Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78681
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱智賢(Chih-Hsien Chiu)
dc.contributor.authorYi-Hsuan Lien
dc.contributor.author李宜軒zh_TW
dc.date.accessioned2021-07-11T15:11:51Z-
dc.date.available2021-08-08
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citationAbounit, K., T. M. Scarabelli, and R. B. McCauley. 2012. Autophagy in mammalian cells. World J. Biol. Chem. 3(1): 1–6. doi: 10.4331/wjbc.v3.i1.1
Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. 2012. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32(1):2-11. doi: 10.1128/MCB.06159-11
Alkhouri, N., A. Gornicka, M. P. Berk, S. Thapaliya, L. J. Dixon, S. Kashyap, P. R. Schauer, and A. E. Feldstein. 2010. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem. 285(5):3428-38. doi: 10.1074/jbc.M109.074252
Andreozzi, F., C. Procopio, A. Greco, G.C. Mannino, C. Miele, G.A. Raciti, C. Iadicicco, F. Beguinot, A.E. Pontiroli, M.L. Hribal, F. Folli, G. Sesti. 2011. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia. 54(7):1879-87. doi: 10.1007/s00125-011-2116-6
Barth, S., D. Glick, and K.F. Macleod. Autophagy: assays and artifacts. J Pathol. 221(2):117-24. doi: 10.1002/path.2694
Bays, H., L. Mandarino, and R.A. DeFronzo. Role of the adipocyte, free fatty acids and ectopic fat in the pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonsists provide a rational thereputic approach. J. Clin. Endocrinol. Metab. 89(2):463-78.
Boucher, J., A. Kleinridders, and C.R. Kahn. 2014. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6(1). pii: a009191. doi: 10.1101/cshperspect.a009191
Björntorp, P. and L. Sjöström. 1971. Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metabolism. 20(7): 703-713.
Cai, J., K.M. Pires, M. Ferhat, B. Chaurasia, M.A. Buffolo, R. Smalling, A. Sargsyan, D.L. Atkinson, S.A. Summers, T.E. Graham, and S. Boudina. 2018. Autophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalk. Cell Rep. 25(7):1708-1717.e5. doi: 10.1016/j.celrep.2018.10.040
Carnero, A. and J.M. Paramio. 2014. The PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Front. Oncol. 4:252. doi: 10.3389/fonc.2014.00252
Cheng, D. 2005. Prevalence, predisposition and prevention of type II diabetes. Nutr. Metab. 2:29.
Crowley, L.C. and N.J.Waterhouse. 2016. Detecting cleaved caspase-3 in apoptotic cells by flow cytometry. Cold Spring Harb. Protoc. 2016(11). doi: 10.1101/pdb.prot087312.
Cuervo, A.M. 2009. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21(3):142-50. doi: 10.1016/j.tem.2009.10.003
Eskelinen, E. L., F. Reggiori, M. Baba, A. L. Kovács, and P. O. Seglen. 2011. Seeing is believing: The impact of electron microscopy on autophagy research. Autophagy. 7(9):935-56.
Feng, D., Y. Tang, H. Kwon, H. Zong, M. Hawkins, R. N. Kitsis, and J. E. Pessin. 2011. High-fat diet-induced adipocyte cell death occurs through a Cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. 60(8): 2134-2143. doi: 10.2337/db10-1411
Fazakerley, D.J., J.R. Krycer, A.L. Kearney, S.L. Hocking, and D.E. James. 2018. Muscle and adipose tissue insulin resistance: malady without mechanism? J. Lipid Res. pii: jlr.R087510. doi: 10.1194/jlr.R087510
Feller, S., H. Boeing, and T. Pischon. 2010. Body Mass Index, Waist Circumference, and the Risk of Type 2 Diabetes Mellitus. Dtsch. Arztebl. Int. 107(26):470-6. doi: 10.3238/arztebl.2010.0470
Feng, Y.C., D. He, Z.Y. Yao, and D. J. Klionsky. 2013. The machinery of macroautophagy. Cell res. 24: 24-41.
Glick, D., S. Barth, and K.F. Macleod. Autophagy: cellular and molecular mechanisms. 2010. J. Pathol. 221(1):3-12. doi: 10.1002/path.2697
Golay, A., and J. Ybarra. 2005. Link between obesity and type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 19(4):649-63.
