請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78625完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武 | zh_TW |
| dc.contributor.advisor | Tung-Wu Lu | en |
| dc.contributor.author | 周子玉 | zh_TW |
| dc.contributor.author | Tzu-Yu Chou | en |
| dc.date.accessioned | 2021-07-11T15:08:06Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Wanich, T., et al., Cycling injuries of the lower extremity. J Am Acad Orthop Surg, 2007. 15(12): p. 748-756.
2. Althunyan, A.K., M.A. Darwish, and M.M.A. Wahab, Knee problems and its associated factors among active cyclists in Eastern Province, Saudi Arabia. J Fam Community Med, 2017. 24(1): p. 23-29. 3. Nordin, M. and V.H. Frankel, Basic biomechanics of the musculoskeletal system. 2001: Lippincott Williams & Wilkins. 4. Kopf, S., et al., A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg. Sports Traumatol. Arthrosc., 2009. 17(3): p. 213-9. 5. Takahashi, M., et al., Anatomical study of the femoral and tibial insertions of the anterolateral and posteromedial bundles of human posterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc., 2006. 14(11): p. 1055-9. 6. Gali, J.C., et al., Tibial Insertions of the Posterior Cruciate Ligament: Topographic Anatomy and Morphometric Study. Rev Bras Ortop, 2013. 48(3): p. 263-267. 7. Liu, F., et al., Morphology of the medial collateral ligament of the knee. J Orthop Surg Res, 2010. 5: p. 69. 8. Espregueira-Mendes and M.V. da Silva, Anatomy of the lateral collateral ligament: a cadaver and histological study. Knee Surg. Sports Traumatol. Arthrosc., 2006. 14(3): p. 221-228. 9. Hauser, R.A., et al., Ligament injury and healing: A review of current clinical diagnostics and therapeutics. The Open Rehabilitation Journal 2013. 6: p. 1-20. 10. Aigner, T. and J. Stove, Collagens--major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev, 2003. 55(12): p. 1569-93. 11. Mow, V.C., et al., Biphasic creep and stress-relaxation of articular-cartilage in compression - theory and experiments. J Biomech, 1980. 102(1): p. 73-84. 12. Fujie, H., et al., Forces and moments in six-DOF at the human knee joint: mathematical description for control. J Biomech, 1996. 29(12): p. 1577-85. 13. Ali, A.A., et al., Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions. J Biomech, 2017. 57: p. 117-124. 14. Fujie, H., et al., The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng, 1993. 115(3): p. 211-7. 15. Rudy, T.W., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech, 1996. 29(10): p. 1357-60. 16. Beynnon, B.D., et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med, 1995. 23(1): p. 24-34. 17. Kadaba, M.P., H.K. Ramakrishnan, and M.E. Wootten, Measurement of lower extremity kinematics during level walking. J Orthop Res, 1990. 8(3): p. 383-92. 18. Lafortune, M.A., et al., Three-dimensional kinematics of the human knee during walking. J Biomech, 1992. 25(4): p. 347-57. 19. Lu, T.W. and J.J. O'Connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech, 1999. 32(2): p. 129-34. 20. Lu, T.W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys, 2008. 30(8): p. 1004-12. 21. Strasser, H., Lehrbuch der Muskel- und Gelenkmechanik. 1917, Springer. 22. O'Connor, J.J., et al., The geometry of the knee in the sagittal plane. Proc Inst Mech Eng H, 1989. 203(4): p. 223-33. 23. Lu, T.W. and J.J. O'Connor, Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. J Anat, 1996. 189 ( Pt 3): p. 575-85. 24. Wismans, J., et al., A three-dimensional mathematical model of the knee-joint. J Biomech, 1980. 13(8): p. 677-85. 25. Pioletti, D.P., Viscoelastic properties of soft tissuesapplication to knee ligaments and tendons, in EPFL. 1997. 