請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘俊良 | |
dc.contributor.author | Ru-Ting Syu | en |
dc.contributor.author | 許茹婷 | zh_TW |
dc.date.accessioned | 2021-07-11T15:11:36Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-06 | |
dc.identifier.citation | Alcedo, J. and C. Kenyon (2004). 'Regulation of C. elegans longevity by specific gustatory and olfactory neurons.' Neuron 41(1): 45-55.
Apfeld, J. and C. Kenyon (1999). 'Regulation of lifespan by sensory perception in Caenorhabditis elegans.' Nature 402(6763): 804-809. Artan, M., D.-E. Jeong, D. Lee, Y.-I. Kim, H. G. Son, Z. Husain, J. Kim, O. Altintas, K. Kim, J. Alcedo and S.-J. V. Lee (2016). 'Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides.' Genes & Development. Bargmann, C. I., E. Hartwieg and H. R. Horvitz (1993). 'Odorant-selective genes and neurons mediate olfaction in C. elegans.' Cell 74(3): 515-527. Bargmann, C. I. and H. R. Horvitz (1991). 'Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans.' Neuron 7(5): 729-742. Brenner, S. (1974). 'The genetics of Caenorhabditis elegans.' Genetics 77(1): 71-94. Chatzigeorgiou, M., S. Yoo, J. D. Watson, W.-H. Lee, W. C. Spencer, K. S. Kindt, S. W. Hwang, D. M. Miller Iii, M. Treinin, M. Driscoll and W. R. Schafer (2010). 'Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors.' Nature Neuroscience 13: 861. Chen, Y. C., H. J. Chen, W. C. Tseng, J. M. Hsu, T. T. Huang, C. H. Chen and C. L. Pan (2016). 'A C. elegans Thermosensory Circuit Regulates Longevity through crh-1/CREB-Dependent flp-6 Neuropeptide Signaling.' Dev Cell 39(2): 209-223. Coburn, C. M. and C. I. Bargmann (1996). 'A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans.' Neuron 17(4): 695-706. Colman, R. J., R. M. Anderson, S. C. Johnson, E. K. Kastman, K. J. Kosmatka, T. M. Beasley, D. B. Allison, C. Cruzen, H. A. Simmons, J. W. Kemnitz and R. Weindruch (2009). 'Caloric restriction delays disease onset and mortality in rhesus monkeys.' Science 325(5937): 201-204. Conti, B., M. Sanchez-Alavez, R. Winsky-Sommerer, M. C. Morale, J. Lucero, S. Brownell, V. Fabre, S. Huitron-Resendiz, S. Henriksen, E. P. Zorrilla, L. de Lecea and T. Bartfai (2006). 'Transgenic Mice with a Reduced Core Body Temperature Have an Increased Life Span.' Science 314(5800): 825. Fernandes de Abreu, D. A., A. Caballero, P. Fardel, N. Stroustrup, Z. Chen, K. Lee, W. D. Keyes, Z. M. Nash, I. F. Lopez-Moyado, F. Vaggi, A. Cornils, M. Regenass, A. Neagu, I. Ostojic, C. Liu, Y. Cho, D. Sifoglu, Y. Shen, W. Fontana, H. Lu, A. Csikasz-Nagy, C. T. Murphy, A. Antebi, E. Blanc, J. Apfeld, Y. Zhang, J. Alcedo and Q. Ch'ng (2014). 'An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology.' PLoS Genet 10(3): e1004225. Jeong, D.-E., M. Artan, K. Seo and S.-J. Lee (2012). 'Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging.' Frontiers in genetics 3: 218-218. Kenyon, C. J. (2010). 'The genetics of ageing.' Nature 464(7288): 504-512. Kim, K. and C. Li (2004). 'Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans.' J Comp Neurol 475(4): 540-550. Kimura, K. D., A. Miyawaki, K. Matsumoto and I. Mori (2004). 'The C. elegans Thermosensory Neuron AFD Responds to Warming.' Current Biology 14(14): 1291-1295. Klass, M. R. (1977). 'Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span.' Mechanisms of Ageing and Development 6: 413-429. Komatsu, H., I. Mori, J. S. Rhee, N. Akaike and Y. Ohshima (1996). 'Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans.' Neuron 17(4): 707-718. L'Etoile, N. D. and C. I. Bargmann (2000). 'Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1.' Neuron 25(3): 575-586. Lakowski, B. and S. Hekimi (1998). 'The genetics of caloric restriction in Caenorhabditis elegans.' Proceedings of the National Academy of Sciences of the United States of America 95(22): 13091-13096. Larsson, M. C., A. I. Domingos, W. D. Jones, M. E. Chiappe, H. Amrein and L. B. Vosshall (2004). 'Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction.' Neuron 43(5): 703-714. Lee, S. J. and C. Kenyon (2009). 'Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans.' Curr Biol 19(9): 715-722. Libert, S., J. Zwiener, X. Chu, W. Vanvoorhies, G. Roman and S. D. Pletcher (2007). 