Goossens, G. H. and E. E. Blaak. 2015. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front. Endocrinol. 6: 55.
Guo, Q., L. Xu , H. Li , H. Sun , S. Wu , and B. Zhou. 2017. 4-PBA reverses autophagic dysfunction and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR signaling. Biochem. Biophys. Res. Commun. 484(3):529-535. doi: 10.1016/j.bbrc.2017.01.106
Hanada, T., N.N. Noda, Y. Satomi, Y. Ichimura, Y. Fujioka, T. Takao, F. Inagaki, and Y. Ohsumi. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol. Chem. 282(52):37298-302.
He, C., M.C. Bassik, V. Moresi, K. Sun, Y. Wei, Z. Zou, Z. An, J. Loh, J. Fisher, Q. Sun, S. Korsmeyer, M. Packer, H.I. May, J.A. Hill, H.W. Virgin, C. Gilpin, G Xiao., R. Bassel-Duby, P.E. Scherer, B. Levine. 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 481(7382):511-5. doi: 10.1038/nature10758
Hotamisligil G.S. 2008. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int. J. Obes. (Lond). 32 (Supplement 7):S52-4. doi: 10.1038/ijo.2008.238
Hoyer-Hansen, M., and M. Jaattela. 2007. AMP-activated protein kinase: a universal regulator of autophagy? Autophagy. 3(4):381-383.
Jansen, H.J., P. van Essen, T. Koenen, L.A. Joosten, M.G. Netea, C.J. Tack, and R. Stienstra. 2012. Endocrinology. 153(12):5866-74. doi: 10.1210/en.2012-1625
Jia, B., Y. Xue, X. Yan, J. Li, Y. Wu, R. Guo, J. Zhang, L. Zhang, Y Li, Y. Liu, and L. Sun. 2018. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol. Lett. 16(3): 3509–3516. doi: 10.3892/ol.2018.9131
Jung, H.S., K.W. Chung, K. J. Won, J. Kim, M. Komatsu, K. Tanaka, Y.H. Nguyen, T.M. Kang, K.H. Yoon, J.W. Kim, Y.T. Jeong, M.S. Han, M.K. Lee, K.W. Kim, J. Shin, M.S. Lee. 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8(4):318-24. doi: 10.1016/j.cmet.2008.08.013
Kabeya, Y., N. Mizushima, A. Yamamoto, S. Oshitani-Okamoto, Y. Ohsumi, and T. Yoshimori. 2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117:2805-12.
Kadowaki, H. and H. Nishitoh. 2013 Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes (Basel). 4(3):306-33. doi: 10.3390/genes4030306.
Kershaw, E.E. and J.S. Flier. 2004. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89(6):2548-56.
Klionsky, D. J., K. Abdelmohsen, A. Abe, M. J. Abedin, H. Abeliovich, A. A. Arozena, H. Adachi, C. M. Adams, P. D. Adams, K. Adeli, P. J. Adhihetty, S. G. Adler, G. Agam, R. Agarwal, M. K. Aghi, M. Agnello, P. Agostinis, P. V. Aguilar, J. Aguirre-Ghiso, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12(1):1-222. doi: 10.1080/15548627.2015.1100356
Klöting, N. and M. Blüher. 2014. Adipocyte dysfuction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 15(4):277-87. doi: 10.1007/s11154-014-9301-0
Kovsan, J., M. Blüher, T. Tarnovscki, N. Klöting, B. Kirshtein, L. Madar, I. Shai, R. Golan, I. Harman-Boehm, M.R. Schön, A.S. Greenberg, Z. Elazar, N. Bashan, and A. Rudich. 2011. Altered autophagy in human adipose tissues in obesity. J. Clin. Endocrinol. Metab. 96(2):E268-77. doi: 10.1210/jc.2010-1681
Langin, D., G. Frühbeck, K. N. Frayn, and M. Lafontan. 2009. Adipose tissue: development, anatomy and functions. Obesity: Science to Practice. edited by G. Williams and G. Frühbeck. p.79-108.
Lebovitz, H.E. 2001. Insulin resistance: definition and consequences. Exp. Clin. Endocrinol. Diabetes. 109 (Supplement 2):S135-48.
Li, W.W., J. Li, and J.K. Bao. 2011. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69(7):1125-36. doi: 10.1007/s00018-011-0865-5
Mauthe, M., I. Orhon, C. Rocchi, X. Zhou, M. Luhr, K.J. Hijlkema, R. P. Coppes, N. Engedal, M. Mari, and F. Reggiori. 2018. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 14(8):1435-1455. doi: 10.1080/15548627.2018.1474314
Miklos, R., L.Z. Cheong, X. Xu, R. Lametsch, and F. H. Larsen. 2015. Water and fat mobility in myofibrillar protein gels explored by low-field NMR. Food Biophys. 10:316-323. doi: 10.1007/s11483-015-9392-5
Mizushima, N. 2007. Autophagy: process and function. Genes Dev. 21(22):2861-73.
Mohammed, S. J. 2017. Association between percentage of body fat in normal body mass index subjects and type 2 diabetes mellitus in Iraqi population: case control study. J. Diabetes Metab. 8(10): 770. doi: 10.4172/2155-6156.1000770
Morris, D. H., C. K. Yip, Y. Shi, B. T. Chait, and Q. J. Wang. 2015. Beclin 1-Vps34 complex architecture: Understanding the nuts and bolts of therapeutic targets. Front. Biol. (Beijing). 10(5):398-426.
Morrison, S., S.L. McGee. 2015. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte. 4(4):295-302. doi: 10.1080/21623945.2015.1040612
NIDDK. 2016. Symptoms & Causes of Diabetes – What are the symptoms of diabetes?
Noda, T., N. Fujita, and T. Yoshimori. 2009. The late stages of autophagy: how does the end begin? Cell Death Differ. 16(7):984-90. doi: 10.1038/cdd.2009.54
Kawasaki, N., R. Asada, A. Saito, S. Kanemoto, and K. Imaizumia. 2012. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep. 2: 799. doi: 10.1038/srep00799
Novak, I. 2012. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid. Redox Signal. 17(5):794-802. doi: 10.1089/ars.2011.4407
Nuñez, C.E., V.S. Rodrigues, F.S. Gomes, R.F. Moura, S.C. Victorio, B. Bombassaro, E.A. Chaim, Pareja J.C., B. Geloneze, L.A. Velloso, and E.P. Araujo. 2013. Defective regulation of adipose tissue autophagy in obesity. Int. J. Obes. (Lond). 37(11):1473-80. doi: 10.1038/ijo.2013.27
Okamoto, K. 2014. Organellophagy: Eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205(4):435-45. doi: 10.1083/jcb.201402054
Pahlavani, M., T. Ramalho, I. Koboziev, M.J. LeMieux, S. Jayarathne, L. Ramalingam, L.R. Filgueiras, and N. Moustaid-Moussa. 2017. Adipose tissue inflammation in insulin resistance: review of mechanisms mediating anti-inflammatory effects of omega-3 polyunsaturated fatty acids. J. Investig. Med. 65(7):1021-1027. doi: 10.1136/jim-2017-000535
Pearson, T., JA. Wattis, JR. King, IA. MacDonald, DJ. Mazzatti. 2016. The effects of insulin resistance on individual tissues: an application of a mathematical model of metabolism in humans. Bull. Math. Biol. 78(6):1189-217. dio: 10.1007/s11538-016-0181-1.
Peng, M., J. Wang, Z. Tian, D. Zhang, H. Jin, C. Liu, J. Xu, J. Li, X. Hua, J. Xu, C. Huang, and C. Huang. 2019. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy. 1-16. doi: 10.1080/15548627.2019.1586254
Peraldi P., G.S. Hotamisligil, W.A. Buurman, M.F. White, B.M. Spiegelman. 1996. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 271(22):13018-22
Pugsley, H. R. 2017. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J. Vis. Exp. (125). doi: 10.3791/55637.
Romanov, J., M. Walczak, I. Ibiricu, S. Schüchner, E. Ogris, C. Kraft, and S. Martens. 2012. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 31(22):4304-17. doi: 10.1038/emboj.2012.278
Rubino, F. 2008. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 31(Supplement 2): S290-S296. doi: 10.2337/dc08-s271
SAS. 2013. SAS 9.4 for Windows. Ver. 9.4. Cary, N.C.: SAS Institute, Inc.