26. Song, Y., et al., A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech, 2004. 37(3): p. 383-90. 27. Pena, E., et al., A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech, 2006. 39(9): p. 1686-701. 28. Limbert, G., M. Taylor, and J. Middleton, Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. J Biomech, 2004. 37(11): p. 1723-1731. 29. Limbert, G., J. Middleton, and M. Taylor, Finite element analysis of the human ACL subjected to passive anterior tibial loads. Comput Methods Biomech Biomed Engin, 2004. 7(1): p. 1-8. 30. Blankevoort, L., et al., Articular contact in a three-dimensional model of the knee. J Biomech, 1991. 24(11): p. 1019-31. 31. Bendjaballah, M.Z., A. Shirazi-Adl, and D.J. Zukor, Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin Biomech, 1998. 13(8): p. 625-633. 32. Cohen, Z.A., et al., Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage, 1999. 7(1): p. 95-109. 33. Li, G., et al., A validated three-dimensional computational model of a human knee joint. J Biomech Eng, 1999. 121(6): p. 657-62. 34. Li, G., O. Lopez, and H. Rubash, Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng, 2001. 123(4): p. 341-6. 35. Donahue, T.L., et al., A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng, 2002. 124(3): p. 273-80. 36. Woo, S.L., et al., Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med, 1991. 19(3): p. 217-25. 37. Harner, C.D., et al., Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med, 2000. 28(2): p. 144-51. 38. Hoher, J., S. Scheffler, and A. Weiler, Graft choice and graft fixation in PCL reconstruction. Knee Surg. Sports Traumatol. Arthrosc., 2003. 11(5): p. 297-306. 39. Dargel, J., et al., Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr, 2007. 2(1): p. 1-12. 40. Dill, J. and T. Carr, Bicycle commuting and facilities in major US cities - If you build them, commuters will use them. Pedestrians and Bicycles, 2003(1828): p. 116-123. 41. Saelens, B.E., J.F. Sallis, and L.D. Frank, Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures. Ann Behav Med, 2003. 25(2): p. 80-91. 42. Holmes, J.C., A.L. Pruitt, and N.J. Whalen, Lower extremity overuse in bicycling. Clin Sports Med, 1994. 13(1): p. 187-205. 43. Kim, P.T., et al., Mountain biking injuries requiring trauma center admission: a 10-year regional trauma system experience. J Trauma, 2006. 60(2): p. 312-8. 44. Bini, R., P.A. Hume, and J.L. Croft, Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Med, 2011. 41(6): p. 463-76. 45. Dannenberg, A.L., et al., Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. Am J Sports Med, 1996. 24(6): p. 747-53. 46. Ericson, M.O., et al., Power output and work in different muscle groups during ergometer cycling. Eur J Appl Physiol Occup Physiol, 1986. 55(3): p. 229-35. 47. Newmiller, J., M.L. Hull, and F.E. Zajac, A mechanically decoupled two force component bicycle pedal dynamometer. J Biomech, 1988. 21(5): p. 375-86. 48. Boyd, T., M.L. Hull, and D. Wootten, An improved accuracy six-load component pedal dynamometer for cycling. J Biomech, 1996. 29(8): p. 1105-10. 49. Bini, R.R., F. Diefenthaeler, and C.B. Mota, Fatigue effects on the coordinative pattern during cycling: kinetics and kinematics evaluation. J Electromyogr Kinesiol, 2010. 20(1): p. 102-7. 50. Fleming, B.C., et al., The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am J Sports Med, 1998. 26(1): p. 109-18. 51. Kutzner, I., et al., Loading of the knee joint during ergometer cycling: telemetric in vivo data. J Orthop Sports Phys Ther, 2012. 42(12): p. 1032-8. 52. Tamborindeguy, A.C. and R. Rico Bini, Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? J Bodyw Mov Ther, 2011. 15(2): p. 186-91. 