長影響 44 3.1血清素受器配體之劑量依賴性 44 3.2 參考標準品SB7(血清素第七型受器拮抗劑)之劑量依賴性 45 3.3比較兩種血清素受器配體對於血清素刺激的半抑制濃度(IC50) 45 3.4 LP-211 (5-HT7R促進劑)對SH-SY5Y神經細胞纖維延長的影響 45 4.神經營養因子對SHSY5Y神經纖維延長的影響 46 4.1 BDNF對SH-SY5Y神經纖維延長機制中血清素受器配體的角色 46 4.2測試神經生長因子NGF對SH-SY5Y神經細胞纖維延長的效果 47 4.3 NGF對SH-SY5Y神經纖維延長機制中血清素受器配體的角色 47 4.4探討NGF和BDNF合併給予對SH-SY5Y神經纖維延長之影響 48 4.5探討BDNF與血清素合併給予對SH-SY5Y神經纖維延長之影響 48 4.6探討NGF與血清素合併給予對SH-SY5Y神經纖維延長之影響 49 5.神經營養因子調控SH-SY5Y 細胞中特定基因的表現量 49 肆、 討論 50 伍、 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 血清素受器 | zh_TW |
| dc.subject | 腸炎 | zh_TW |
| dc.subject | 內臟高敏感性 | zh_TW |
| dc.subject | 血清素 | zh_TW |
| dc.subject | 神經營養因子 | zh_TW |
| dc.subject | 腸躁症 | zh_TW |
| dc.subject | neurotrophic factors. | en |
| dc.subject | Irritable bowel syndrome | en |
| dc.subject | colitis | en |
| dc.subject | visceral hypersensitivity | en |
| dc.subject | serotonin | en |
| dc.subject | serotonin receptor | en |
| dc.title | 神經營養因子刺激神經纖維生長在腸道疼痛感覺中所扮演的角色 | zh_TW |
| dc.title | Roles of Neurotrophins in Neurite Outgrowth and Intestinal Pain Sensation. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 忻凌偉,吳明賢 | |
| dc.subject.keyword | 腸躁症,腸炎,內臟高敏感性,血清素,血清素受器,神經營養因子, | zh_TW |
| dc.subject.keyword | Irritable bowel syndrome,colitis,visceral hypersensitivity,serotonin,serotonin receptor,neurotrophic factors., | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201902329 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| dc.date.embargo-lift | 2029-12-31 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06441013-1.pdf 未授權公開取用 | 4.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
