請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78633
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘俊良(Chun-Liang Pan) | |
dc.contributor.author | Chien-Po Liao | en |
dc.contributor.author | 廖健博 | zh_TW |
dc.date.accessioned | 2021-07-11T15:08:40Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | Adachi, T., Kunitomo, H., Tomioka, M., Ohno, H., Okochi, Y., Mori, I., and Iino, Y. (2010). Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans. Genetics 186, 1309-1319.
Alkema, M.J., Hunter-Ensor, M., Ringstad, N., and Horvitz, H.R. (2005). Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247-260. Ardiel, E.L., and Rankin, C.H. (2010). An elegant mind: learning and memory in Caenorhabditis elegans. Learning & memory (Cold Spring Harbor, NY) 17, 191-201. Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., and Basler, K. (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509-522. Barford, K., Deppmann, C., and Winckler, B. (2017). The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Developmental neurobiology 77, 405-418. Bargmann, C.I., and Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742. Bartscherer, K., Pelte, N., Ingelfinger, D., and Boutros, M. (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523-533. Berendzen, K.M., Durieux, J., Shao, L.W., Tian, Y., Kim, H.E., Wolff, S., Liu, Y., and Dillin, A. (2016). Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. Cell 166, 1553-1563.e1510. Bezanilla, M., Gladfelter, A.S., Kovar, D.R., and Lee, W.L. (2015). Cytoskeletal dynamics: a view from the membrane. The Journal of cell biology 209, 329-337. Brandt, J.P., and Ringstad, N. (2015). Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior. Current biology : CB 25, 2228-2237. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Bretscher, A.J., Kodama-Namba, E., Busch, K.E., Murphy, R.J., Soltesz, Z., Laurent, P., and de Bono, M. (2011). Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69, 1099-1113. Burkewitz, K., Morantte, I., Weir, H.J.M., Yeo, R., Zhang, Y., Huynh, F.K., Ilkayeva, O.R., Hirschey, M.D., Grant, A.R., and Mair, W.B. (2015). Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160, 842-855. Chalasani, S.H., Chronis, N., Tsunozaki, M., Gray, J.M., Ramot, D., Goodman, M.B., and Bargmann, C.I. (2007). Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63-70. Chen, B., Brinkmann, K., Chen, Z., Pak, C.W., Liao, Y., Shi, S., Henry, L., Grishin, N.V., Bogdan, S., and Rosen, M.K. (2014). The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156, 195-207. Chen, C.H., He, C.W., Liao, C.P., and Pan, C.L. (2017). A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling. PLoS genetics 13, e1006720. Chia, P.H., Chen, B., Li, P., Rosen, M.K., and Shen, K. (2014). Local F-actin network links synapse formation and axon branching. Cell 156, 208-220. Coburn, C.M., Mori, I., Ohshima, Y., and Bargmann, C.I. (1998). A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure. Development (Cambridge, England) 125, 249-258. Colbert, H.A., and Bargmann, C.I. (1995). Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron 14, 803-812. Cosker, K.E., and Segal, R.A. (2014). Neuronal signaling through endocytosis. Cold Spring Harbor perspectives in biology 6. Dekker, L.V., McIntyre, P., and Parker, P.J. (1993). Mutagenesis of the regulatory domain of rat protein kinase C-eta. A molecular basis for restricted histone kinase activity. The Journal of biological chemistry 268, 19498-19504. Dong, X., Liu, O.W., Howell, A.S., and Shen, K. (2013). An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell 155, 296-307. Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91. Ferreira, T., Ou, Y., Li, S., Giniger, E., and van Meyel, D.J. (2014). Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire. Development (Cambridge, England) 141, 650-660. Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., and Bargmann, C.I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154, 1023-1035. Franch-Marro, X., Wendler, F., Guidato, S., Griffith, J., Baena-Lopez, A., Itasaki, N., Maurice, M.M., and Vincent, J.P. (2008). Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nature cell biology 10, 170-177. Gao, F.B., Kohwi, M., Brenman, J.E., Jan, L.Y., and Jan, Y.N. (2000). Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28, 91-101. Gibson, D.A., and Ma, L. (2011). Developmental regulation of axon branching in the vertebrate nervous system. Development (Cambridge, England) 138, 183-195. Gibson, D.A., Tymanskyj, S., Yuan, R.C., Leung, H.C., Lefebvre, J.L., Sanes, J.R., Chedotal, A., and Ma, L. (2014). Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 81, 1040-1056. Goode, B.L., Eskin, J.A., and Wendland, B. (2015). Actin and endocytosis in budding yeast. Genetics 199, 315-358. Goodman, R.M., Thombre, S., Firtina, Z., Gray, D., Betts, D., Roebuck, J., Spana, E.P., and Selva, E.M. (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development (Cambridge, England) 133, 4901-4911. Grueber, W.B., Jan, L.Y., and Jan, Y.N. (2002). Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development (Cambridge, England) 129, 2867-2878. Ha, H.I., Hendricks, M., Shen, Y., Gabel, C.V., Fang-Yen, C., Qin, Y., Colon-Ramos, D., Shen, K., Samuel, A.D., and Zhang, Y. (2010). Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron 68, 1173-1186. Hallem, E.A., Spencer, W.C., McWhirter, R.D., Zeller, G., Henz, S.R., Ratsch, G., Miller, D.M., 3rd, Horvitz, H.R., Sternberg, P.W., and Ringstad, N. (2011). Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 108, 254-259. Han, C., Jan, L.Y., and Jan, Y.N. (2011). Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 108, 9673-9678. Hao, Y., Yang, W., Ren, J., Hall, Q., Zhang, Y., and Kaplan, J.M. (2018). Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. eLife 7. Harterink, M., Port, F., Lorenowicz, M.J., McGough, I.J., Silhankova, M., Betist, M.C., van Weering, J.R.T., van Heesbeen, R., Middelkoop, T.C., Basler, K., et al. (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nature cell biology 13, 914-923. He, C.W., Liao, C.P., and Pan, C.L. (2018). Wnt signalling in the development of axon, dendrites and synapses. Open biology 8. Hilliard, M.A., and Bargmann, C.I. (2006). Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Developmental cell 10, 379-390. Hughes, M.E., Bortnick, R., Tsubouchi, A., Baumer, P., Kondo, M., Uemura, T., and Schmucker, D. (2007). Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54, 417-427. Iino, Y., and Yoshida, K. (2009). Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 5370-5380. Jin, X., Pokala, N., and Bargmann, C.I. (2016). Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory. Cell 164, 632-643. Juang, B.T., Gu, C., Starnes, L., Palladino, F., Goga, A., Kennedy, S., and L'Etoile, N.D. (2013). Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell 154, 1010-1022. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology 2, Research0002. Kim, M.E., Shrestha, B.R., Blazeski, R., Mason, C.A., and Grueber, W.B. (2012). Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron 73, 79-91. Kim, Y., Sung, J.Y., Ceglia, I., Lee, K.W., Ahn, J.H., Halford, J.M., Kim, A.M., Kwak, S.P., Park, J.B., Ho Ryu, S., et al. (2006). Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814-817. Kirienko, N.V., Ausubel, F.M., and Ruvkun, G. (2015). Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 112, 1821-1826. Kocabas, A., Shen, C.H., Guo, Z.V., and Ramanathan, S. (2012). Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490, 273-277. Komatsu, H., Jin, Y.H., L'Etoile, N., Mori, I., Bargmann, C.I., Akaike, N., and Ohshima, Y. (1999). Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells. Brain research 821, 160-168. Konietzny, A., Bar, J., and Mikhaylova, M. (2017). Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Frontiers in cellular neuroscience 11, 147. Korkut, C., Ataman, B., Ramachandran, P., Ashley, J., Barria, R., Gherbesi, N., and Budnik, V. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393-404. Kostadinov, D., and Sanes, J.R. (2015). Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4. Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461. Lefebvre, J.L., Kostadinov, D., Chen, W.V., Maniatis, T., and Sanes, J.R. (2012). Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517-521. Lei, W., Omotade, O.F., Myers, K.R., and Zheng, J.Q. (2016). Actin cytoskeleton in dendritic spine development and plasticity. Current opinion in neurobiology 39, 86-92. Liao, C.P., Li, H., Lee, H.H., Chien, C.T., and Pan, C.L. (2018). Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt Secretory Factor MIG-14/Wntless. Neuron 98, 320-334.e326. Lim, J.P., Fehlauer, H., Das, A., Saro, G., Glauser, D.A., Brunet, A., and Goodman, M.B. (2018). Loss of CaMKI Function Disrupts Salt Aversive Learning in C. elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience 38, 6114-6129. Liu, Y., Samuel, B.S., Breen, P.C., and Ruvkun, G. (2014). Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508, 406-410. Long, H., Ou, Y., Rao, Y., and van Meyel, D.J. (2009). Dendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila. Development (Cambridge, England) 136, 3475-3484. Matsubara, D., Horiuchi, S.Y., Shimono, K., Usui, T., and Uemura, T. (2011). The seven-pass transmembrane cadherin Flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, Espinas, in Drosophila sensory neurons. Genes & development 25, 1982-1996. Matthews, B.J., Kim, M.E., Flanagan, J.J., Hattori, D., Clemens, J.C., Zipursky, S.L., and Grueber, W.B. (2007). Dendrite self-avoidance is controlled by Dscam. Cell 129, 593-604. Meisel, J.D., Panda, O., Mahanti, P., Schroeder, F.C., and Kim, D.H. (2014). Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 159, 267-280. Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO journal 10, 3959-3970. Melo, J.A., and Ruvkun, G. (2012). Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149, 452-466. Meunier, F.A., and Gutierrez, L.M. (2016). Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends in neurosciences 39, 605-613. Mills, H., Wragg, R., Hapiak, V., Castelletto, M., Zahratka, J., Harris, G., Summers, P., Korchnak, A., Law, W., Bamber, B., et al. (2012). Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans. The EMBO journal 31, 667-678. Mohamed, A.M., Boudreau, J.R., Yu, F.P., Liu, J., and Chin-Sang, I.D. (2012). The Caenorhabditis elegans Eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance. PLoS genetics 8, e1002513. Mori, I., and Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344-348. Naresh, N.U., and Haynes, C.M. (2019). Signaling and Regulation of the Mitochondrial Unfolded Protein Response. Cold Spring Harbor perspectives in biology. Nargund, A.M., Pellegrino, M.W., Fiorese, C.J., Baker, B.M., and Haynes, C.M. (2012). Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science (New York, NY) 337, 587-590. Nithianandam, V., and Chien, C.T. (2018). Actin blobs prefigure dendrite branching sites. The Journal of cell biology 217, 3731-3746. Ortiz, C.O., Faumont, S., Takayama, J., Ahmed, H.K., Goldsmith, A.D., Pocock, R., McCormick, K.E., Kunimoto, H., Iino, Y., Lockery, S., et al. (2009). Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Current biology : CB 19, 996-1004. Pan, C.L., Baum, P.D., Gu, M., Jorgensen, E.M., Clark, S.G., and Garriga, G. (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Developmental cell 14, 132-139. Pan, C.L., Howell, J.E., Clark, S.G., Hilliard, M., Cordes, S., Bargmann, C.I., and Garriga, G. (2006). Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Developmental cell 10, 367-377. Pellegrino, M.W., Nargund, A.M., Kirienko, N.V., Gillis, R., Fiorese, C.J., and Haynes, C.M. (2014). Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516, 414-417. Pierce-Shimomura, J.T., Faumont, S., Gaston, M.R., Pearson, B.J., and Lockery, S.R. (2001). The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694-698. Pierce-Shimomura, J.T., Morse, T.M., and Lockery, S.R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 9557-9569. Pokala, N., Liu, Q., Gordus, A., and Bargmann, C.I. (2014). Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proceedings of the National Academy of Sciences of the United States of America 111, 2770-2775. Port, F., Kuster, M., Herr, P., Furger, E., Banziger, C., Hausmann, G., and Basler, K. (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nature cell biology 10, 178-185. Prasad, B.C., and Clark, S.G. (2006). Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development (Cambridge, England) 133, 1757-1766. Rhoades, J.L., Nelson, J.C., Nwabudike, I., Yu, S.K., McLachlan, I.G., Madan, G.K., Abebe, E., Powers, J.R., Colon-Ramos, D.A., and Flavell, S.W. (2019). ASICs Mediate Food Responses in an Enteric Serotonergic Neuron that Controls Foraging Behaviors. Cell 176, 85-97.e14. Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T.A., Werb, Z., et al. (2008). Lifeact: a versatile marker to visualize F-actin. Nature methods 5, 605-607. Saeki, S., Yamamoto, M., and Iino, Y. (2001). Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. The Journal of experimental biology 204, 1757-1764. Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684. Scott, E.K., and Luo, L. (2001). How do dendrites take their shape? Nature neuroscience 4, 359-365. Shao, L.W., Niu, R., and Liu, Y. (2016). Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response. Cell research 26, 1182-1196. Shimono, K., Fujishima, K., Nomura, T., Ohashi, M., Usui, T., Kengaku, M., Toyoda, A., and Uemura, T. (2014). An evolutionarily conserved protein CHORD regulates scaling of dendritic arbors with body size. Scientific reports 4, 4415. Smith, C.J., Watson, J.D., Spencer, W.C., O'Brien, T., Cha, B., Albeg, A., Treinin, M., and Miller, D.M., 3rd (2010). Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Developmental biology 345, 18-33. Smith, C.J., Watson, J.D., VanHoven, M.K., Colon-Ramos, D.A., and Miller, D.M., 3rd (2012). Netrin (UNC-6) mediates dendritic self-avoidance. Nature neuroscience 15, 731-737. Smith, E.S., Martinez-Velazquez, L., and Ringstad, N. (2013). A chemoreceptor that detects molecular carbon dioxide. The Journal of biological chemistry 288, 37071-37081. Snow, P.M., Bieber, A.J., and Goodman, C.S. (1989). Fasciclin III: a novel homophilic adhesion molecule in Drosophila. Cell 59, 313-323. Soba, P., Zhu, S., Emoto, K., Younger, S., Yang, S.J., Yu, H.H., Lee, T., Jan, L.Y., and Jan, Y.N. (2007). Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54, 403-416. Sundararajan, L., Smith, C.J., Watson, J.D., Millis, B.A., Tyska, M.J., and Miller, D.M. (2018). Netrin/UNC-6 triggers actin assembly and non-muscle myosin activity to drive dendrite retraction in the self-avoidance response. bioRxiv, 492769. Suzuki, H., Thiele, T.R., Faumont, S., Ezcurra, M., Lockery, S.R., and Schafer, W.R. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454, 114-117. Takenawa, T., and Suetsugu, S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nature reviews Molecular cell biology 8, 37-48. Torayama, I., Ishihara, T., and Katsura, I. (2007). Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 741-750. Troemel, E.R., Kimmel, B.E., and Bargmann, C.I. (1997). Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161-169. Tsalik, E.L., and Hobert, O. (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of neurobiology 56, 178-197. Tsunozaki, M., Chalasani, S.H., and Bargmann, C.I. (2008). A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron 59, 959-971. Villarroel-Campos, D., Gastaldi, L., Conde, C., Caceres, A., and Gonzalez-Billault, C. (2014). Rab-mediated trafficking role in neurite formation. Journal of neurochemistry 129, 240-248. Wang, L., Sato, H., Satoh, Y., Tomioka, M., Kunitomo, H., and Iino, Y. (2017). A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na(+) Chemotaxis. The Journal of neuroscience : the official journal of the Society for Neuroscience 37, 2097-2111. Wegner, A.M., Nebhan, C.A., Hu, L., Majumdar, D., Meier, K.M., Weaver, A.M., and Webb, D.J. (2008). N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. The Journal of biological chemistry 283, 15912-15920. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical transactions of the Royal Society of London Series B, Biological sciences 314, 1-340. Withee, J., Galligan, B., Hawkins, N., and Garriga, G. (2004). Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics 167, 1165-1176. Wu, Q., and Maniatis, T. (1999). A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779-790. Yang, P.T., Lorenowicz, M.J., Silhankova, M., Coudreuse, D.Y., Betist, M.C., and Korswagen, H.C. (2008). Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Developmental cell 14, 140-147. Yu, J., Chia, J., Canning, C.A., Jones, C.M., Bard, F.A., and Virshup, D.M. (2014). WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Developmental cell 29, 277-291. Yu, S., Avery, L., Baude, E., and Garbers, D.L. (1997). Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proceedings of the National Academy of Sciences of the United States of America 94, 3384-3387. Zhang, Y., Lu, H., and Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179-184. Zimmer, M., Gray, J.M., Pokala, N., Chang, A.J., Karow, D.S., Marletta, M.A., Hudson, M.L., Morton, D.B., Chronis, N., and Bargmann, C.I. (2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61, 865-879. Zorio, D.A., Cheng, N.N., Blumenthal, T., and Spieth, J. (1994). Operons as a common form of chromosomal organization in C. elegans. Nature 372, 270-272. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78633 | - |
dc.description.abstract | 動物利用精準但卻有可塑性的神經網絡連結,來對於其面臨的環境做出適當的反應。為了建構此網絡,神經如何進行分枝以及在哪分枝都必須被準確地被調控。在發育的過程中,樹突和軸突的分枝是被許多遺傳機轉調控。然而,成年的神經網絡是有可塑性的,會因個體經驗而改變現有神經。利用秀麗隱桿線蟲為模式物種,我們回答以下兩個問題:首先,神經細胞的樹突是利用何種機制來達到相互不交疊的自迴避現象?再者,在神經迴路的層次面上,動物內在的生理狀態是如何重塑神經迴路?
本篇研究的前半段發現Wnt分泌蛋白MIG-14/Wntles會在多樹突的神經PVD中調控神經自迴避。我們合作實驗室也證實在果蠅中Wntless有相似的作用,表示此現象的是具有高度保守性的。MIG-14在樹突進行排斥上是扮演不可或缺的角色,而表現MIG-14也足以形成樹突排斥。重要的是,我們的結果指出MIG-14分泌Wnt以及形成樹突自迴避是利用其不同的功能區來進行。我也進一步發現MIG-14/Wntless透過WASP蛋白來控制肌動蛋白(actin)的組裝進而調控樹突自迴避。我們的研究成果拓展了對於調控神經自迴避的了解,也揭發了MIG-14/Wntles新穎的功能。 本篇研究第二部分我們發現因動物內在生理狀態而形成的神經迴路重塑需要感覺以及中間神經元的參與。線蟲對無害細菌的偏好會由喜好轉變成厭惡,當伴隨著有對於其正常生理機制之干擾時,例如粒線體的損傷。我們發現要有此行為的產生必須有味覺神經元ASEL以及二氧化碳偵測神經元BAG的參與。這些感覺神經元透過下游的中間神經元AIY去引發此行為改變。另外,我們認為另一個以章胺(octopamine)為神經傳遞物質的中間神經元RIC會透過分泌章胺藉以調控表現章胺受器SER-6的神經元,如:ASEL以及AIY,來影響線蟲對於無害菌的偏好。我們這些觀察提供了對於內在粒線體損傷引起之行為改變的神經迴路變化有更近一步的了解。 | zh_TW |
dc.description.abstract | Animals rely on precise but plastic connectivity of the nervous system to behave appropriately in the environment. To form such connections, where and how a neuron branches need to be accurately regulated. Developmental branching of dendrites and axons is governed and maintained by genetic mechanisms, and experience-dependent plasticity further fine-tunes existing connections in adults. By using the nematode Caenorhabditis elegans as a genetic model, we address two fundamental questions: 1) What mechanism ensures dendrites to form non-overlapping arborization, also known as dendrite self-avoidance? 2) At the circuit level, how does the animal's physiological status sculpt the neural circuit connectivity?
