請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78647
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳 | zh_TW |
dc.contributor.advisor | Yang-Fang Chen | en |
dc.contributor.author | 江慶瑜 | zh_TW |
dc.contributor.author | Cing-Yu Jiang | en |
dc.date.accessioned | 2021-07-11T15:09:36Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2019-08-28 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Flexible Electronic Devices Are The Future — Here’s Why , September, 2018
http://www.youngupstarts.com/2018/09/21/flexible-electronic-devices-are-the-future-heres-why/ 2. Nathan, A., Ahnood, A., Cole, M. T., Lee, S., Suzuki, Y., Hiralal, P., ... & Haque, S. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100 (Special Centennial Issue), 1486-1517 (2012). 3. Wong, W. S., & Salleo, A. (Eds.). Flexible electronics: materials and applications (Vol. 11). Springer Science & Business Media. (2009). 4. Yang, Y., & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev., 48(6), 1465-1491 (2019). 5. Stoppa, M., & Chiolerio, A. Wearable electronics and smart textiles: a critical review. Sensors, 14(7), 11957-11992 (2014). 6. Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H., & Bao, Z. 25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress. Adv. Mater., 25(42), 5997-6038 (2013). 7. Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., ... & Bauer, S. An ultra-lightweight design for imperceptible plastic electronics. Nature, 499(7459), 458 (2013). 8. Chen, K., Gao, W., Emaminejad, S., Kiriya, D., Ota, H., Nyein, H. Y. Y., ... & Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater., 28(22), 4397-4414 (2016). 9. Schwartz, G., Tee, B. C. K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., & Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun., 4, 1859 (2013). 10. Knopfmacher, O., Hammock, M. L., Appleton, A. L., Schwartz, G., Mei, J., Lei, T., ... & Bao, Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun., 5, 2954 (2014). 11. Ji, S., Wang, H., Wang, T., & Yan, D. A High‐Performance Room‐Temperature NO2 Sensor Based on An Ultrathin Heterojunction Film. Adv. Mater., 25(12), 1755-1760 (2013). 12. Zhang, F., Di, C. A., Berdunov, N., Hu, Y., Hu, Y., Gao, X., ... & Zhu, D. Ultrathin film organic transistors: precise control of semiconductor thickness via spin‐coating. Adv. Mater., 25(10), 1401-1407 (2013). 13. Khan, H. U., Roberts, M. E., Johnson, O., Förch, R., Knoll, W., & Bao, Z. In Situ, Label‐Free DNA Detection Using Organic Transistor Sensors. Adv. Mater., 22(40), 4452-4456 (2010). 14. Guo, Y., Yu, G., & Liu, Y. Functional organic field‐effect transistors. Adv. Mater., 22(40), 4427-4447 (2010). 15. Johnson, M., Bennett, B. R., Yang, M. J., Miller, M. M., & Shanabrook, B. V. Hybrid Hall effect device. Appl. Phys. Lett., 71(7), 974-976 (1997). 16. Thiele, S., Vincent, R., Holzmann, M., Klyatskaya, S., Ruben, M., Balestro, F., & Wernsdorfer, W. Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett., 111(3), 037203 (2013). 17. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater., 7, 179–186 (2008). 18. Jansen, R. The spin-valve transistor: a review and outlook. J. Phys. D, 36(19), R289 (2003). 19. Miller, M. M., Sheehan, P. E., Edelstein, R. L., Tamanaha, C. R., Zhong, L., Bounnak, S., ... & Colton, R. J. A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater., 225(1-2), 138-144 (2001). 20. Dogaru, T., & Smith, S. T. Giant magnetoresistance-based eddy-current sensor. IEEE Trans. Magn., 37(5), 3831-3838 (2001). 