'Regulation of Drosophila life span by olfaction and food-derived odors.' Science 315(5815): 1133-1137. Lin, C.-T., C.-W. He, T.-T. Huang and C.-L. Pan (2017). 'Longevity control by the nervous system: Sensory perception, stress response and beyond.' Translational Medicine of Aging 1: 41-51. Loeb, J. and J. H. Northrop (1916). 'Is There a Temperature Coefficient for the Duration of Life?' Proceedings of the National Academy of Sciences 2(8): 456. Maier, W., B. Adilov, M. Regenass and J. Alcedo (2010). 'A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan.' PLoS Biol 8(5): e1000376. Mattison, J. A., G. S. Roth, T. M. Beasley, E. M. Tilmont, A. M. Handy, R. L. Herbert, D. L. Longo, D. B. Allison, J. E. Young, M. Bryant, D. Barnard, W. F. Ward, W. Qi, D. K. Ingram and R. de Cabo (2012). 'Impact of caloric restriction on health and survivalin rhesus monkeys from the NIA study.' Nature 489(7415): 318-321. Mello, C. C., J. M. Kramer, D. Stinchcomb and V. Ambros (1991). 'Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.' Embo j 10(12): 3959-3970. Mori, I. and Y. Ohshima (1995). 'Neural regulation of thermotaxis in Caenorhabditis elegans.' Nature 376(6538): 344-348. Mori, I. and Y. Ohshima (1995). 'Neural regulation of thermotaxis in Caenorhabditis elegans.' Nature 376(6538): 344-348. Ostojic, I., W. Boll, M. J. Waterson, T. Chan, R. Chandra, S. D. Pletcher and J. Alcedo (2014). 'Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling.' Proc Natl Acad Sci U S A 111(22): 8143-8148. Raj, A., P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden and S. Tyagi (2008). 'Imaging individual mRNA molecules using multiple singly labeled probes.' Nat Methods 5(10): 877-879. Riera, C. E. and A. Dillin (2016). 'Emerging Role of Sensory Perception in Aging and Metabolism.' Trends in Endocrinology & Metabolism 27(5): 294-303. Riera, Céline E., Mark O. Huising, P. Follett, M. Leblanc, J. Halloran, R. Van Andel, Carlos D. de Magalhaes Filho, C. Merkwirth and A. Dillin (2014). 'TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling.' Cell157(5): 1023-1036. Sengupta, P., H. A. Colbert and C. I. Bargmann (1994). 'The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily.' Cell 79(6): 971-980. Shen, Z., X. Zhang, Y. Chai, Z. Zhu, P. Yi, G. Feng, W. Li and G. Ou (2014). 'Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development.' Dev Cell 30(5): 625-636. Speese, S., M. Petrie, K. Schuske, M. Ailion, K. Ann, K. Iwasaki, E. M. Jorgensen and T. F. Martin (2007). 'UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans.' J Neurosci 27(23): 6150-6162. White, J. G., E. Southgate, J. N. Thomson and S. Brenner (1986). 'The structure of the nervous system of the nematode Caenorhabditis elegans.' Philos Trans R Soc Lond B Biol Sci 314(1165): 1-340. Xiao, R., B. Zhang, Y. Dong, J. Gong, T. Xu, J. Liu and X. Z. S. Xu (2013). 'A Genetic Program Promotes C. elegans Longevity at Cold Temperatures via a Thermosensitive TRP Channel.' Cell 152(4): 806-817. Zhang, B., J. Gong, W. Zhang, R. Xiao, J. Liu and X. Z. S. Xu (2018). 'Brain-gut communications via distinct neuroendocrine signals bidirectionally regulate longevity in C. elegans.' Genes Dev 32(3-4): 258-270. 92 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78677 | - |
dc.description.abstract | 我們發現失去FLP-6的線蟲在低溫環境中壽命變長,而且FLP-6作用在嗅覺神經AWC中限制壽命,FLP-6也對線蟲趨向由AWC神經元偵測的氣味的行為相當重要,而食物的味道則可以刺激FLP-6從AWC神經元釋放。在沒有食物的情況下,失去FLP-6的線蟲和wild type的線蟲壽命長度相同。利用mRNA 定序,我們發現FLP-6在不同培養溫度下調控兩群幾乎完全不同的基因群,再度驗證了FLP-6在不同神經元中有截然不同的功能。本篇研究描述了FLP-6在調控線蟲壽命中的角色。 | zh_TW |
dc.description.abstract | Lifespan is regulated by environmental factors, including temperature and food cues. The nervous system senses these environmental stimuli and releases signaling molecules, such as neuropeptides, to modulate longevity. We previously showed that FLP-6, an FMRFamide-like neuropeptide, functions in the AFD thermosensory neurons to maintain lifespan at warmer temperature, and the flp-6 mutant is short-lived at 25°C. Here we find that the flp-6 mutant has extended lifespan at lower temperature, and that flp-6 acts in the AWC olfactory neurons to restrict lifespan, a conclusion further supported by requirement
of flp-6 for chemotaxis towards AWC odorants. Exposure to bacterial food cues increases FLP-6 secretion from AWC, and the flp-6 mutation does not further extend lifespan of food-deprived animals. Gene expression profiling by mRNA-sequencing from animals cultivated at 15°C reveals sets of flp-6-regulated genes that are distinct from those identified in animals cultivated at 25°C, confirming that flp-6 has non-overlapping functions in different physiological contexts. These findings expand the known roles of FLP-6 in longevity control. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:11:36Z (GMT). No. of bitstreams: 1 ntu-108-R06448010-1.pdf: 7151831 bytes, checksum: fc1e65619973003a651f44f23c2153ca (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………...#
ACKNOWLEDGEMENT……………………………………………………...i 中文摘要……………………………………………………………………...ii ABSTRACT……………………………………………………………………iii CONTENTS……………………………………………………………………iv I. INTRODUCTION.……………………………………………………….1 1.1 Sensory perception regulates longevity……………………………………...1 1.2 Temperature regulates lifespan through specific receptors and neurons…….2 1.3 Chemosensation controls lifespan……………………………………………4 1.4 Food cues are among the environmental signals that are detected by chemosensory neurons to restrict lifespan…………………………………...5 1.5 Sensory neurons regulate lifespan through neuropeptide signaling…………6 II. MATERIALS AND METHODS………………………...…………………….9 2.1 C. elegans Strains and Genetics……………………………………………..9 2.2 Molecular biology and germline transformation…………………………...10 2.3 Lifespan assay………………………………………………………………10 2.4 Single molecule RNA fluorescence in situ hybridization (smFISH)……….11 2.5 Chemotaxis assay…………………………………………………………...12 2.6 Somatic CRISPR……………………………………………………………13 2.7 FLP-6 secretion assay………………………………………………………14 2.8 RNA isolation………………………………………………………………15 III. RESULTS……………………………………………………………………...17 3.1 The flp-6 mutant shows extended lifespan at 15°C…………………………17 3.2 flp-6 is expressed in specific head neurons…………………………………17 3.3 FLP-6 is necessary for olfactory functions…………………………………18 3.4 flp-6 functions in chemosensory neurons to restrict lifespan at 15°C………19 3.5 CRISPR-mediated flp-6 deletion in AWC phenocopies the flp-6 mutant for extended lifespan and defect in chemotaxis behavior………………………….20 3.6 Exposure to food odor increases FLP-6 secretion from AWC neurons……21 3.7 flp-6 transcription in AWC neurons is not regulated by temperature or food exposure………………………………………………………………………...22 3.8 The flp-6 mutant shows normal chemotaxis to bacterial food……………...23 3.9 FLP-6 is part of the food-derived modulatory signals for lifespan control...24 3.10 flp-6 may acts through sensory perception to regulate lifespan at 15°C….25 3.11 Gene expression profiling by mRNA-seq reveals distinct flp-6-regulated gene sets at different temperature………………………………………………25 IV. DISCUSSION………………………………………………………………….28 4.1 The FMRFamide neuropeptide FLP-6 regulates longevity in various context………………………………………………………………………….28 4.2 FLP-6 is one of the food-derived modulatory signals for lifespan control...29 V. FIGURES……………………………………………………………………...31 VI. SUPPLEMENTAL TABLES………………………………………………...61 VII. REFERENCE………...……………………………………………………….85 | |
dc.language.iso | zh-TW | |
dc.title | 嗅覺透過神經胜肽調控線蟲壽命之神經迴路機轉 | zh_TW |
dc.title | The FMRFamide Neuropeptide FLP-6 Mediates the
Longevity Effects of Food Sensation | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許翱麟,金翠庭 | |
dc.subject.keyword | 壽命,神經胜?,嗅覺,食物,線蟲, | zh_TW |
dc.subject.keyword | longevity,neuropeptides,olfaction,food,C elegans, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201902585 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-06 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06448010-1.pdf 目前未授權公開取用 | 6.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。