53. Jorge, M. and M.L. Hull, Analysis of EMG measurements during bicycle pedalling. J Biomech, 1986. 19(9): p. 683-94. 54. Van Ginckel, A., et al., Location of knee pain in medial knee osteoarthritis: patterns and associations with self-reported clinical symptoms. Osteoarthritis Cartilage, 2016. 24(7): p. 1135-42. 55. Lin, Y.T., In vivo stress distribution of the knee ligaments during functional activities. National Taiwan University, 2008. 56. Guo, J.A., In vivo three-dimensional finite element simulation and analyses of the knee ligaments during functional activites. National Taiwan University, 2010. 57. Keng, C.W., Three-dimensional finite element analysis of the knee-joint ligament during sit-to-stand. National Taiwan University, 2012. 58. Lin, C.L., Finite element analysis of the knee ligaments during sit-to-stand in normal and total knee replacement. National Taiwan University, 2013. 59. Lin, T.C., Three-dimensional finite element analysis of the knee-joint ligament during sit-to-stand. National Taiwan University, 2014. 60. Chen, T.H., Effects of pedaling direction on the knee ligament and articular surface loading during cycling. National Taiwan University, 2016. 61. Chang, C.R., Calculation of knee ligament and cartilage loading during pedaling: effects of seat height. National Taiwan University, 2018. 62. Fitzgerald, G.K., M.J. Axe, and L. Snyder-Mackler, Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. J Orthop Sports Phys Ther, 2000. 30(4): p. 194-203. 63. Meyers, M.C., J.C. Sterling, and R.R. Marley, Efficacy of stairclimber versus cycle ergometry in postoperative anterior cruciate ligament rehabilitation. Clin J Sport Med, 2002. 12(2): p. 85-94. 64. Randolph, H., et al., Evaluation of isokinetic single-leg cycling as a rehabilitation exercise following anterior cruciate ligament reconstruction surgery. J. Funct. Morphol. Kinesiol., 2017. 2. 65. Lin, C.C., et al., A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system. Med Phys, 2018. 66. Hsieh, H.J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomed Eng Online, 2016. 15(1): p. 62. 67. Race, A. and A.A. Amis, Loading of the two bundles of the posterior cruciate ligament: an analysis of bundle function in a-P drawer. J Biomech, 1996. 29(7): p. 873-9. 68. Taylor, W.R., et al., Tibio-femoral loading during human gait and stair climbing. J Orthop Res, 2004. 22(3): p. 625-32. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78625 | - |
| dc.description.abstract | 踩踏自行車被視為韌帶損傷手術後患者之一溫和復健方法,其不僅可以幫助患者訓練膝關節周邊肌群,亦可避免韌帶負荷過大。而踩踏阻力是在騎行期間改變關節負荷和肌肉活動的最重要的調節因素,藉由阻力調控可以使得膝關節內部軟骨及各條韌帶之負荷不同。
考量侵入式量測的諸多限制,有限元素法被大量應用在非侵入式量測活體膝關節軟組織力學的研究。幾何模型、材料參數、邊界條件為有限元素分析的三大主軸。本研究所使用之每個活體膝關節模型乃客製化模型,其幾何外型來自電腦斷層掃描和核磁共振造影的三維影像重建;韌帶與軟骨的材料參數分別參照KT-2000膝關節量測實驗和文獻的結果;邊界條件為每位受試者動態X光量測之膝關節骨頭相對的運動學資訊。而本研究將改良實驗式過去研究之有限元素韌帶模型,將之運用在活體自行車運動實驗下,探討有無阻力下膝關節韌帶與軟骨之負荷情形,並進一步利用踏板力規資訊,計算出肌肉力量,以評估韌帶、軟骨和肌肉間的交互作用,提供未來膝關節軟組織力學分析基礎之應用。 根據本研究分析結果,於整個踩踏過程中,無論是有阻力或是無阻力踩踏,對前十字韌帶的負荷皆遠小於韌帶重建後之破壞極限,然而後十字韌帶的負荷與股四頭肌收縮趨勢相符,且大於重建過後所能承受之極限,而軟骨面於踩踏過程中有2個負荷峰值,分別為腓腸肌及股四頭肌收縮時,且內側軟骨受力較外側大,其最大受力約為體重之3-4倍。 由復健的角度來看,建議前十字韌帶損傷/重建,且無後十字韌帶損傷的患者進行有阻力之自行車踩踏。對於後十字韌帶受傷及重建的患者則不建議使用自行車進行復健療程;而對於有膝關節炎的患者則建議使用無阻力之自行車運動作為復健,且盡量調整姿勢使得膝關節避免彎曲過大。 | zh_TW |
| dc.description.abstract | Improper riding posture may cause musculoskeletal system damage, especially on knee-related injuries. However, cycling is also regarded as a gentle rehabilitation exercise for patients with ligament injury or surgery. It not only helps the patient to train the muscles but also avoids excessive ligament load. Cycling with different resistance is the most important factor for soft tissue loading and muscle activity of knee joint.
Due to the development of computer technology and the limitations of invasive measurement, the finite element method has been widely used to achieve non-invasive measurement of in vivo joint soft tissue mechanics. The construction of finite element analysis is based on model geometry, material properties and boundary conditions. In the study, the geometry model was obtained from the three-dimensional reconstruction of the computer tomography and magnetic resonance imaging scan. Material parameters of ligaments and the cartilage referred to the KT-2000 arthrometer and literatures. Boundary conditions were acquired from the dynamic fluoroscopy system. According to the results, the load on the anterior cruciate ligament was much less than the damage limit after the reconstruction during both resisted and non-resisted pedaling. However, the load of the posterior cruciate ligament was consistent with the contraction trend of the quadriceps muscle, and was greater than the limit that can be withstood after reconstruction. There were two load peaks of cartilage during pedaling, which were the moment of gastrocnemius and quadriceps contraction. The load of the medial cartilage was higher than lateral’s, and its maximum force was about 3-4 times of the body weight. From the view of rehabilitation, it is recommended that patients with anterior cruciate ligament injury/reconstruction and without posterior cruciate ligament perform pedaling with resistance, which can train muscle more effectively. For patients with posterior cruciate ligament injuries, it is not recommended to use pedaling as rehabilitative treatment. For patients with knee arthritis, it is recommended to pedal without resistance and avoids excessive bending of knee joint. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:08:06Z (GMT). No. of bitstreams: 1 ntu-108-R06548026-1.pdf: 9886535 bytes, checksum: 87b7fb019294f9b51714e43202ab5ab5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.1.1 膝關節之解剖學 1 1.1.2 膝關節之運動學 3 1.1.3 韌帶之組成與力學性質 5 1.1.4 軟骨之組成與力學性質 7 1.1.5 膝關節動力學之研究 8 1.1.6 膝關節之韌帶傷害及重建 16 1.1.7 自行車運動復健 17 1.1.8 實驗室過去之研究 22 1.2 研究目的 23 第二章 材料與方法 24 2.1 試體膝關節驗證實驗 24 2.1.1 實驗對象與儀器設備 25 2.1.2 實驗對象與儀器設備 27 2.1.3 試體驗證流程 28 2.2 活體膝關節自行車運動實驗 29 2.2.1 實驗對象與儀器設備 29 2.2.2 活體膝關節韌帶量測實驗 31 2.2.3 活體膝關節自行車運動實驗及三維運動學資訊比對流程 32 2.3 膝關節之有限元素分析 34 2.3.1 膝關節之三維幾何模型 36 2.3.2 膝關節骨頭與軟組織之材料性質 41 2.3.3 膝關節骨頭邊界條件 44 2.4 分析變數及統計分析 48 2.4.1 韌帶及軟骨於運動過程中之受力與力矩 48 2.4.2 韌帶、軟骨與肌肉於運動過程中之分別貢獻值 48 第三章 研究結果 52 3.1 改良後有限元素韌帶模型拉伸結果 52 3.2 活體膝關節韌帶材料參數測試結果 55 3.3 自行車運動過程中膝關節韌帶之有限元素分析結果 65 3.4 自行車運動過程中膝關節軟骨之有限元素分析結果 69 3.5 自行車運動過程中軟組織之交互作用 72 第四章 討論 74 4.1 改良後有限元素韌帶模型 74 4.2 活體膝關節韌帶材料參數 74 4.3 自行車運動過程中膝關節韌帶之有限元素分析 74 4.4 自行車運動過程中膝關節軟骨之有限元素分析 75 4.5 自行車運動過程中軟組織之交互作用 76 第五章 總結 78 5.1 結論 78 5.2 誤差與未來展望 79 參考文獻 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 自行車運動 | zh_TW |
| dc.subject | 有無阻力 | zh_TW |
| dc.subject | 膝關節韌帶 | zh_TW |
| dc.subject | 膝關節軟骨 | zh_TW |
| dc.subject | Finite element method | en |
| dc.subject | In vivo knee articular cartilage | en |
| dc.subject | In vivo knee ligament | en |
| dc.subject | Resisted and non-resisted pedaling | en |
| dc.subject | Cycling | en |
| dc.title | 自行車踩踏時膝關節肌肉與韌帶之交互作用:有無阻力之影響 | zh_TW |
| dc.title | Muscle-Ligament Interactions at the Knee During Pedaling: Effects of Resistance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳祥和;陳文斌;林正忠 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiang-Ho Chen;Weng-Pin Chen;Cheng-Chung Lin | en |
| dc.subject.keyword | 有限元素法,自行車運動,有無阻力,膝關節韌帶,膝關節軟骨, | zh_TW |
| dc.subject.keyword | Finite element method,Cycling,Resisted and non-resisted pedaling,In vivo knee ligament,In vivo knee articular cartilage, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU201903327 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2029-12-31 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 9.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