21. Pérez‐Tomás, A., Lima, A., Billon, Q., Shirley, I., Catalan, G., & Lira‐Cantú, M. A Solar Transistor and Photoferroelectric Memory. Adv. Funct. Mater., 28(17), 1707099 (2018). 22. Tzou, C. Y., Cai, S. Y., Tseng, C. Y., Chang, C. Y., Chiang, S. Y., Jiang, C. Y., ... & Chen, Y. F. An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Appl. Phys. Lett., 114(19), 193301 (2019). 23. Cai, S. Y., Chang, C. H., Lin, H. I., Huang, Y. F., Lin, W. J., Lin, S. Y., ... & Tzou, C. Y. Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: Toward an additional perception of artificial intelligence. ACS Appl. Mater. Interfaces, 10(20), 17393-17400. (2018). 24. Masters, G. M. Renewable and efficient electric power systems. John Wiley & Sons (2013). 25. Fletcher, G. W. The Guide to Photovoltaic System Installation. Cengage Learning (2013). 26. Air mass (solar energy)-From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Air_mass_(solar_energy)#cite_note-NASA5777K-1 27. Defining standard spectra for solar panels http://www.greenrhinoenergy.com/solar/radiation/spectra.php 28. PVEucation.org-Standard Solar Spectra https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra 29. Kirk, A. P. Solar photovoltaic cells: photons to electricity. Academic Press (2014). 30. Optoelectronics-Organic Semiconductors https://www.oe.phy.cam.ac.uk/research/materials/osemiconductors 31. Wang, C., Dong, H., Jiang, L., & Hu, W. Organic semiconductor crystals. Chem. Soc. Rev., 47(2), 422-500 (2018). 32. Klauk, H. (Ed.). Organic electronics II: more materials and applications (Vol. 2). John Wiley & Sons (2012). 33. Steim, R., Kogler, F. R., & Brabec, C. J. Interface materials for organic solar cells. J. Mater. Chem., 20(13), 2499-2512 (2010). 34. Organic electronics Π –Deepak Gupta https://www.researchgate.net/profile/A_El-Denglawey/post/How_to_calculate_HOMO_and_LUMO/attachment/59d62d4c79197b807798b924/AS%3A349781948944385%401460405923828/download/4.pdf 35. Flexible Electronic Devices Are The Future — Here’s Why , September, 2018 http://www.youngupstarts.com/2018/09/21/flexible-electronic-devices-are-the-future-heres-why/ 36. Nathan, A., Ahnood, A., Cole, M. T., Lee, S., Suzuki, Y., Hiralal, P., ... & Haque, S. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100(Special Centennial Issue), 1486-1517 (2012). 37. Wong, W. S., & Salleo, A. (Eds.). Flexible electronics: materials and applications (Vol. 11). Springer Science & Business Media. (2009) 38. Harris, K. D., Elias, A. L., & Chung, H. J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J. Mater. Sci., 51(6), 2771-2805 (2016). 39. Choong, C. L., Shim, M. B., Lee, B. S., Jeon, S., Ko, D. S., Kang, T. H., ... & Jeong, Y. J. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater., 26(21), 3451-3458 (2014). 40. Fan, F. R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 12(6), 3109-3114 (2012). 41. Kim, K. H., Jang, N. S., Ha, S. H., Cho, J. H., & Kim, J. M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small, 14(14), 1704232 (2018). 42. Mannsfeld, S. C., Tee, B. C., Stoltenberg, R. M., Chen, C. V. H., Barman, S., Muir, B. V., ... & Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 9(10), 859 (2010). 43. Pang, C., Lee, G. Y., Kim, T. I., Kim, S. M., Kim, H. N., Ahn, S. H., & Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater., 11(9), 795 (2012). 44. Sun, Y., Seo, J. H., Takacs, C. J., Seifter, J., & Heeger, A. J. Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater., 23(14), 1679-1683 (2011). 45. Znaidi, L. Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B, 174(1-3), 18-30 (2010). 46. Tzou, C. Y., Cai, S. Y., Tseng, C. Y., Chang, C. Y., Chiang, S. Y., Jiang, C. Y., ... & Chen, Y. F. An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Appl. Phys. Lett., 114(19), 193301 (2019). 47. Mukherjee, B., Mukherjee, M., Choi, Y., & Pyo, S. Organic phototransistor with n-type semiconductor channel and polymeric gate dielectric. J. Phys. Chem. C, 113(43), 18870-18873 (2009). 48. Lucas, B., El Amrani, A., Chakaroun, M., Ratier, B., Antony, R., & Moliton, A. Ultraviolet light effect on electrical properties of a flexible organic thin film transistor. Thin Solid Films, 517(23), 6280-6282 (2009). 49. Saragi, T. P. I., Pudzich, R., Fuhrmann, T., & Salbeck, J. Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound. Appl. Phys. Lett., 84, 2334-2336 (2004). 50. Kim, K.H., Bae, S.Y., Kim, Y.S., Hur, J.A., Hoang, M.H., Lee, T.W., Cho, M.J., Kim, Y., Kim, M., Jin, J.I. and Kim, S.J. Highly Photosensitive J‐Aggregated Single‐Crystalline Organic Transistors. Adv. Mater., 23, 3095-3099 (2011). 51. Cho, M. Y., Kim, S. J., Han, Y. D., Park, D. H., Kim, K. H., Choi, D. H., & Joo, J. Highly Sensitive, Photocontrolled, Organic Thin‐Film Transistors Using Soluble Star‐shaped Conjugated Molecules. Adv. Funct. Mater., 18, 2905-2912 (2008). 52. Labram, J. G., Wöbkenberg, P. H., Bradley, D. D. C., & Anthopoulos, T. D. Low-voltage ambipolar phototransistors based on a pentacene/PC61BM heterostructure and a self-assembled nano-dielectric. Org Electron., 11, 1250-1254 (2010). 53. Dutta, S., & Narayan, K. S. Photoinduced charge transport in polymer field effect transistors. Synth. Met., 146, 321-324 (2004). 54. Anthopoulos, T. D. Electro-optical circuits based on light-sensing ambipolar organic field-effect transistors. Appl. Phys. Lett., 91, 113513 (2007). 55. Mok, S. M., Yan, F., & Chan, H. L. Organic phototransistor based on poly (3-hexylthiophene)/Ti O 2 nanoparticle composite. Appl. Phys. Lett., 93, 256 (2008). 56. Baeg, K. , Binda, M. , Natali, D. , Caironi, M. and Noh, Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater., 25, 4267-4295 (2013). 57. Thiele, S., Vincent, R., Holzmann, M., Klyatskaya, S., Ruben, M., Balestro, F., & Wernsdorfer, W. Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett., 111(3), 037203 (2013). 58. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater., 7, 179–186 (2008). 59. Jansen, R. The spin-valve transistor: a review and outlook. J. Phys. D, 36(19), R289 (2003). 60. Junqing Zhao, Hang Guo, Yao Kun Pang, Fengben Xi, Zhi Wei Yang, Guoxu Liu, Tong Guo, Guifang Dong, Chi Zhang, and Zhong Lin Wang . Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS Nano , 11 (11) , 11566-11573 (2017). 61. Yaping Zang, Fengjiao Zhang, Dazhen Huang, Chong-an Di, Daoben Zhu. Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv. Mater., 27 (48) , 7979-7985 (2015). 62. Li-Fi-From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Li-Fi 63. Sabrina Abedin, Tasfia Tasbin, Avijit Hira, "Optical wireless data transmission with enhanced substitution Caesar Cipher WHEEL encryption", Electrical Computer and Communication Engineering (ECCE) International Conference on. IEEE (2017). 64. Y. Bi, X. S. Hu, Y. Jin, M. Niemier, K. Shamsi, X. Yin, "Enhancing hardware security with emerging transistor technologies", Proc. 26th Ed. Great Lakes Symp. VLSI, pp. 305-310 (2016). 65. Bermúdez, G. S. C., Fuchs, H., Bischoff, L., Fassbender, J., & Makarov, D. Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics. Nat. Electron., 1(11), 589 (2018). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78647 | - |
dc.description.abstract | 在此我們報告一種嶄新的可撓式的磁控光電晶體是一種藉由結合有機異質接面太陽能電池(ITO/ZnO/P3HT:PC61BM/MoO3/Ag)和具有為金字塔結構的磁電薄膜元件(FeNi/PDMS/AgNWs)的垂直整合結構。在此我們利用兩種元件分別感應光和磁場的特性來集結形成電晶體。這項器件可作為開關使用,而且透過光和磁訊號可以調控流經電晶體的訊號。這份研究裡的光電晶體具有一些特性,包含快速響應時間、低成本、自供電、高開關電流比率、非接觸式人機互動和低耗能。這些獨特的特性使磁控光電晶體有著發展穿戴式電子元件、監控系統、通訊和資訊安全的潛力。 | zh_TW |
dc.description.abstract | We report a novel flexible magnetically controllable phototransistor using a tandem structure composed of an organic solar cell (OSC) of ITO/ZnO/P3HT:PC61BM/MoO3/Ag and a magnetoelectronic film with micropyramid structure of FeNi/PDMS/AgNWs. This novel device carries the properties of these two components sensing light and magnetic field, to form a transistor. It can function as a switch, i.e., current flowing through the transistor can be modulated by optical and magnetical stimuli. Further, the novel phototransistor has several features, including fast response time, low-cost, self-powered, high ON/OFF ratio, touchless human–machine interaction, and low power consumption. These unique characteristics drive the magnetically controllable phototransistor a potential candidate in wearable electronics, monitors, communication, and information security. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:09:36Z (GMT). No. of bitstreams: 1 ntu-108-R06245010-1.pdf: 2259279 bytes, checksum: fc170ed22a83752d897dc15822b58ecc (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 Chapter 2 Theoretical Background 4 2.1 Solar spectrum 4 2.2 Models of solar cells 5 2.2.1 Ideal model 5 2.2.2 Non-ideal effect 7 2.3 Parameters of solar cells 9 2.3.1 Quantum efficiency (QE) 9 2.3.2 Spectral response (SR) 10 2.3.3 Short circuit current density (Jsc) 10 2.3.4 Open circuit voltage (Voc) 11 2.3.5 Fill factor (FF) and Power convert efficiency (PCE,η) 11 2.4 Organic solar cells (OSCs) 13 2.4.1 Organic semiconductor 13 2.4.2 Structure of OSCs 14 2.4.3 Photovoltaic effect 16 2.5 Magnetoelectronic device 17 2.5.1 Flexible electronics 17 2.5.2 The stretchable resistive sensor 19 Chapter 3 Experimental details 21 3.1 Instrument 21 3.1.1 The list of equipment 21 3.1.2 Scanning electron microscope (SEM) 21 3.1.3 Solar simulator 23 3.1.4 Thermal evaporation 23 3.1.5 Oxygen plasma cleaner 25 3.2 Materials 26 3.2.1 The list of materials 26 3.2.2 P3HT 26 3.2.3 PC61BM 27 3.2.4 Polydimethylsiloxane (PDMS) 28 3.2.5 Silver nanowires (AgNWs) 28 3.3 Material preparation 28 3.3.1 Preparation of Sol‐gel‐derived ZnO 28 3.3.2 Preparation of active layer 29 3.3.3 Preparation of ITO glass 29 3.4 Device fabrication 29 3.4.1 Organic solar cells 29 3.4.2 Flexible magnetoelectronic device 30 Chapter 4 Results and Discussion 31 4.1 Characteristics of flexible magnetoelectronic device 31 4.2 Characteristics of organic solar cells 33 4.3 Characteristics of the magnetically controllable phototransistor 35 Chapter 5 Conclusion 50 REFERENCE 51 | - |
dc.language.iso | en | - |
dc.title | 磁感應的自供電可撓式有機光電晶體 | zh_TW |
dc.title | Self-Powered Magnetic/Optical Hybrid Flexible Phototransistor for Artificial Magnetoreception | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 許芳琪 | zh_TW |
dc.contributor.coadvisor | Fang-Chi Hsu | en |
dc.contributor.oralexamcommittee | 王偉華 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Hua Wang | en |
dc.subject.keyword | 可撓式,有機太陽能電池,磁電元件,光電晶體,磁感應,非接觸式元件, | zh_TW |
dc.subject.keyword | flexible,organic solar cell,magnetoelectronic device,phototransistor,magnetoreception,touchless, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU201902947 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-12 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。