Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78668Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳明汝 | zh_TW |
| dc.contributor.advisor | Ming-Ju Chen | en |
| dc.contributor.author | 黃任鋒 | zh_TW |
| dc.contributor.author | Jen-Feng Huang | en |
| dc.date.accessioned | 2021-07-11T15:11:00Z | - |
| dc.date.available | 2024-08-13 | - |
| dc.date.copyright | 2019-08-15 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 陳奕棟。2018。探討益生菌結合乳清蛋白於提升運動表現之功效。國立臺灣大學動物科學技術學研究所。碩士論文。
黃可沁。2017。克弗爾微生物於甘蔗丁之固定化系統與其發酵應用。國立臺灣大學動物科學技術學研究所。碩士論文。 謝岳彤。2016。篩選具有抗氧化能力之益生菌及探討其延緩老化之研究。國立臺灣大學動物科學技術學研究所。碩士論文。 Akopyanz, N., N. O. Bukanov, T. U. Westblom, S. Kresovich, and D. E. Berg.1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20:5137–5142. doi:10.1093/nar/20.19.5137 Álvarez-Martín, P., A. B. Flórez, A. Hernández-Barranco, and B. Mayo. 2008. Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control 19:62–70. doi:10.1016/j.foodcont.2007.02.003 Anvari, M., G. Khayati, and S. Rostami. 2014. Optimisation of medium composition for probiotic biomass production using response surface methodology. J. Dairy Res. 81:59–64. doi:10.1017/s0022029913000733 Baş, D. and İ. H. Boyacı. 2007. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78:836–845. doi:10.1016/j.jfoodeng.2005.11.024 Bezerra, M. A., R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. doi:10.1016/j.talanta.2008.05.019 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3 Brennan, C. S. and C. M. Tudorica. 2008. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. 43:824–833. doi:10.1111/j.1365-2621.2007.01522.x Brinques, G. B., M. do Carmo Peralba, and M. A. Ayub. 2010. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. J. Ind. Microbiol. Biotechnol. 37:205–212. doi:10.1007/s10295-009-0665-1 Casarotti, S. N., D. A. Monteiro, M. M. S. Moretti, and A. L. B. Penna. 2014. Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Res. Int. 59:67–75. doi:10.1016/j.foodres.2014.01.068 Catzeddu, P., E. Mura, E. Parente, M. Sanna, and G. A. Farris. 2006. Molecular characterization of lactic acid bacteria from sourdough breads produced in Sardinia (Italy) and multivariate statistical analyses of results. Syst. Appl. Microbiol. 29:138–144. doi:10.1016/j.syapm.2005.07.013 Cheirsilp, B., S. Suksawang, J. Yeesang, and P. Boonsawang. 2018. Co-production of functional exopolysaccharides and lactic acid by Lactobacillus kefiranofaciens originated from fermented milk, kefir. J. Food Sci. Technol. 55:331–340. doi:10.1007/s13197-017-2943-7 Chen, H. C., S. Y. Wang, and M. J Chen. 2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25:492–501. doi:10.1016/j.fm.2008.01.003 Chen, T. H., S. Y. Wang, K. N. Chen, J. R. Liu, and M. J. Chen. 2009. Microbiological and chemical properties of kefir manufactured by entrapped microorganisms isolated from kefir grains. J. Dairy Sci. 92:3002–3013. doi:10.3168/jds.2008-1669 Chen, Y. P. and M. J. Chen. 2013. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on germ-free mice. PloS One 8:e78789. doi:10.1371/journal.pone.0078789 Chen, Y. P., P. J. Hsiao, W. S. Hong, T. Y. Dai, and M. J. Chen. 2012. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 95:63–74. doi:10.3168/jds.2011-4696. Chen, Y. P., T. Y. Lee, W. S. Hong, H. H. Hsieh, M. J. Chen. 2013. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models. J. Dairy Sci. 96:7467-7477. doi:10.3168/jds.2013–7015 CODEX Alimentarius Commission. 2003. Codex standard for fermented milks. Codex Stan 243–2003. http://www.codexalimentarius.net/web/standard_list.do. Cody, W. L., J. W. Wilson, D. R. Hendrixson, K. S. McIver, K. E. Hagman, C.M. Ott, C. A. Nickerson, and M. J. Schurr. 2008. Skim milk enhances the preservation of thawed -80°C bacterial stocks. J. Microbiol. Methods 75:35–138. Colwell, R. R. 1970. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J. Bacteriol. 104:410–433. Corsetti, A., P. Lavermicocca, M. Morea, F. Baruzzi, N. Tosti, and M. Gobbetti. 2001. Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. Int. J. Food Microbiol. 64:95–104. doi:10.1016/S0168-1605(00)00447-5 Courtin, P. and F. Rul. 2003. Interactions between microorganisms in a simple ecosystem: Yogurt bacteria as a study model. 4:125–134. doi:10.1051/lait:2003031 Dailin, D. J., E. A. Elsayed, N. Z. Othman, R. Malek, H. S. Phin, R. Aziz, M. Wadaan, and H. A. El Enshasy. 2016. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor. Saudi J. Biol. Sci. 23:495–502. doi:10.1016/j.sjbs.2015.06.003 de LeBlanc, A. D. M., C. Matar, E. Farnworth, and G. Perdigon. 2006. Study of cytokines involved in the prevention of a murine experimental breast cancer by kefir. Cytokine 34:1–8. doi:10.1016/j.cyto.2006.03.008 de Souza Oliveira, R. P., P. Perego, M. N. De Oliveira, and A. Converti. 2011. Effect of inulin as a prebiotic to improve growth and counts of a probiotic cocktail in fermented skim milk. LWT-Food Sci. Technol. 44:520–523. doi:10.1016/j.lwt.2010.08.024 de Souza Oliveira, R. P., P. Perego, M. N. de Oliveira, and A. Converti. 2012. Effect of inulin on the growth and metabolism of a probiotic strain of Lactobacillus rhamnosus in co-culture with Streptococcus thermophilus. LWT-Food Sci. Technol. 47:358–363. doi:10.1016/j.lwt.2012.01.031 Dertli, E. and A. H. Çon. 2017. Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT-Food Sci. Technol. 85:151–157. doi:10.1016/j.lwt.2017.07.017 Dolci, P., V. Alessandria, K. Rantsiou, L. Rolle, G. Zeppa, and L. Cocolin. 2008. Microbial dynamics of Castelmagno PDO, a traditional Italian cheese, with a focus on lactic acid bacteria ecology. Int. J. Food Microbiol. 122:302–311. doi:10.1016/j.ijfoodmicro.2007.12.018 du Plessis, H. W., L. M. T. Dicks, I. S. Pretorius, M. G. Lambrechts, and M. du Toit. 2004. Identification of lactic acid bacteria isolated from South African brandy base wines. Int. J. Food Microbiol. 91:19–29. doi:10.1016/S0168-1605(03)00335-0 du Toit, M., L. Engelbrecht, E. Lerm, and S Krieger-Weber. 2011. Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Tech. 4:876–906. doi:10.1007/s11947-010-0448-8 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356. doi:10.1021/ac60111a017 Elsayed, E., M. Farooq, D. Joe Dailin, H. El Enshasy, N. Othman, R. A. Malek, E. Danial, and M. Wadaan. 2017. In vitro and in vivo biological screening of kefiran polysaccharide produced by Lactobacillus kefiranofaciens. Biomed. Res. 28:594–600. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.1111/j.1558-5646.1985.tb00420.x Ferreira, S. L. C., R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos. 2007. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta. 597:179–186. doi:10.1016/j.aca.2007.07.011 Fisberg, M. and R. Machado. 2015. History of yogurt and current patterns of consumption. Nutr. Rev. 73:4–7. doi:10.1093/nutrit/nuv020 Forssten, S. D., C. W. Sindelar, and A. C. Ouwehand. 2011. Probiotics from an industrial perspective. Anaerobe 17:410–413. doi:10.1016/j.anaerobe.2011.04.014 Fujisawa, T., S. Adachi, T. Toba, K. Arihara, and T. Mitsuoka. 1988. Lactobacillus kefiranofaciens sp. nov. isolated from kefir grains. Int. J. Syst. Bacteriol. 38:12–14. doi:10.1099/00207713-38-1-12 Furuno, T., and M. Nakanishi. 2012. Kefiran suppresses antigen-induced mast cell activation. Biol. Pharm. Bull. 35:178–183. doi:10.1248/bpb.35.178 Gao, J., F. Gu, N. H. Abdella, H. Ruan, and G. He. 2012. Investigation on culturable microflora in Tibetan kefir grains from different areas of China. J. Food Sci. 77:M425–433. doi:10.1111/j.1750-3841.2012.02805.x Garofalo, C., A. Osimani, V. Milanovic, L. Aquilanti, F. De Filippis, G. Stellato, S. Di Mauro, B. Turchetti, P. Buzzini, D. Ercolini, and F. Clementi. 2015. Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol. 49:123–133. doi:10.1016/j.fm.2015.01.017 Garofalo, C., A. Osimani, V. Milanovic, L. Aquilanti, F. De Filippis, G. Stellato, S. Di Mauro, B. Turchetti, P. Buzzini, D. Ercolini, and F. Clementi. 2015. Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol. 49:123–133. doi:10.1016/j.fm.2015.01.017 Garrote, G. L., A. G. Abraham, and G. L. De Antoni. 1997. Preservation of kefir grains, a comparative study. LWT-Food Sci. Technol. 30:77–84. doi:10.1006/fstl.1996.0135 Ghasemlou, M., F. Khodaiyan, A. Oromiehie, and M. S. Yarmand. 2011. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 127:1496–1502. doi:10.1016/j.foodchem.2011.02.003 Gillis, M., P. Vandamme, P. De Vos, J. Swings and K. Kersters. 2001. Polyphasic Taxonomy. In: G. M. Garrity, D. R. Boone, and R. W. Castenholz, editors, Bergey’s manual of systematic bacteriology. Springer, New York, NY. p. 43–48. González, C. J., J. P. Encinas, M. L. Garcı́a-López, and A. Otero. 2000. Characterization and identification of lactic acid bacteria from freshwater fishes. Food Microbiol. 17:383–391. doi:10.1006/fmic.1999.0330 Gouni-Berthold, I., D. Schulte, W. Krone, J. Lapointe, P. Lemieux, H. Predel, and H. Berthold. 2012. The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: A randomised placebo-controlled trial. Br. J. Nutr. 107:1694–1706. doi:10.1017/S0007114511004843 Gul, O., M. Mortas, I. Atalar, M. Dervisoglu, and T. Kahyaoglu. 2015. Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J. Dairy Sci. 98:1517–1525. Doi:10.3168/jds.2014-8755 Guzel-Seydim, Z. B., T. Kok-Tas, A. K. Greene, and A. C. Seydim. 2011. Review: functional properties of kefir. Crit. Rev. Food Sci. Nutr. 51:261–268. doi:10.1080/10408390903579029 Hamet, M. F., A. Londero, M. Medrano, E. Vercammen, K. Van Hoorde, G. L. Garrote, G. Huys, P. Vandamme, and A. G. Abraham. 2013. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains. Food Microbiol. 36:327–334. doi:10.1016/j.fm.2013.06.022 Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:1–9. Hayek, S., and S. Ibrahim. 2013. Current limitations and challenges with lactic acid bacteria: A review. Food Nutr. Sci. 4:73–87. doi:10.4236/fns.2013.411A010 Herve-Jimenez, L., I. Guillouard, E. Guedon, S. Boudebbouze, P. Hols, V. Monnet, E. Maguin, and F. Rul. 2009. Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl. Environ. Microbiol. 75:2062–2073. doi:10.1128/AEM.01984-08 Hong, W. S., H. C. Chen, Y. P. Chen, and M. J. Chen. 2009. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int. Dairy J. 19:244–251. doi:10.1016/j.idairyj.2008.10.010 Hong, W. S., Y. P. Chen, and M. J. Chen. 2010. The antiallergic effect of kefir Lactobacilli. J. Food Sci. 75:H244–H253. doi:10.1111/j.1750-3841.2010.01787.x Hong, W. S., Y. P. Chen, T. Y. Dai, I. N. Huang, and M. J. Chen. 2011. Effect of heat-inactivated kefir-isolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice. J. Agric. Food Chem. 59:9022–9031. doi:10.1021/jf201913x. Huang, J. Y., C. Y. Kao, W. S. Liu, and T. J. Fang. 2017. Characterization of high exopolysaccharide-producing Lactobacillus strains isolated from mustard pickles for potential probiotic applications. Int. Microbiol. 20:75–84. doi:10.2436/20.1501.01.287 Huang, S. M., K. N. Chen, Y. P. Chen, W. S. Hong, and M. J. Chen. 2010. Immunomodulatory properties of the milk whey products obtained by enzymatic and microbial hydrolysis. Int. J. Food Sci. Technol. 45:1061–1067. doi:10.1111/j.1365-2621.2010.02239.x Hwang, C. F., J. H. Chang, J. Y. Houng, C. C. Tsai, C. K. Lin, and H. Y. Tsen. 2012. Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnol. Bioprocess Eng. 17:27–834. doi:10.1007/s12257-012-0007-4 Jeong, D., D. H. Kim, I. B. Kang, H. Kim, K. Y. Song, H. S. Kim, and K. H. Seo. 2017. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct. 8:680–686. doi:10.1039/C6FO01559J Jeong, D., D. H. Kim, K. Y. Song, and K. H. Seo. 2018. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens. J. Oral Microbiol. 10:1472985. doi:10.1080/20002297.2018.1472985 Jokovic, N., M. Nikolic, J. Begovic, B. Jovcic, D. Savic, and L. Topisirovic. 2008. A survey of the lactic acid bacteria isolated from Serbian artisanal dairy product kajmak. Int. J. Food Microbiol. 127:305–311. doi:10.1016/j.ijfoodmicro.2008.07.026 Kandler, O., and P. Kunath. 1983. Lactobacillus kefir sp. nov., a component of the microflora of kefir. Syst. Appl. Microbiol. 4:286–294. doi:10.1016/S0723-2020(83)80057-5. Kersters, K., B. Pot, D. Dewettinck, U. Torck, M. Vancanneyt, L. Vauterin, and P. Vandamme. 1994. Identification and typing of bacteria by protein electrophoresis. In: F. G. Priest, A. Ramos-Cormenzana, and B. Tyndall, editors, Bacterial diversity and systematics. Springer, Boston, MA. p. 51–66. Kesmen, Z., and N. Kacmaz. 2011. Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods. J. Food Sci. 76:M276–M283. doi:10.1111/j.1750-3841.2011.02191.x Kiełtyka-Dadasiewicz, A., S. Okoń, T. Ociepa, and B. Król. 2017. Morphological and genetic diversity among peppermint (Mentha × piperita L.) cultivars. Acta. Sci. Pol-Hortoru. 16:151–161. doi:10.24326/asphc.2017.3.15 Kim, D. H., J. W. Chon, H. S. Kim, J. H. Yim, H. Kim, and K. H. Seo. 2015. Rapid detection of Lactobacillus kefiranofaciens in kefir grain and kefir milk using newly developed real-time PCR. J. Food Prot. 78:855–858. doi:10.4315/0362-028x.jfp-14-329 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. doi:10.1007/BF01731581 Kojima, S., S. Takizawa, S. Tamura, S. Fujinaga, Y. Benno, and T. Nakase. 1993. An improved medium for the isolation of lactobacilli from kefir grains. Biosci. Biotechnol. Biochem. 57:119–120. doi:10.1271/bbb.57.119 Koutsoumanis, K., A. Allende, A. Álvarez-Ordóñez, D. Bolton, S. Bover-Cid, M. Chemaly, R. Davies, F. Hilbert, R. Lindqvist, M. Nauta, L. Peixe, G. Ru, M. Simmons, P. Skandamis, E. Suffredini, P. S. Cocconcelli, P. S. Fernández Escámez, M. P. Maradona, A. Querol, J. E. Suarez, I. Sundh, J. Vlak, F. Barizzone, S. Correia, and L. Herman. 2019. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 9: suitability of taxonomic units notified to EFSA until September 2018. EFSA J. 17:5555. doi:10.2903/j.efsa.2019.5555 Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. doi:10.1093/molbev/msw054. Kwon, O. K., K. S. Ahn, M. Y. Lee, S. Y. Kim, B. Y. Park, M. K. Kim, I. Y. Lee, S. R. Oh, and H. K. Lee. 2008. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma. Arch. Pharm. Res. 31:1590–1596. doi:10.1007/s12272-001-2156-4 La Riviére, J. W. M., P. Kooiman, and K. Schmidt. 1967. Kefiran, a novel polysaccharide produced in the kefir grain by Lactobacillus brevis. Arch. Mikrobiol. 59:269–278. doi:10.1007/bf00406340 Laiño, J. E., M. J. del Valle, G. S. de Giori, and J. G. J. LeBlanc. 2014. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. Int. J. Food Microbiol. 191:10–16. doi:10.1016/j.ijfoodmicro.2014.08.031 Lee, C. M., C. C. Sieo, Y. K. Cheah, N. Abdullah, and Y. W. Ho. 2012. Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting. J. Sci. Food Agric. 92:660–666. doi:10.1002/jsfa.4627 Lee, N. K., Y. L. Park, G. J. Choe, H-I. Chang, and H. D. Paik. 2010. Medium optimization for the production of probiotic Lactobacillus acidophilus a12 using response surface methodology. Korean J. Food Sci. Anim. Resour. 30:359–364. doi:10.5851/kosfa.2010.30.3.359 Leisner, J. J., M. Vancanneyt, G. Rusul, B. Pot, K. Lefebvre, A. Fresi, and L. K. Tee. 2001. Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia. Int. J. Food Microbiol. 63:149–157. doi:10.1016/S0168-1605(00)00476-1 Leite, A. M. O., B. Mayo, C. T. C. C. Rachid, R. S. Peixoto, J. T. Silva, V. M. F. Paschoalin, and S. Delgado. 2012. Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol. 31:215–221. doi:10.1016/j.fm.2012.03.011 Leroy, F., and L. De Vuyst. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food. Sci. Technol. 15:67–78. doi:10.1016/j.tifs.2003.09.004 Liu, J. R., M. J. Chen, and C.W. Lin. 2005. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 53:2467–2474. doi:10.1021/jf048934k Liu, S. N., Y. Han, and Z. J. Zhou. 2011. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int. 44:643–651. doi:10.1016/j.foodres.2010.12.034 Ma, C., A. Ma, G. Gong, Z. Liu, Z. Wu, B. Guo, and Z. Chen. 2015. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture. Int.l J. Food Microbiol. 210:42–46. doi:10.1016/j.ijfoodmicro.2015.04.034 Maeda, H., X. Zhu, K. Omura, S. Suzuki, and S. Kitamura. 2004. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. BioFactors 22:197–200. doi:10.1002/biof.5520220141 Mainville, I., N. Robert, B. Lee, and E. R. Farnworth. 2006. Polyphasic characterization of the lactic acid bacteria in kefir. Syst. Appl. Microbiol. 29:59–68. doi:10.1016/j.syapm.2005.07.001 Mani-López, E., E. Palou, and A. López-Malo. 2014. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 97:2578–2590. doi:10.3168/jds.2013-7551 Matsuu, M., K. Shichijo, K. Okaichi, C.Y. Wen, E. Fukuda, M. Nakashima, T. Nakayama, S. Shirahata, S. Tokumaru, and I. Sekine. 2003. The protective effect of fermented milk kefir on radiation–induced apoptosis in colonic crypt cells of rats. J. Radiat. Res. 44:111–115. doi:10.1269/jrr.44.111 Medrano, M., S. M. Racedo, I. S. Rolny, A. G. Abraham, and P. F. Pérez. 2011. Oral administration of kefiran induces changes in the balance of immune cells in a murine model. J. Agric. Food Chem. 59:5299–5304. doi:10.1021/jf1049968 Micheli, L., D. Uccelletti, C. Palleschi, and V. Crescenzi. 1999. Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysacchride kefiran. Appl. Microbiol. Biotechnol. 53:69–74. doi:10.1007/s002530051616 Miguel, M. G. C. P., P. G. Cardoso, L. A. Lago, and R. F. Schwan. 2010. Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods. Food. Res. Int. 43:1523–1528. doi:10.1016/j.foodres.2010.04.031 Moreira, M. E. C., M. H. Santos, I. O. Pereira, V. Ferraz, L. C. A. Barbosa, and J. M. Schneedorf. 2008. Atividade antiinflamatória de carboidrato produzido por fermentação aquosa de grãos de quefir. Quim. Nova. 31:1738–1742. doi:10.1590/S0100-40422008000700027 Motedayen, A. A., F. Khodaiyan, and E. A. Salehi. 2013. Development and characterisation of composite films made of kefiran and starch. Food Chem. 136:1231–1238. doi:10.1016/j.foodchem.2012.08.073 Mukai, T., T. Toba, T. Itoh, and S. Adachi. 1990. Structural investigation of the capsular polysaccharide from Lactobacillus kefiranofaciens K1. Carbohydr. Res. 204:227–232. doi:10.1016/0008-6215(90)84039-W Murofushi, M., M. Shiomi, and K. Aibara. 1983. Effect of orally administered polysaccharide from kefir grain on delayed-type hypersensitivity and tumor growth in mice. Jpn. J. Med. Sci. Biol. 36:49–53. doi:10.7883/yoken1952.36.49 Muyanja, C. M. B. K., J. A. Narvhus, J. Treimo, and T. Langsrud. 2003. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage. Int. J. Food Microbiol. 80:201–210. doi:10.1016/S0168-1605(02)00148-4 Narvhus, J. A., and T. H. Gadaga. 2003. The role of interaction between yeasts and lactic acid bacteria in African fermented milks: a review. Int. J. Food Microbiol. 86:51–60. doi:10.1016/S0168-1605(03)00247-2 Naser, S. M., P. Dawyndt, B. Hoste, D. Gevers, K. Vandemeulebroecke, I. Cleenwerck, M. Vancanneyt, and J. Swings. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57:2777–2789. doi:10.1099/ijs.0.64711-0 Neve, H. 1992. Analysis of kefir grain starter cultures by scanning electron microscopy. Milchwissenschaft. 47:275–278. Ng, E. W., M. Yeung, and P. S. Tong. 2011. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int. J. Food Microbiol. 145:169–175. doi:10.1016/j.ijfoodmicro.2010.12.006 Ninane, V., R. Mukandayambaje, and G. Berben. 2007. Identification of lactic acid bacteria within the consortium of a kefir grain by sequencing 16S rDNA variable regions. J. AOAC Int. 90:1111–1117. doi: Oliveira, M. N., I. Sodini, F. Remeuf, and G. Corrieu. 2001. Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria. Int. Dairy J. 11:935–942. doi:10.1016/S0958-6946(01)00142-X Owaga, E. E., M. J. Chen, W. Y. Chen, C. W. Chen, and R. H. Hsieh. 2014. Oral toxicity evaluation of kefir-isolated Lactobacillus kefiranofaciens M1 in Sprague-Dawley rats. Food Chem. Toxicol. 70:157–162. doi:10.1016/j.fct.2014.05.005 Park, J. M., J. H. Shin, D. W. Lee, J. C. Song, H. J. Suh, U. J. Chang, and J. M. Kim. 2010. Identification of the lactic acid bacteria in Kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19:541–546. doi:10.1007/s10068-010-0075-1 Piermaría, J. A., C. Bengoechea, A. G. Abraham, and A. Guerrero. 2016. Shear and extensional properties of kefiran. Carbohydr. Polym. 152:97–104. doi:10.1016/j.carbpol.2016.06.067 Piermaría, J. A., A. Pinotti, M. A. Garcia, and A. G. Abraham. 2009. Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocoll. 23:684–690. doi:10.1016/j.foodhyd.2008.05.003 Piermaría, J. A., M. L. de la Canal, and A. G. Abraham. 2008. Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocoll. 22:1520–1527. doi:10.1016/j.foodhyd.2007.10.005 Pinto, J. M. S., S. Sousa, D. M. Rodrigues, F. X. Malcata, A. C. Duarte, T. A. P. Rocha-Santos, A. C. Freitas, and A. M. Gomes. 2017. Effect of probiotic co-cultures on physico-chemical and biochemical properties of small ruminants’ fermented milk. Int. Dairy J. 72:29–35. doi:10.1016/j.idairyj.2017.04.005 Pot, B., P. Vandamme, and K. Kersters. 1994. Analysis of electrophoretic whole-organism protein fingerprints. In: M. Goodfellow, and A. G. O’Donnell, editors, Chemical methods in prokaryotic systematics. John Wiley & Sons, Chichester, UK. p. 493–521. Prado, M. R., L. M. Blandón, L. P. S. Vandenberghe, C. Rodrigues, G. R. Castro, V. Thomaz-Soccol, and C. R. Soccol. 2015. Milk kefir: composition, microbial cultures, biological activities, and related products. Front. Microbiol. 6:1177. doi:10.3389/fmicb.2015.01177 Rajagopal, S. N., and W. E Sandine. 1990. Associative growth and proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in skim milk. J. Dairy Sci. 73:894–899. doi:10.3168/jds.S0022-0302(90)78745-0 Ranadheera, C. S., C. A. Evans, M. C. Adams, and S. K. Baines. 2014. Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J. Funct. Foods 8:18–25. doi:10.1016/j.jff.2014.02.022 Ranadheera, C. S., C. A. Evans, M. C. Adams, and S. K. Baines. 2016. Co-culturing of probiotics influences the microbial and physico-chemical properties but not sensory quality of fermented dairy drink made from goats’ milk. Small Rumin. Res. 136:104–108. doi:10.1016/j.smallrumres.2016.01.016 Ricci, A., A. Allende, D. Bolton, M. Chemaly, R. Davies, R. Gironés, L. Herman, K. Koutsoumanis, R. Lindqvist, B. Nørrung, L. Robertson, G. Ru, M. Sanaa, M. Simmons, P. Skandamis, E. Snary, N. Speybroeck, B. Ter Kuile, J. Threlfall, and F. Escámez Ps. 2017. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J. 15:4664. doi:10.2903/j.efsa.2017.4664 Rimada, P. S., and A. G. Abraham. 2006. Kefiran improves rheological properties of glucono-δ-lactone induced skim milk gels. Int. Dairy J. 16:33–39. doi:10.1016/j.idairyj.2005.02.002 Rodrigues, K. L., L. R. G. Caputo, J. C. T. Carvalho, J. Evangelista, and J. M Schneedorf. 2005a. Antimicrobial and healing activity of kefir and kefiran extract. Int. J. Antimicrob. Agents. 25:404–408. doi:10.1016/j.ijantimicag.2004.09.020 Rodrigues, K. L., J. C. T. Carvalho, and J. M. Schneedorf. 2005b. Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology 13:485–492. doi:10.1163/156856005774649395 Rosi, J., and J. Rossi. 1978. I microorganismi del kefir: i fermenti lattici. Sci. Tech. Lattiero-Casearia 29:291–305. Ruas-Madiedo, P., J. A. Moreno, N. Salazar, S. Delgado, B. Mayo, A. Margolles, and C. G. de Los Reyes-Gavilan. 2007. Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 73:4385–4388. doi:10.1128/aem.02470-06 Rutella, G. S., D. Tagliazucchi, and L. Solieri. 2016. Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: New insights for developing a bi-functional dairy food. Food Microbiol. 60:54–61. doi:10.1016/j.fm.2016.06.017 Saccaro, M. D., C. Y. Hirota, A. Y. Tamime, and M. Oliveira. 2012. Evaluation of different selective media for enumeration of probiotic micro-organisms in combination with yogurt starter cultures in fermented milk. Afr. J. Microbiol. Res. 6:2239–2245. doi:10.5897/AJMR11.117 Sah, B. N. P., T. Vasiljevic, S. McKechnie, and O. N. Donkor. 2014. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 156:264–270. doi:10.1016/j.foodchem.2014.01.105 Sah, B. N. P., T. Vasiljevic, S. McKechnie, and O. N. Donkor. 2016a. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT-Food Sci. Technol. 65:978–986. doi:10.1016/j.lwt.2015.09.027 Sah, B. N. P., T. Vasiljevic, S. McKechnie, and O. N. Donkor. 2016b. Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. J. Food Sci. Technol. 53:1698–1708. doi:10.1007/s13197-015-2100-0 Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454 Sánchez, I., S. Seseña, J. M. Poveda, L. Cabezas, and L. Palop. 2005. Phenotypic and genotypic characterization of lactobacilli isolated from Spanish goat cheeses. Int. J. Food Microbiol. 102:355–362. doi:10.1016/j.ijfoodmicro.2004.11.041 Santos, A., M. San Mauro, A. Sanchez, J. M. Torres, and D. Marquina. 2003. The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Syst. Appl. Microbiol. 26:434–437. doi:10.1078/072320203322497464 Savijoki, K., H. Ingmer, and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71:394–406. doi:10.1007/s00253-006-0427-1 Schillinger, U., N. M. K. Yousif, L. Sesar, and C. M. A. P. Franz. 2003. Use of group-specific and RAPD-PCR analyses for rapid differentiation of Lactobacillus strains from probiotic yogurts. Curr. Microbiol. 47:453–456. doi:10.1007/s00284-003-4067-8 Schleifer, K. H., and W. Ludwig. 1995. Phylogeny of the genus Lactobacillus and related genera. Syst. Appl. Microbiol. 18:461–467. doi:10.1016/S0723-2020(11)80404-2 Schloter, M., M. Lebuhn, T. Heulin, and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity. FEMS Microbiol. Rev. 24:647–660. doi:10.1111/j.1574-6976.2000.tb00564.x Sen, R., and K. S. Babu. 2005. Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochem. 40:2531–2538. doi:10.1016/j.procbio.2004.11.004 Settachaimongkon, S., M. J. R. Nout, E. C. Antunes Fernandes, K. A. Hettinga, J. M. Vervoort, T. C. M. van Hooijdonk, M. H. Zwietering, E. J. Smid, and H. J. F van Valenberg. 2014. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 177:29–36. doi:10.1016/j.ijfoodmicro.2014.02.008 Sfakianakis, P., and C. Tzia. 2014. Conventional and innovative processing of milk for yogurt manufacture; development of texture and flavor: a review. Foods 3:176–193. doi:10.3390/foods3010176 Shahabi-Ghahfarrokhi, I., F. Khodaiyan, M. Mousavi, and H. Yousefi. 2015. Effect of γ-irradiation on the physical and mechanical properties of kefiran biopolymer film. Int. J. Biol. Macromol. 74:343–350. doi:10.1016/j.ijbiomac.2014.11.038 Shahravy, A., F. Tabandeh, B. Bambai, H. R. Zamanizadeh, and M. Mizani. 2012. Optimization of probiotic Lactobacillus casei ATCC 334 production using date powder as carbon source. Chem. Ind. Chem. Eng. Q. 18:273–282. doi:10.2298/CICEQ110709004S Shiby V. K., and H. N. Mishra. 2013. Fermented milks and milk products as functional foods—a review. Crit. Rev. Food Sci. Nutr. 53:482–496. doi:10.1080/10408398.2010.547398 Shimizu, H., B. Cheirsilp, and S. Shioya. 2005. Development of co-culture systems of lactic acid bacteria and yeasts for bioproduction. Jpn. J. Lactic Acid Bacteria 16:2–10. doi:10.4109/jslab1997.16.2 Shiomi, M., K. Sasaki, M. Murofushi, and K. Aibara. 1982. Antitumor activity in mice of orally administered polysaccharide from Kefir grain. Jpn. J. Med. Sci. Biol. 35:75–80. doi:10.7883/yoken1952.35.75 Sieuwerts, S. 2016. Microbial interactions in the yoghurt consortium: current status and product implications. SOJ Microbiol. Infect. Dis. 4:1–5. doi:10.15226/sojmid/4/2/00150 Sieuwerts, S., P. A. Bron, and E. J. Smid. 2018. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT-Food Sci. Technol. 90: 201–206. doi:10.1016/j.lwt.2017.12.022 Sieuwerts, S., D. Molenaar, S. A. van Hijum, M. Beerthuyzen, M. J. Stevens, P. W Janssen, C. J. Ingham, F. A. de Bok, W. M. de Vos, and J. E. van Hylckama Vlieg. 2010. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 76:7775–7784. doi:10.1128/AEM.01122-10 Sieuwerts, S., F. A. de Bok, J. Hugenholtz, and J. E. van Hylckama Vlieg. 2008. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74:4997–5007. doi:10.1128/AEM.00113-08 Stackebrandt, E., W. Frederiksen, G. M. Garrity, P. A. Grimont, P. Kämpfer, M. C. Maiden, X. Nesme, R. Rosselló-Mora, J. Swings, H. G. Trüper, L. Vauterin, A. C. Ward, and W. B. Whitman. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52:1043–1047. Stackebrandt, E., and B. M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44:846–849. doi:10.1099/00207713-44-4-846 Staley, J. T. 2006. The bacterial species dilemma and the genomic-phylogenetic species concept. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361:1899–1909. doi:10.1098/rstb.2006.1914 Stephenson, D. P., R. J. Moore, and G. E. Allison. 2009. Comparison and utilization of repetitive-element PCR techniques for typing Lactobacillus isolates from the chicken gastrointestinal tract. Appl. Environ. Microbiol. 75:6764–6776. doi:10.1128/AEM.01150-09 Sudun, W., K. Arakawa, M. Miyamoto, and T. Miyamoto. 2013. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim. Sci. J. 84:66–74. doi:10.1111/j.1740-0929.2012.01035.x Sun, Y., W. Geng, Y. Pan, J. Wang, P. Xiao, and Y. Wang. 2019. Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan kefir improves depression-like behavior in stressed mice by modulating the gut microbiota. Food Funct. 10:925–937. doi:10.1039/C8FO02096E Sun, Z. H., W. J. Liu, J. C. Zhang, J. Yu, W. Gao, M. Jiri, B. Menghe, T. S. Sun, and H. P. Zhang. 2010. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia. Folia Microbiol. 55:270–276. doi:10.1007/s12223-010-0040-7 Tada, S., Y. Katakura, K. Ninomiya, and S. Shioya. 2007. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran. J. Biosci. Bioeng. 103:557–562. doi:10.1263/jbb.103.557 Takizawa, S., S. Kojima, S. Tamura, S. Fujinaga, Y. Benno, and T. Nakase. 1994. Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. Int. J. Syst. Bacteriol. 44:435–439. doi:10.1099/00207713-44-3-435 Takizawa, S., S. Kojima, S. Tamura, S. Fujinaga, Y. Benno, and T. Nakase. 1998. The composition of the lactobacillus flora in kefir grains. Syst. Appl. Microbiol. 21:121–127. doi:10.1016/S0723-2020(98)80015-5 Tamime, A. Y. 2002. Fermented milks: a historical food with modern applications— a review. Eur. J. Clin. Nutr. 4:S2–S15. doi:10.1038/sj.ejcn.1601657 Taniguchi, M., M. Nomura, T. Itaya, and T. Tanaka. 2001. Kefiran production by Lactobacillus kefiranofaciens under the culture conditions established by mimicking the existence and activities of yeast in kefir grains. Food Sci. Technol. Res. 7:333–337. doi:10.3136/fstr.7.333 Taş, T. K., F. Y. Ekinci, and Z. B. Guzel‐Seydim. 2012. Identification of microbial flora in kefır grains produced in Turkey using PCR. Int. J. Dairy Technol. 65:126–131. doi:10.1111/j.1471-0307.2011.00733.x Temmerman, R., G. Huys, and J. Swings. 2004. Identification of lactic acid bacteria: culture-dependent and culture-independent methods. Trends Food Sci. Technol. 15:348–359. doi:10.1016/j.tifs.2003.12.007 Toba, T., H. Uemura, T. Mukai, T. Fujii, T. Itoh, and S. Adachi. 1991. A new fermented milk using capsular polysaccharide-producing Lactobacillus kefiranofaciens isolated from kefir grains. J. Dairy Res. 58:497–502. doi:10.1017/S0022029900030107 Toba, T., S. Abe, K. Arihara, and S. Adachi. 1986. A medium for the isolation of capsular bacteria from kefir grains. Agric. Biol. Chem. 50:2673–2674. doi:10.1271/bbb1961.50.2673 Uchida, M., I. Ishii, C. Inoue, Y. Akisato, K. Watanabe, S. Hosoyama, T. Toida, N. Ariyoshi, and M. Kitada. 2010. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet. J. Atheroscler. Thromb. 17:980–988. doi:10.5551/jat.4812 Vancanneyt, M., J. Mengaud, I. Cleenwerck, K. Vanhonacker, B. Hoste, P. Dawyndt, M. C. Degivry, D. Ringuet, D. Janssens, and J. Swing. 2004. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int. J. Syst. Evol. Microbiol. 54:551–556. doi:10.1099/ijs.0.02912-0 Vandamme, P., B. Pot, M. Gillis, P. de Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407–438. Vardjan, T., P. Mohar Lorbeg, I. Rogelj, and A. Čanžek Majhenič. 2013. Characterization and stability of lactobacilli and yeast microbiota in kefir grains. J. Dairy Sci. 96:2729–2736. doi:10.3168/jds.2012-5829 Ventura, M., V. Meylan, and R. Zink. 2003. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 69:4296–4301. doi:10.1128/AEM.69.7.4296-4301.2003 Versalovic, J., T. Koeuth, and J. R. Lupski. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19:6823–6831. doi:10.1093/nar/19.24.6823 Viljoen, B. C. 2001. The interaction between yeasts and bacteria in dairy environments. Int. J. Food Microbiol. 69:37–44. doi:10.1016/S0168-1605(01)00570-0 Vinderola, G., G. Perdigón, J. Duarte, E. Farnworth, and C. Matar. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260. doi:10.1016/j.cyto.2007.01.003 Wang, S. Y., K. N. Chen, Y. M. Lo, M. L. Chiang, H. C. Chen, J. R. Liu, and M. J. Chen. 2012. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol. 32:274–285. doi:10.1016/j.fm.2012.07.001 Wang, T., Z. Xu, S. Lu, M. Xin, and J. Kong. 2016. Effects of glutathione on acid stress resistance and symbiosis between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Int. Dairy J. 61:22–28. doi:10.1016/j.idairyj.2016.03.012 Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24:1313–1325. doi:10.1007/s11274-007-9604-3 Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Truper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37:463–464. doi:10.1099/00207713-37-4-463 Weiss, A., H. P. Lettner, W. Kramer, H. K. Mayer, and W. Kneifel. 2005. Molecular methods used for the identification of potentially probiotic Lactobacillus reuteri strains. Food Technol. Biotechnol. 43:295–300. Widyastuti, Y., Rohmatussolihat, and A. Febrisiantosa. 2014. The role of lactic acid bacteria in milk fermentation. Food Nutr. Sci. 5:435–442. doi:10.4236/fns.2014.54051 Wijtzes, T., M. R. Bruggeman, M. J. R. Nout, and M. H. Zwietering. 1997. A computerised system for the identification of lactic acid bacteria. Int. J. Food Microbiol. 38:65–70. Wouters, J. T. M., E. H. E. Ayad, J. Hugenholtz, and G. Smit. 2002. Microbes from raw milk for fermented dairy products. Int. Dairy J. 12:91–109. doi:10.1016/S0958-6946(01)00151-0 Wu, Q., Y. S. Law, and N. P. Shah. 2015. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk. Sci. Rep. 5:12885. doi:10.1038/srep12885 Xing, Z., W. Tang, W. Geng, Y. Zheng, and Y. Wang. 2017. In vitro and in vivo evaluation of the probiotic attributes of Lactobacillus kefiranofaciens XL10 isolated from Tibetan kefir grain. Appl. Microbiol. Biotechnol. 101:2467–2477. doi:10.1007/s00253-016-7956-z Xing, Z., W. Tang, Y. Yang, W. Geng, R. U. Rehman, and Y. Wang. 2018. Colonization and gut flora modulation of Lactobacillus kefiranofaciens ZW3 in the intestinal Ttract of mice. Probiotics Antimicrob. Proteins 10:374–382. doi:10.1007/s12602-017-9288-4 Yokoi, H., T. Watanabe, Y. Fujii, T. Mukai, T. Toba, and S. Adachi. 1991. Some taxonomical characteristics of encapsulated Lactobacillus sp. KPB-167B isolated from kefir grains and characterization of its extracellular polysaccharide. Int. J. Food Microbiol. 13:257–264. doi:10.1016/0168-1605(91)90083-2 Zamfir, M., R. Stefan, and S. Grosu-Tudor. 2016. Influence of growth medium composition on the bacteriocin activity of some lactic acid bacteria. Rom. Biotechnol. Lett. 22:12126–12135. Zanirati, D. F., M. Abatemarco Jr., S. H. C. Sandes, J. R. Nicoli, A. C. Nunes, and E. Neumann. 2015. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anaerobe 32:70–76. doi:10.1016/j.anaerobe.2014.12.007 Zhang, Y., and P. V. Vadlani. 2015. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 119:694–699. doi:10.1016/j.jbiosc.2014.10.027 Zhao, C., Z. Lu, J. Huang, S. He, H. Tan, G. Wang, D. Liu, and Y. Li. 2016. Enhancement of pork jerky using co-cultures of Lactobacillus bulgaricus and Angel Yeast. Indian J. Microbiol. 56:287–292. doi:10.1007/s12088-016-0603-7 Zhou, J., X. Liu, H. Jiang, and M. Dong. 2009. Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 26:770–775. doi:10.1016/j.fm.2009.04.009 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78668 | - |
| dc.description.abstract | 菌種Lactobacillus kefiranofaciens的分類可再劃分為兩種特性迥異的亞種──L. kefiranofaciens subsp. kefiranofaciens與L. kefiranofaciens subsp. kefirgranum,然而,兩個亞種之間高度相似的遺傳背景使得準確的鑑定與分類十分困難。本實驗室先前由台灣克弗爾粒中所分離的L. kefiranofaciens HL1 (HL1),已被證實為具有抗氧化、抗老化功效之潛力益生菌,然而其亞種層級仍屬未知。在本研究中,為進一步確認HL1的分類地位至亞種層級,乃結合表現型與基因型特徵,加以綜合研判。隨後,基於後續可能的加工應用或商品化的目的,亦測定最佳培養條件並建立最適化培養基以將HL1的菌數產量進行最大化。最終,採取共培養的方式,利用微生物間的交互作用以進行發酵,開發出屬於HL1的發酵乳。
為了進行亞種的分類,利用了多種鑑菌技術,包含了形態觀察、基因序列分析、ERIC-PCR與RAPD指紋、醣類發酵試驗,以及全細胞蛋白質指紋圖譜分析,並透過與兩個亞種的標準菌株(L. kefiranofaciens subsp. kefiranofaciens BCRC 16059T與L. kefiranofaciens subsp. kefirgranum BCRC 80410T)進行比較以分類。結果顯示,在RAPD與全細胞蛋白質指紋圖譜的分析中,發現HL1的親緣關係最接近於亞種kefirgranum,然而其他技術則不具有足夠之亞種層級的鑑定能力。明確鑑定出HL1的亞種分類後,接著測定其最佳的各種培養條件,發現在溫度30°C、pH 6.0且不需添加還原劑的情況下,HL1有顯著較好的生長情形,另一方面,亦發現葡萄糖與酵母抽出物為分別為最適合之碳氮源,且額外補充脫脂乳粉與鈣離子有提升菌數的效果。接著應用反應曲面法進一步尋求最大化的HL1菌數產量,獲得之最適化培養基配方為:1%葡萄糖、4.91 g-nitrogen/L酵母抽出物與4%脫脂乳粉,並且此最適化培養基相較於一般MRS培養基提升約15.1倍的菌數產量。最終,評估HL1與數株候選菌株分別進行共培養之影響以開發新式益生菌發酵乳,基於菌落面積分析、MRS培養液與脫脂乳中的活菌數與產酸情形的結果,發現Lactococcus lactis subsp. cremoris APL 015 (APL 015) 最適合做為與HL1共培養的菌株以製作發酵乳,並透過觀察發酵乳中的發酵曲線,證實其可大幅改善發酵產酸能力,且對於HL1活菌數無負面影響。此外,共培養亦不會在發酵乳成品的理化及感官特性方面造成缺陷。 綜上所述,潛力益生菌HL1經過多種鑑定後方能歸類於L. kefiranofaciens subsp. kefirgranum,並且成功利用反應曲面法建立最適化培養基,將其菌數產量最大化。其後,透過一系列評估,最終將HL1與APL 015進行共培養,開發了一種具有特色的新式益生菌發酵乳製品。 | zh_TW |
| dc.description.abstract | Lactobacillus kefiranofaciens has two subspecies, kefiranofaciens and kefirgranum, with the distinct phenotypic features. However, high similarity of genetic background between these two subspecies makes accurate and definitive identification become a very challenging task. Our lab previously isolated a potential probiotic L. kefiranofaciens HL1 (strain HL1) from kefir grains. In the present study, we first classified strain HL1 to subspecies level. We then optimized the growth medium to improve propagating and fermenting performance of strain HL1 for the industrial application and possible commercialization. Furthermore, a fermented milk product was also developed by the utilization of microbial interaction in co-culture fermentation.
For classification of subspecies, numerous approaches, including morphological characterization, ERIC-PCR and RAPD fingerprinting, 16S rRNA and housekeeping gene sequence analysis, carbohydrate fermentation tests, and whole cell protein profiling, were conducted by comparison with two type strains (L. kefiranofaciens subsp. kefiranofaciens BCRC 16059T and L. kefiranofaciens subsp. kefirgranum BCRC 80410T). Results indicated that strain HL1 was more phylogenetically related to subspecies kefirgranum based on the findings of the RAPD fingerprinting and whole cell protein profiling. Other technics did not possess enough discriminatory power to identify subspecies level. After taxonomy of subspecies, optimal culture conditions for strain HL1 were determined. We observed a significantly higher growth at the temperature of 30°C, initial pH of 6.0 without reducing agent. The best carbon and nitrogen sources for growth medium was glucose and yeast extract, respectively, with supplements of skim milk and calcium. Subsequently, response surface methodology (RSM) was carried out to further maximize the yield of biomass. Results showed that the biomass of this optimized medium with 1% glucose, 4.91 g-nitrogen/L yeast extract, and 4% skim milk, increased 15.1-fold than regular MRS medium after RSM optimization. Finally, the strain HL1 was co-cultured with each of 4 selected starter culture for development of novel probiotics product. Results of colony size test on MRS agar, microbial viability and acidification in both MRS broth and skim milk suggested that Lactococcus lactis subsp. cremoris APL 015 was suitable for co-culturing with strain HL1. This co-culture combination showed remarkably improved fermentation ability and no negative impact on viability of strain HL1 in the later fermentation kinetics experiment. Moreover, there were no deterioration in physicochemical properties and sensory evaluation of final products when co-culturing. In summary, strain HL1, classified as L. kefiranofaciens subsp. kefirgranum, was successfully maximized its biomass by RSM. Afterwards, we developed a novel fermented milk product through coculturing strain HL1 with Lc. lactis subsp. cremoris APL 015. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:11:00Z (GMT). No. of bitstreams: 1 ntu-108-R06626017-1.pdf: 4278775 bytes, checksum: c5571442b164a880eb814ed9aced179e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 謝誌 i
序言 ii 中文摘要 iiii Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 壹、文獻探討 1 一、 乳酸菌之鑑定 1 (一)菌種之分類演進 1 (二)菌種之鑑定技術 2 二、 Lactobacillus kefiranofaciens之背景 9 (一)克弗爾與克弗爾粒 9 (二)克弗爾粒分離乳酸菌L. kefiranofaciens之歷史 13 (三)L. kefiranofaciens subsp. kefiranofaciens與L. kefiranofaciens subsp. kefirgranum之表現型特徵 14 (四)L. kefiranofaciens之亞種分類 17 (五)L. kefiranofaciens之機能性 21 (六)L. kefiranofaciens菌株之特性及加工應用 23 三、 最適化培養基 (Optimized medium) 25 (一)培養之環境因子 25 (二)培養基之營養源 26 (三)培養基之最適化 (Optimization) 28 四、 應用共培養 (Co-culture) 策略製做發酵乳之相關研究 33 (一)乳酸菌於發酵乳製品之應用 33 (二)發酵乳中微生物間之交互作用與共培養之概念 35 (三)利用共培養改善發酵乳製程與產品特性 41 貳、研究動機與目的 46 參、材料與方法 47 一、 試驗設計 47 二、 菌株來源 48 三、 實驗方法 50 (一)菌株之活化、培養、保存與活菌計數 50 (二)菌種鑑定 51 (三)菌株HL1之最適化培養基開發 66 (四)發酵乳共培養菌株之篩選 70 (五)應用於發酵乳製品之製做及分析 71 (六)統計分析 73 肆、結果 74 一、 菌株L. kefiranofaciens HL1之亞種鑑定 74 (一)菌株形態與菌落觀察 74 (二)基因型特徵分析 74 (三)表現型特徵分析 83 二、 建立菌株L. kefiranofaciens HL1之最適化培養基 89 (一)最佳生長環境條件測定 89 (二)最佳培養基組成測定 94 (三)最適化之培養基配方 103 三、 應用共培養策略製做L. kefiranofaciens HL1之發酵乳 114 (一)共培養菌株之篩選 114 (二)發酵乳發酵能力之評估 128 (三)發酵乳之理化特性 132 (四)發酵乳之感官品評 138 伍、討論 140 一、 菌株L. kefiranofaciens HL1之亞種鑑定 140 二、 建立菌株L. kefiranofaciens HL1之最適化培養基 143 三、 應用共培養策略製做L. kefiranofaciens HL1之發酵乳 146 (一)篩選應用於共培養之菌株 146 (二)評估共培養時發酵乳之發酵能力 148 (三)探討共培養對於發酵乳之理化特性與感官品評之影響 149 陸、結論 150 柒、附錄 152 捌、參考文獻 153 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Lactobacillus kefiranofaciens HL1 | zh_TW |
| dc.subject | 發酵乳 | zh_TW |
| dc.subject | 共培養 | zh_TW |
| dc.subject | 最適化培養基 | zh_TW |
| dc.subject | 反應曲面法 | zh_TW |
| dc.subject | 亞種鑑定 | zh_TW |
| dc.subject | optimized medium | en |
| dc.subject | response surface methodology | en |
| dc.subject | subspecies identification | en |
| dc.subject | Lactobacillus kefiranofaciens HL1 | en |
| dc.subject | fermented milk | en |
| dc.subject | co-culture | en |
| dc.title | 益生菌Lactobacillus kefiranofaciens HL1之亞種鑑定與最適化培養基之建立並應用共培養策略製做發酵乳 | zh_TW |
| dc.title | Subspecies identification and medium optimization of probiotic strain Lactobacillus kefiranofaciens HL1 and its co-culture strategy for manufacturing fermented milk | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王聖耀 | zh_TW |
| dc.contributor.coadvisor | Sheng-Yao Wang | en |
| dc.contributor.oralexamcommittee | 周正俊;黃麗娜;陳勁初 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | Lactobacillus kefiranofaciens HL1,亞種鑑定,反應曲面法,最適化培養基,共培養,發酵乳, | zh_TW |
| dc.subject.keyword | Lactobacillus kefiranofaciens HL1,subspecies identification,response surface methodology,optimized medium,co-culture,fermented milk, | en |
| dc.relation.page | 178 | - |
| dc.identifier.doi | 10.6342/NTU201902074 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2024-08-15 | - |
| Appears in Collections: | 動物科學技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-2.pdf Restricted Access | 4.18 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