In the first part of this study, we uncover an unexpected cell-autonomous role of the Wnt secretory factor MIG-14/Wntless in controlling dendrite self-avoidance of the multidendritic PVD neuron. Our collaborators also demonstrate similar function of Wntless in Drosophila, indicating this role of Wntless in dendrite development is evolutionarily conserved. MIG-14 is both necessary and sufficient for dendrite repulsion. We reveal that self-avoidance and Wnt secretion function require distinct domains and functions of MIG-14/Wntless. We further show that MIG-14/Wntless engages Wiskott-Aldrich syndrome protein (WASP) in regulating actin assembly to meditate dendrite self-avoidance. Our work expands the repertoire of dendrite self-avoidance molecules and reveals a novel Wnt-independent function for MIG-14/Wntless. In the second part of this study, we identify sensory neurons and interneurons essential for behavioral changes driven by the animals' internal status. In C. elegans, the preference towards innocuous bacteria is switched to aversion when animals are conditioned by concurrent physiological disturbance, including mitochondrial disruption. We discover that the gustatory neuron ASEL and the carbon dioxide-sensing neuron BAG are required for this conditioned bacterial aversion. The interneuron AIY acts downstream of sensory input to instruct this behavior, and the RIC interneurons modulates conditioned aversion through octopamine and the SER-6 octopamine receptor that expresses in ASEL and AIY. These observations provide a neural basis for conditioned bacterial aversion upon mitochondrial insults. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:08:40Z (GMT). No. of bitstreams: 1 ntu-108-F02448006-1.pdf: 30572175 bytes, checksum: c7258728778ffe3309fa1fabf094e135 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
ACKNOWLEDGEMENT i 中文摘要 iii ABSTRACT iv CONTENTS vi Chapter 1 Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt. Secretory Factor MIG-14/Wntless 1 1.1 Summary 1 1.2 Introduction 2 1.2.1 Dendrite Self-Avoidance 2 1.2.2 MIG-14/ Wntless 5 1.2.3 The Role of Actin In Dendrite Morphogenesis 6 1.3 Material and Method 8 1.4 Result 15 1.4.1 Wntless is Required for PVD Dendrite Self-Avoidance 15 1.4.2 Distinct Wntless Activities in PVD Neurons and Wnt-Secreting Tissues 16 1.4.3 Wntless is Essential for Dendrite Self-Avoidance in Drosophila 17 1.4.4 Wntless Acts in Parallel to Netrin Signaling in Dendrite Self-Avoidance 18 1.4.5 Ectopic Wntless Triggers Dendrite Repulsion 19 1.4.6 Dendrite Self-Avoidance and Wnt Secretion Functions of Wntless are Genetically Separable 20 1.4.7 Trafficking and Transport of Wntless in the PVD Neuron 22 1.4.8 Wntless Regulates PVD Dendrite Self-Avoidance by Engaging the Actin Cytoskeleton 25 1.5 Discussion 28 1.5.1 The Structural Basis of MIG-14/Wntless in Mediating Dendrite Self-Avoidance 29 1.5.2 Cell Biology of MIG-14/Wntless-Mediated Dendrite Self-Avoidance 30 Chapter 2 Investigation of the Neural Basis for Conditioned Bacterial Avoidance by Mitochondrial Insults in C. elegans 33 2.1 Summary 33 2.2 Introduction 34 2.3 Materials and Methods 39 2.4 Result 44 2.4.1 C. elegans Switches Bacterial Preference After Conditioning by Mitochondrial Insults 44 2.4.2 Mitochondrial Stress Response and Bacterial Avoidance Behavior Are Two Independent Outcomes Induced by Mitochondrial Insults 45 2.4.3 Learned Bacterial Avoidance Behavior Requires Sensory Perception from ASE and BAG Neurons 46 2.4.4 The interneuron AIY is essential for conditioned bacterial avoidance 49 2.4.5 Octopamine signaling facilitates conditioned avoidance behavior 51 2.4.6 The SER-6 octopamine receptor is critical for conditioned bacterial avoidance 52 2.4.7 Bacterial preference is changed in animals conditioned with mitochondrial insults 53 2.5 Discussion 54 2.5.1 Multiple sensory modalities drive conditioned microbial aversion 55 2.5.2 Octopamine signaling modulates conditioned avoidance behavior 54 2.5.3 The Interneuron AIY drives conditioned avoidance behavior 56 2.5.4 Octopamine Signaling Modulates Conditioned Avoidance Behavior 59 Chapter 3 Figures 62 Chapter 4 Reference 177 | |
dc.language.iso | en | |
dc.title | 線蟲感覺神經迴路形態及功能之遺傳分析 | zh_TW |
dc.title | Genetic Analysis of the Structure and Function of
Sensory Neuronal Circuits in C. elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳益群(Yi-Chun Wu),薛一蘋(Yi-Ping Hsueh),簡正鼎(Cheng-Ting Chien),李秀香(Hsiu-Hsiang Lee) | |
dc.subject.keyword | 秀麗隱桿線蟲,MIG-14/Wntles,神經樹突自迴避,粒線體損傷,神經可塑性, | zh_TW |
dc.subject.keyword | Caenorhabditis elegans,MIG-14/Wntless,Dendrite Self-Avoidance,Mitochondrial Disruption, Neural Plasticity, | en |
dc.relation.page | 187 | |
dc.identifier.doi | 10.6342/NTU201903240 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-F02448006-1.pdf 目前未授權公開取用 | 29.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。