Singh, R., Y. Xiang, Y. Wang, K. Baikati, A.M. Cuervo, Y.K. Luu, Y. Tang, J.E. Pessin, G.J. Schwartz, and M.J. Czaja. 2009. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119(11):3329-39. doi: 10.1172/JCI39228Solinas, G. and B. Becattini. 2016. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol. Metab. 6(2):174-184. doi: 10.1016/j.molmet.2016.12.001
Soussi, H., K. Clément, and I. Dugail. 2016. Adipose tissue autophagy status in obesity: Expression and flux—two faces of the picture. Autophagy. 12(3): 588–589. doi: 10.1080/15548627.2015.1106667
Soussi, H., S. Reggio, R. Alili, C. Prado, S. Mutel, M. Pini, C. Rouault, K. Clément, I. Dugail. 2015. DAPK2 downregulation associates with attenuated adipocyte autophagic clearance in human obesity. Diabetes. 64(10):3452-63. doi: 10.2337/db14-1933
Swinburn, B.A., G. Sacks, K.D. Hal, K. McPherson, D.T. Finegood, M.L Moodie., and S.L. Gortmaker. 2011. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 378(9793):804-14. doi: 10.1016/S0140-6736(11)60813-1
Tanaka, S., H. Hikita, T. Tatsumi, R. Sakamori, Y. Nozaki, S. Sakane, Y. Shiode, T. Nakabori, Y. Saito, N. Hiramatsu, K. Tabata, T. Kawabata, M. Hamasaki, H. Eguchi, H. Nagano, T. Yoshimori, and T. Takehara. 2016. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 64(6):1994-2014. doi: 10.1002/hep.28820
van der Kallen, C. J. H., M. M. J. van Greevenbroek, C. D. A. Stehouwer, and C. G. Schalkwijk. 2009. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis. 14:1424-1434. doi: 10.1007/s10495-009-0400-4
Wang, M.E., B. K. Singh, M.C. Hsu, C. Huang, P. M. Yen, L.S. Wu, D.S. Jong and C.H. Chiu. 2017. Increasing dietary medium-chain fatty acid ratio mitigates high-fat diet-induced non-alcoholic steatohepatitis by regulating autophagy. Sci. Rep. 7:13999. doi:10.1038/s41598-017-14376-y
Whitmore, C. 2010. Type 2 diabetes and obesity in adults. Br. J. Nurs. 19(14):880, 882-6.
WHO. 2016. Global report on diabetes (World Health Organization)
Xu, X., A. Grijalva, A. Skowronski, M. van Eijk, M.J. Serlie, and A.W. Jr. Ferrante. 2013. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18(6):816-30. doi: 10.1016/j.cmet.2013.11.001
Yamamoto, A., Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki, and Y. Tashiro. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23(1):33-42.
Yang, Z. and D.J. Klionsky. 2009. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22(2):124-31. doi: 10.1016/j.ceb.2009.11.014
Yin, J., Y. Wang, L. Gu, N. Fan, Y. Ma, and Y. Peng. 2015. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation. Int. J. Mol. Med. 35(4): 932-40. doi: 10.3892/ijmm.2015.2085
Zabolotny, J. M., Y. B. Kim, L. A. Welsh, E. E. Kershaw, B. G. Neel, and B. B. Kahn. 2008. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J. Biol. Chem. 283(21):14230-41. doi: 10.1074/jbc.M800061200
Zhang, K. and R. J. Kaufman. 2008. From endoplasmic-reticulum stress to the inflammatory response. Nature. 454(7203):455-62. doi: 10.1038/nature07203
Zhou, L., J. Zhang, Q. Fang, M. Liu, X. Liu, W. Jia, L. Q. Dong, and F. Liu. 2009. Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic reticulum stress-induced insulin resistance. Mol. Pharmacol. 76(3): 596-603. doi: 10.1124/mol.109.057067
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78681-
dc.description.abstract第二型糖尿病(Type 2 diabetes, T2D)是一種由周邊組織胰島素阻抗(insulin resistance)造成血糖濃度異常升高的代謝疾病,而肥胖(obesity)是目前公認此疾病之主要危險因子。過多的能量攝取容易造成脂肪組織胰島素阻抗,使得細胞內脂解作用增加而大量釋出游離脂肪酸,進而影響其他組織代謝並誘發 T2D。細胞自噬(autophagy)是細胞內重要的降解系統之一,參與許多代謝調節及壓力反應。近期許多研究指出肥胖或代謝疾病患者,其脂肪組織的自噬狀態會改變,然而自噬在肥胖所誘導的胰島素阻抗之角色,仍未完全明瞭。
本研究首先以高脂飼糧誘導的肥胖小鼠模式,瞭解其脂肪自噬之活性,並同時藉由注射胰島素以評估胰島素阻抗發生之時間點。試驗結果顯示,持續 16 週的高脂飼糧會引發 C57BL/6 小鼠的脂肪組織有自噬後期抑制、胰島素阻抗、內質網壓力(ER stress)以及細胞凋亡(apoptosis)的現象,同時也發現 Rubicon 的表現量增加,可能為阻斷自噬後期的因素之一。為了進一步確認自噬後期的抑制是否會誘發胰島素阻抗,我們直接對小鼠的附睪脂肪組織注射自噬後期的抑制藥物氯喹(chloroquine, CQ)。結果發現注射 CQ 後 10 小時,脂肪組織的胰島素訊息傳遞路徑並未受影響;但注射後 24 小時,脂肪組織的胰島素下游標的 Akt 及 GSK3β 的磷酸化程度卻下降,顯示自噬作用的抑制與胰島素阻抗的發生具相關性。另外,我們測定了胰島素訊息的負調節因子PHLPP1 及 PTEN 的蛋白質表現量,然結果顯示注射 CQ 的組別,兩種蛋白質皆無顯著增加,意味著自噬抑制阻斷的胰島素下游訊息傳遞,與 PHLPP1 及 PTEN 的作用路徑無關。
此外,我們也利用分化的 3T3-L1 脂肪細胞株進行體外試驗,經由棕櫚酸(palmitic acid)及油酸(oleic acid)共處理 48 小時後,細胞內油滴大量堆積並引起自噬流(autophagic flux)的降低,表示自噬作用是受到抑制的。隨後以 CQ 處理 24 小時,亦觀察到胰島素阻抗、內質網壓力及細胞凋亡的情形。然而為了摒除如細胞凋亡等機制之影響,我們將 CQ 的處理濃度降低,卻並未造成細胞的胰島素訊息傳遞之異常。不過有趣的是,若處理時間延長至 48 小時,此時脂肪細胞便會發生胰島素阻抗,並伴隨著內質網壓力與細胞凋亡的現象。由此可知,自噬後期的抑制本身可能並非直接誘發脂肪細胞的胰島素阻抗,而是經由併發的內質網壓力或細胞凋亡間接所致。
綜上所述,長期的高脂飲食除了促使脂肪組織發生胰島素阻抗外,還導致Rubicon 的表達增加進而抑制自噬後期,並伴隨著內質網壓力及細胞凋亡等現象。其中自噬後期的抑制與胰島素敏感性下降具有相關性,然而前者並非經由磷酸酶的大量表現影響胰島素訊息的傳遞,而是藉由內質網壓力或細胞凋亡間接引起脂肪組織的胰島素阻抗。
zh_TW
dc.description.abstractType 2 diabetes is a metabolic disease with abnormally elevated blood glucose level due to insulin resistance in peripheral tissues, and obesity is recognized as a risk factor for this disease. Excessive calorie intake may lead to insulin resistance and increase free fatty acid releasing from adipose tissue. This situation may alter the metabolic functions of other peripheral tissues to accelerate the development of type 2 diabetes. Autophagy is an intracellular degradation system, which is important for maintaining metabolic homeostasis. Recent studies have demonstrated that the autophagic flux is changed in the adipose tissue of patients with obesity or metabolic disease. However, the role of autophagy in obesity-induced insulin resistance is less clear.
In this study, we first confirmed the state of autophagy and insulin signaling in adipose tissue from high-fat diet (HFD)-fed C57BL/6 mice. The results showed late-stage autophagy inhibition, insulin resistance, endoplasmic reticulum (ER) stress and apoptosis in the adipose from mice fed with 16-week HFD. Importantly, the increased level of Rubicon was one of the factors blocking the late-stage autophagy. To clarify whether inhibiting autophagy mediates HFD-induced insulin resistance, mouse epididymal adipose was locally injected with chloroquine (CQ), a late-stage autophagy inhibitor. We found that autophagy inhibition prominently caused insulin resistance in adipose tissue. Additionally, results demonstrated that the cascade of phosphorylation events in insulin signaling pathway blocked by CQ are independent of PHLPP1 and PTEN.
Furthermore, the differentiated 3T3-L1 adipocyte was used for in vitro experiment. After co-treatment with palmitic acid and oleic acid for 48 hours, a large amount of lipid droplets accumulated and caused a reduction in autophagic flux, indicating that autophagy was inhibited. Subsequently, treatment with CQ (40 μM) for 20 hours also observed insulin resistance, ER stress and apoptosis. However, when the concentration of CQ was reduced to prevent apoptosis, no significant abnormality in the insulin signaling was observed in the first 24 hours. Interestingly, if the treatment period was extended to 48 hours, the insulin resistance occurred in the 3T3-L1, accompanied by ER stress and apoptosis. It implied that late-stage autophagy inhibition didn’t directly lead to insulin resistance, but indirectly by other pathways.
In summary, long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress and apoptosis in adipose tissue. Among these conditions, inhibition of late-stage autophagy is indeed related to a decrease in insulin sensitivity. However, autophagy suppression does not affect the insulin signaling transduction via the large amount of phosphatase expression, but causes insulin resistance indirectly through ER stress or apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:11:51Z (GMT). No. of bitstreams: 1
ntu-108-R06626021-1.pdf: 2799134 bytes, checksum: 7e2fb8c88dfd99b3913f88a1211063b4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書-----I
致謝-----II
中文摘要-----III
Abstract-----V
Table of Contents-----VII
Figure Index-----IX
Table Index-----X
Chapter 1. Literature Review-----1
1.1 Type 2 diabetes and obesity-----1
1.2 Autophagy in adipose tissue with obesity-----6
1.3 The relationship between autophagy and insulin resistance-----17
1.4 The aims of this study-----23
Chapter 2. Materials and Methods-----24
2.1 Animal and handling-----24
2.2 Cell culture-----25
2.3 Protein sample preparation and Western blotting analysis-----26
2.4 Nile Red Staining-----29
2.5 RNA extraction and qPCR analysis-----29
2.6 Serum free fatty acid content analysis-----31
Chapter 3. Results-----35
3.1 HFD induces autophagy impairment, insulin resistance, endoplasmic reticulum (ER) stress and apoptosis in adipose tissue-----35
3.2 The late-stage autophagy inhibition correlates with insulin resistance in adipose tissue-----43
3.3 The phosphorylation of insulin signaling blocked by autophagy is independent of PHLPP1 and PTEN-----47
3.4 Impaired late-stage autophagy may cause insulin resistance indirectly by ER stress or apoptosis-----51
Chapter 4. Discussions-----59
4.1 HFD induces autophagy impairment, insulin resistance, endoplasmic reticulum (ER) stress and apoptosis in adipose-----60
4.2 The late-stage autophagy inhibition correlates with insulin resistance in adipose-----62
4.3 The phosphorylation of insulin signaling blocked by autophagy is independent of PHLPP1 and PTEN-----63
4.4 Impaired late-stage autophagy may cause insulin resistance indirectly by ER stress or apoptosis-----65
Chapter 5. Conclusion-----67
References-----68
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject肥胖zh_TW
dc.subject高脂飲食zh_TW
dc.subject細胞自噬zh_TW
dc.subject胰島素阻抗zh_TW
dc.subject內質網壓力zh_TW
dc.subjectER stressen
dc.subjectObesityen
dc.subjectApoptosisen
dc.subjectHigh-fat dieten
dc.subjectAutophagyen
dc.subjectInsulin resistanceen
dc.title探討高脂飲食引起的脂肪組織胰島素阻抗與細胞自噬間之關聯性zh_TW
dc.titleThe Role of Autophagy in High-Fat Diet Induced Insulin Resistance of Adipose Tissuesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor吳兩新(Leang-Shin Wu)
dc.contributor.oralexamcommittee鍾德憲(De-Shien Jong),黃啟彰(Chi-Chang Huang),江逸凡(Yi-Fan Jiang)
dc.subject.keyword肥胖,高脂飲食,細胞自噬,胰島素阻抗,內質網壓力,細胞凋亡,zh_TW
dc.subject.keywordObesity,High-fat diet,Autophagy,Insulin resistance,ER stress,Apoptosis,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201902313
dc.rights.note有償授權
dc.date.accepted2019-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06626021-1.pdf
  未授權公開取用
2.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved