Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78667
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kou Lee)
dc.contributor.authorHsin-Hsiang Chenen
dc.contributor.author陳信翔zh_TW
dc.date.accessioned2021-07-11T15:10:56Z-
dc.date.available2022-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citationAllman, D., and Pillai, S. (2008). Peripheral B cell subsets. Curr Opin Immunol 20, 149-157.
Bekeredjian-Ding, I.B., Wagner, M., Hornung, V., Giese, T., Schnurr, M., Endres, S., and Hartmann, G. (2005). Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN (vol 174, pg 4043, pg 2005). Journal of Immunology 174, 5884-5884.
Bendelac, A., Bonneville, M., and Kearney, J.F. (2001). Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1, 177-186.
Berggren, O., Hagberg, N., Weber, G., Alm, G.V., Ronnblom, L., and Eloranta, M.L. (2012). B lymphocytes enhance interferon-a production by plasmacytoid dendritic cells. Arthritis Rheum-Us 64, 3409-3419.
Bernasconi, N.L., Onai, N., and Lanzavecchia, A. (2003). A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101, 4500-4504.
Boussiotis, V.A., Nadler, L.M., Strominger, J.L., and Goldfeld, A.E. (1994). Tumor necrosis factor alpha is an autocrine growth factor for normal human B cells. Proc Natl Acad Sci U S A 91, 7007-7011.
Braun, D., Caramalho, I., and Demengeot, J. (2002). IFN-alpha/beta enhances BCR-dependent B cell responses. Int Immunol 14, 411-419.
Chen, T.T., Tsai, M.H., Kung, J.T., Lin, K.I., Decker, T., and Lee, C.K. (2016). STAT1 regulates marginal zone B cell differentiation in response to inflammation and infection with blood-borne bacteria. J Exp Med 213, 3025-3039.
Crow, M.K. (2014). Type I interferon in the pathogenesis of lupus. J Immunol 192, 5459-5468.
Deane, J.A., Pisitkun, P., Barrett, R.S., Feigenbaum, L., Town, T., Ward, J.M., Flavell, R.A., and Bolland, S. (2007). Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801-810.
Ding, C., Cai, Y., Marroquin, J., Ildstad, S.T., and Yan, J. (2009a). Plasmacytoid dendritic cells regulate autoreactive B cell activation via soluble factors and in a cell-to-cell contact manner. J Immunol 183, 7140-7149.
Ding, C.L., Cai, Y.H., Marroquin, J., Ildstad, S.T., and Yan, J. (2009b). Plasmacytoid Dendritic Cells Regulate Autoreactive B Cell Activation via Soluble Factors and in a Cell-to-Cell Contact Manner. Journal of Immunology 183, 7140-7149.
Domeier, P.P., Chodisetti, S.B., Soni, C., Schell, S.L., Elias, M.J., Wong, E.B., Cooper, T.K., Kitamura, D., and Rahman, Z.S. (2016). IFN-gamma receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J Exp Med 213, 715-732.
Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450.
Eckl-Dorna, J., and Batista, F.D. (2009). BCR-mediated uptake of antigen linked to TLR9 ligand stimulates B-cell proliferation and antigen-specific plasma cell formation. Blood 113, 3969-3977.
Furie, R., Werth, V.P., Merola, J.F., Stevenson, L., Reynolds, T.L., Naik, H., Wang, W.T., Christmann, R., Gardet, A., Pellerin, A., et al. (2019). Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest 129, 1359-1371.
Heer, A.K., Shamshiev, A., Donda, A., Uematsu, S., Akira, S., Kopf, M., and Marsland, B.J. (2007). TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. Journal of Immunology 178, 2182-2191.
Jego, G., Palucka, A.K., Blanck, J.P., Chalouni, C., Pascual, V., and Banchereau, J. (2003). Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225-234.
Kim, T., Kanayama, Y., Negoro, N., Okamura, M., Takeda, T., and Inoue, T. (1987). Serum Levels of Interferons in Patients with Systemic Lupus-Erythematosus. Clin Exp Immunol 70, 562-569.
Liu, Y.J. (2005). IPC: Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23, 275-306.
Luu, K., Greenhill, C.J., Majoros, A., Decker, T., Jenkins, B.J., and Mansell, A. (2014). STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunol Cell Biol 92, 761-769.
Martin, F., Oliver, A.M., and Kearney, J.F. (2001). Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617-629.
Means, T.K., Latz, E., Hayashi, F., Murali, M.R., Golenbock, D.T., and Luster, A.D. (2005). Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115, 407-417.
Mendez, A., and Mendoza, L. (2016). A Network Model to Describe the Terminal Differentiation of B Cells. PLoS Comput Biol 12, e1004696.
Mitani, Y., Takaoka, A., Kim, S.H., Kato, Y., Yokochi, T., Tanaka, N., and Taniguchi, T. (2001). Cross talk of the interferon-alpha/beta signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells 6, 631-640.
Nojima, T., Haniuda, K., Moutai, T., Matsudaira, M., Mizokawa, S., Shiratori, I., Azuma, T., and Kitamura, D. (2011). In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat Commun 2, 465.
Nutt, S.L., Hodgkin, P.D., Tarlinton, D.M., and Corcoran, L.M. (2015). The generation of antibody-secreting plasma cells. Nat Rev Immunol 15, 160-171.
Rutishauser, R.L., Martins, G.A., Kalachikov, S., Chandele, A., Parish, I.A., Meffre, E., Jacob, J., Calame, K., and Kaech, S.M. (2009). Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296-308.
Schoggins, J.W., and Rice, C.M. (2011). Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1, 519-525.
Shapiro-Shelef, M., and Calame, K. (2005). Regulation of plasma-cell development. Nat Rev Immunol 5, 230-242.
Shaw, J., Wang, Y.H., Ito, T., Arima, K., and Liu, Y.J. (2010). Plasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70. Blood 115, 3051-3057.
Shin, E.C., Seifert, U., Kato, T., Rice, C.M., Feinstone, S.M., Kloetzel, P.M., and Rehermann, B. (2006). Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection. J Clin Invest 116, 3006-3014.
Smith, J.K. (2018). IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 4, 24.
Tezuka, H., Abe, Y., Asano, J., Sato, T., Liu, J., Iwata, M., and Ohteki, T. (2011). Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 34, 247-257.
Tung, J.W., Mrazek, M.D., Yang, Y., Herzenberg, L.A., and Herzenberg, L.A. (2006). Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc Natl Acad Sci U S A 103, 6293-6298.
Wang, H., Nicholas, M.W., Conway, K.L., Sen, P., Diz, R., Tisch, R.M., and Clarke, S.H. (2006). EBV latent membrane protein 2A induces autoreactive B cell activation and TLR hypersensitivity. J Immunol 177, 2793-2802.
Wen, Z., Zhong, Z., and Darnell, J.E., Jr. (1995). Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241-250.
Wilson, L.E., Widman, D., Dikman, S.H., and Gorevic, P.D. (2002). Autoimmune disease complicating antiviral therapy for hepatitis C virus infection. Semin Arthritis Rheu 32, 163-173.
Xu, W., Joo, H., Clayton, S., Dullaers, M., Herve, M.C., Blankenship, D., De La Morena, M.T., Balderas, R., Picard, C., Casanova, J.L., et al. (2012). Macrophages induce differentiation of plasma cells through CXCL10/IP-10. J Exp Med 209, 1813-1823, S1811-1812.
Xu, W., and Zhang, J.J. (2005). Stat1-dependent synergistic activation of T-bet for IgG2a production during early stage of B cell activation. J Immunol 175, 7419-7424.
Yoshizaki, K., Nakagawa, T., Fukunaga, K., Tseng, L.T., Yamamura, Y., and Kishimoto, T. (1984). Isolation and characterization of B cell differentiation factor (BCDF) secreted from a human B lymphoblastoid cell line. J Immunol 132, 2948-2954.
Zhang, H., Gregorio, J.D., Iwahori, T., Zhang, X.Y., Choi, O., Tolentino, L.L., Prestwood, T., Carmi, Y., and Engleman, E.G. (2017). A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. P Natl Acad Sci USA 114, 1988-1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78667-
dc.description.abstractB淋巴球藉由活化與分化並分泌抗體在適應性免疫反應扮演著重要的角色。而另一方面,漿狀樹突細胞(pDC)可藉由類鐸受體(Toll-like receptor, TLR)辨識病毒,產生大量的第一型干擾素(Type I IFN, IFN-I)在先天性抗病毒免疫反應中扮演至關重要的角色。B 細胞與pDC曾被報導可增強體液免疫反應,然而pDC如何協調B細胞分化的詳細機制仍尚未明確。因此我們使用TLR7配體R848的刺激並建立小鼠脾臟pDC和B細胞體外共培養系統。藉由此系統我們發現pDC可增強TLR7引起的B細胞活化,並增加MHCII,CD86和CD69表現,顯著提升IL-6和CXCL10分泌。此外,B/pDC藉由可溶性因子和細胞接觸依賴性方式促進漿細胞分化,但會降低B細胞存活和生發中心B細胞 (germinal center B cell, GC B)的形成。另外我們發現了一群表現CD19+的pDC,在TLR7刺激下會以依賴IFNαR和STAT1訊息傳遞的方式增生。而B細胞子集部分,在 pDC/R848刺激下,濾泡B細胞(Follicular B cell)比邊緣區B細胞 (Marginal Zone B)的增強反應更敏感。此外,在B/pDC共培養系統中我們發現雖然IFNαR訊息傳遞是必須的,但只是IFN-I並不足以誘導B細胞完全活化。有趣的是,不僅B細胞,pDC的IFNαR信號傳導也有助於增強反應。而B/pDC對於STAT1,一個IFNαR下游分子,訊息傳遞的需求也相似於IFNαR的結果。當B細胞與pDC缺乏IFNαR與STAT1時會嚴重減少細胞激素與細胞趨化因子的分泌,進而影響漿細胞的存活與分化。在活體動物實驗方面,把B細胞送入Rag1基因剔除老鼠中去重建B細胞反應時若去除pDC會減少R848誘導的IgM分泌,這結果意味著pDC在胸腺非依賴性抗體反應扮演重要的角色。總而言之,我們在體外培養與活體實驗均驗證pDC可增強B細胞活化、增生與漿細胞分化並證實在B細胞與pDC的IFN-I訊息傳遞可正向調控體液免疫反應。zh_TW
dc.description.abstractB cells function to secret antibodies upon activation and differentiation, which play an important role in adaptive immunity. Plasmocytoid dendritic cells (pDCs), on the other hand, are a rare population known for robust type I IFN (IFN-I) production upon TLR stimulation and are crucial for antivirus response of innate immunity. B cells and pDCs can cooperate to boost the humoral immunity. However, the detailed mechanisms of how pDCs orchestrate B cell differentiation remains elusive. To investigate the mechanisms, we set up an in vitro coculture system of splenic pDCs and B cells and stimulated with R848, a TLR7 agonist. pDCs enhanced TLR7-mediated B cell activation with increased expression of MHCII, CD86 and CD69 and significantly augmented the production of IL-6 and CXCL10. Moreover, increased proliferation and plasma cell differentiation but decreased survival and germinal center B cell (GC B) formation were also found through both soluble factor- and cell-to-cell contact- dependent manner. Interestingly, a distinct subset of CD19+ pDCs proliferated in response to TLR7 stimulation in a IFNαR and STAT1 signaling-dependent manner. In addition to pDC, follicular B cells (FO B) were more sensitive to pDC/R848 stimulation than marginal zone B cells (MZ B). Among soluble factors secreted in the coculture system, IFN-I was found to be critical for the enhanced response. B cells lacking IFNαR showed impaired responses. Moreover, IFNαR signaling was necessary but not sufficient to induce full B cell activation. Interestingly, IFNαR signaling in pDCs also contributed to the enhanced responses. A similar phenotype was also observed for cell-intrinsic requirement of STAT1 signaling for both B cells and pDCs. Lack of IFNαR or STAT1 signaling in pDC and B cell severely impaired the production of proinflammatory cytokines and chemokines, especially IL-6 and CXCL10 which are an impotent for plasma cell survival and differentiation. Depletion of pDCs in Rag1-/- mice that had been adoptively transferred with B cells also reduced IgM production induced by R848, suggesting an essential role of pDC in T-independent antibody response in vivo. Collectively, we have identified that murine splenic pDCs directly enhance B cell activation, proliferation and plasma cell differentiation in vitro and in vivo, and defined a crucial role of IFN-I signaling in both pDCs and B cells to positively modulate the humoral immunity.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:10:56Z (GMT). No. of bitstreams: 1
ntu-108-R06449009-1.pdf: 6767324 bytes, checksum: 246ddf150c5f65c01c1326937669c222 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
Abbreviations iii
摘要 iv
Abstract v
Contents vii
Chapter 1 Introduction 1
1.1 TLR-mediated B cell differentiation 1
1.2 B cell subsets 2
1.3 Plasmacytoid dendritic cell 4
1.4 pDCs and B cell interaction 5
1.5 Type I Interferon 6
1.6 Type I Interferon and antibody response 7
1.7 STAT1 signaling 8
1.8 STAT1 and antibody response 9
1.9 Rationale and specific aims 9
1.10 Significance 11
Chapter 2 Materials and Methods 12
2.1 Mice 12
2.2 Antibodies staining for flow cytometry 12
2.3 Cell sorting 13
2.4 B/pDC coculture system 13
2.5 B/pDC transwell culture system 14
2.6 40LB 3T3 feeder system 15
2.7 CFSE cell proliferation assay 15
2.8 Detection of dead and apoptosis cell 16
2.9 Enzyme-Linked Immunosorbent Assay (ELISA) 16
2.10 Legendplex bead-base immunoassay 17
2.11 Immunofluorescence 18
2.12 pDC depletion in vivo 19
2.13 Adoptively cell transfer of B cell 19
2.14 Statistical analysis 19
2.15 Antibodies 20
Chapter 3 Results 21
3.1 pDCs enhance TLR7-mediated proliferation, activation and differentiation of B cells 21
3.2 pDCs decrease TLR7-mediated survival but increase proliferation of B cells 22
3.3 A distinct subset of CD19+ pDCs proliferates in response to TLR7 stimulation 23
3.4 IFNα is necessary but not sufficient to induce CD19+ pDCs proliferation in response to TLR7 stimulation 24
3.5 CD19+ or CD19- pDCs have a comparable capability to TLR7-mediated B cell activation and proliferation 25
3.6 pDC-derived soluble factors and cell-to-cell contact enhance TLR7-mediated B cell activation and proliferation 25
3.7 IFN-I signaling pathway is necessary but not sufficient to induce B cell activation and proliferation in response to TLR7 stimulation 27
3.8 Both B cell and pDC intrinsic IFNαR signaling are required for B cell activation and proliferation in response to TLR7 agonist 28
3.9 STAT1 signaling is required in both B cell and pDC for B cell activation and proliferation in response to TLR7 agonist 28
3.10 IFNαR and STAT1 signaling are required for the synergism between pDCs and B cells in production of CXCL10 and IL-6 in response to TLR7 stimulation 29
3.11 pDC enhances TLR-7mediated activation and proliferation of FO B but not MZ B 30
3.12 FO B is more sensitive to pDC-dependent, TLR7-mediated enhancement of activation and proliferation than MZ B 31
3.13 pDCs is required for enhancing TLR7-mediated differentiation of both FO B and MZ B 32
3.14 FO B is more sensitive to pDC-dependent, TLR7-mediated enhancement of plasma cell differentiation than MZ B 33
3.15 FO B is less efficiently to differentiate into plasma cell and secret antibody even in the present of pDCs 34
3.16 pDCs do not enhance TLR9-mediated activation and proliferation of both FO B and MZ B 35
3.17 Both FO B and MZ B are equally IFNαR signaling required in TLR7/pDC mediated B cell activation and proliferation 35
3.18 pDCs inhibit TLR7-mediated differentiation of FO B, but not MZ B, differentiate into GC B 36
3.19 TLR7 stimulation induce clustering and migration of pDC into T-B border of spleen in vivo 38
3.20 Anti-BST2 monoclonal antibody efficiently depletes pDCs in BM and spleen 38
3.21 Depletion of pDCs reduced TLR7-mediated B cell proliferation and plasma cells differentiation in vivo 39
3.22 Depletion of pDC reduces TLR7-mediated plasma cell differentiation but increase GC B formation in WT mice 40
Chapter 4 Discussion 41
4.1 The role of of pDCs in B cell activation, proliferation and survival 41
4.2 The role of of pDCs in B cell differentiation 42
4.3 The role of IFN-I signaling in pDC-dependent enhancement of B cell response 44
4.4 The role of different pDC and B-cell subsets in TLR-7 mediated enhancement of B cell response …..45
4.5 Is pDC-enhanced B cell response specific to TLR7 stimulation? 46
4.6 Concluding remarks 47
Chapter 5 References 49
Chapter 6 Figures 53
dc.language.isoen
dc.subject類鐸受體zh_TW
dc.subject第一型干擾素zh_TW
dc.subject漿狀樹突細胞zh_TW
dc.subjectB淋巴球zh_TW
dc.subjectB cellsen
dc.subjectPlasmocytoid dendritic cellsen
dc.subjectTLRen
dc.subjectIFN-Ien
dc.title漿狀樹突細胞增強類鐸受體調控之B淋巴球活化與分化zh_TW
dc.titlePlasmacytoid Dendritic Cells Enhance TLR-mediated B-lymphocyte Activation and Differentiationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林國儀(Kuo-I Lin),呂春敏(Chuen-Miin Leu)
dc.subject.keywordB淋巴球,漿狀樹突細胞,類鐸受體,第一型干擾素,zh_TW
dc.subject.keywordB cells,Plasmocytoid dendritic cells,TLR,IFN-I,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201902793
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06449009-1.pdf
  未授權公開取用
6.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved