請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78619
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃偉邦 | zh_TW |
dc.contributor.advisor | Wei-Pang Huang | en |
dc.contributor.author | 楊馨雲 | zh_TW |
dc.contributor.author | Xin-Yun Yang | en |
dc.date.accessioned | 2021-07-11T15:07:43Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Anderson, J.S.J., and Parker, R. (1998). The 3 ' to 5 ' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3 ' to 5 ' exonucleases of the exosome complex. Embo Journal 17, 1497-1506.
Backues, S.K., Orban, D.P., Bernard, A., Singh, K., Cao, Y., and Klionsky, D.J. (2015). Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. cerevisiae. Traffic 16, 172-190. Beelman, C.A., Stevens, A., Caponigro, G., LaGrandeur, T.E., Hatfield, L., Fortner, D.M., and Parker, R. (1996). An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642-646. Bonangelino, C.J., Catlett, N.L., and Weisman, L.S. (1997). Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Molecular and cellular biology 17, 6847-6858. Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M., and Seraphin, B. (2000). A Sm-like protein complex that participates in mRNA degradation. Embo Journal 19, 1661-1671. Boya, P., Reggiori, F., and Codogno, P. (2013). Emerging regulation and functions of autophagy. Nature Cell Biology 15, 713-720. Castilho, B.A., Shanmugam, R., Silva, R.C., Ramesh, R., Himme, B.M., and Sattlegger, E. (2014). Keeping the eIF2 alpha kinase Gcn2 in check. Bba-Mol Cell Res 1843, 1948-1968. Chang, Y.Y., Juhasz, G., Goraksha-Hicks, P., Arsham, A.M., Mallin, D.R., Muller, L.K., and Neufeld, T.P. (2009). Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem Soc T 37, 232-236. Cheong, H., Yorimitsu, T., Reggiori, F., Legakis, J.E., Wang, C.W., and Klionsky, D.J. (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16, 3438-3453. Davies, C.W., Stjepanovic, G., and Hurley, J.H. (2015). How the Atg1 complex assembles to initiate autophagy. Autophagy 11, 185-186. Dever, T.E., Feng, L., Wek, R.C., Cigan, A.M., Donahue, T.F., and Hinnebusch, A.G. (1992). Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585-596. Diaz-Troya, S., Perez-Perez, M.E., Florencio, F.J., and Crespo, J.L. (2008). The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4, 851-865. Dong, J.S., Qiu, H.F., Garcia-Barrio, M., Anderson, J., and Hinnebusch, A.G. (2000). Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-Binding domain. Molecular Cell 6, 269-279. Dunckley, T., and Parker, R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. Embo Journal 18, 5411-5422. Feng, W.Z., Wu, T., Dan, X.Y., Chen, Y.L., Li, L., Chen, S., Miao, D., Deng, H.T., Gong, X.Q., and Yu, L. (2015). Phosphorylation of Atg31 is required for autophagy. Protein & Cell 6, 288-296. Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Res 24, 24-41. Feng, Y.C., Backues, S.K., Baba, M., Heo, J.M., Harper, J.W., and Klionsky, D.J. (2016). Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy 12, 648-658. Funakoshi, T., Matsuura, A., Noda, T., and Ohsumi, Y. (1997). Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192, 207-213. Garneau, N.L., Wilusz, J., and Wilusz, C.J. (2007). The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8, 113-126. Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D., and Hegemann, J.H. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research 30. Haas, A., and Wickner, W. (1996). Homotypic vacuole fusion requires Sec17p (yeast alpha‐SNAP) and Sec18p (yeast NSF). The EMBO Journal 15, 3296-3305. Harding, T.M., Morano, K.A., Scott, S.V., and Klionsky, D.J. (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131, 591-602. He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43, 67-93. He, W.H., and Parker, R. (2001). The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3 ' termini from partial degradation. Genetics 158, 1445-1455. Hunter, T., and Plowman, G.D. (1997). The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22, 18-22. James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436. Jiang, P., and Mizushima, N. (2014). Autophagy and human diseases. Cell Res 24, 69-79. Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., and Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16, 2544-2553. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507-1513. Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K., and Ohsumi, Y. (2010). Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30, 1049-1058. Kawamata, T., Kamada, Y., Suzuki, K., Kuboshima, N., Akimatsu, H., Ota, S., Ohsumi, M., and Ohsumi, Y. (2005). Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 338, 1884-1889. Khalfan, W.A., and Klionsky, D.J. (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14, 468-475. Kim, J., Huang, W.-P., and Klionsky, D.J. (2001). Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. The Journal of cell biology 152, 51-64. Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T., and Ohsumi, Y. (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. Journal of Cell Biology 147, 435-446. Klionsky, D.J. (2007). Monitoring autophagy in yeast: the Pho8Delta60 assay. Methods Mol Biol 390, 363-371. Leber, R., Silles, E., Sandoval, I.V., and Mazon, M.J. (2001). Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J Biol Chem 276, 29210-29217. Legakis, J.E., Yen, W.L., and Klionsky, D.J. (2007). A cycling protein complex required for selective autophagy. Autophagy 3, 422-432. Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477. Liu, H.Y., Han, J.M., Cao, S.Y., Hong, T., Zhuo, D.G., Shi, J.B., Liu, Z.Q., and Cao, W.H. (2009). Hepatic Autophagy Is Suppressed in the Presence of Insulin Resistance and Hyperinsulinemia INHIBITION OF FoxO1-DEPENDENT EXPRESSION OF KEY AUTOPHAGY GENES BY INSULIN. Journal of Biological Chemistry 284, 31484-31492. Lynch-Day, M.A., and Klionsky, D.J. (2010). The Cvt pathway as a model for selective autophagy. Febs Letters 584, 1359-1366. MacGurn, J.A., Hsu, P.C., Smolka, M.B., and Emr, S.D. (2011). TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147, 1104-1117. Mammucari, C., Schiaffino, S., and Sandri, M. (2008). Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4, 524-526. Mangus, D.A., Evans, M.C., and Jacobson, A. (2003). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4. Mao, K., Chew, L.H., Inoue-Aono, Y., Cheong, H., Nair, U., Popelka, H., Yip, C.K., and Klionsky, D.J. (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci U S A 110, E2875-2884. Medema, R.H., and Jaattela, M. (2010). Cytosolic FoxO1: alive and killing. Nature Cell Biology 12, 642-643. Mijaljica, D., Prescott, M., Klionsky, D.J., and Devenish, R.J. (2007). Autophagy and vacuole homeostasis: a case for self-degradation? Autophagy 3, 417-421. Mizumura, K., Choi, A.M., and Ryter, S.W. (2014). Emerging role of selective autophagy in human diseases. Front Pharmacol 5, 244. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873. Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22, 132-139. Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27, 107-132. Mulet, J.M., Leube, M.P., Kron, S.J., Rios, G., Fink, G.R., and Serrano, R. (1999). A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 19, 3328-3337. Natarajan, K., Meyer, M.R., Jackson, B.M., Slade, D., Roberts, C., Hinnebusch, A.G., and Marton, M.J. (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Molecular and Cellular Biology 21, 4347-4368. Nice, D.C., Sato, T.K., Stromhaug, P.E., Emr, S.D., and Klionsky, D.J. (2002). Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. Journal of Biological Chemistry 277, 30198-30207. Noda, T., Kim, J., Huang, W.P., Baba, M., Tokunaga, C., Ohsumi, Y., and Klionsky, D.J. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. Journal of Cell Biology 148, 465-479. Noda, T., Matsuura, A., Wada, Y., and Ohsumi, Y. (1995). Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochemical and biophysical research communications 210, 126-132. Noda, T., and Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273, 3963-3966. Orsi, A., Razi, M., Dooley, H., Robinson, D., Weston, A., Collinson, L., and Tooze, S. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Molecular biology of the cell 23, 1860-1873. Papinski, D., Schuschnig, M., Reiter, W., Wilhelm, L., Barnes, C.A., Maiolica, A., Hansmann, I., Pfaffenwimmer, T., Kijanska, M., Stoffel, I., et al. (2014a). Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase. Molecular Cell 53, 471-483. Papinski, D., Schuschnig, M., Reiter, W., Wilhelm, L., Barnes, C.A., Maiolica, A., Hansmann, I., Pfaffenwimmer, T., Kijanska, M., Stoffel, I., et al. (2014b). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell 53, 471-483. Parker, R. (2012). RNA degradation in Saccharomyces cerevisae. Genetics 191, 671-702. Perez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., Serrano, R., and Yenush, L. (2007). Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol 27, 5725-5736. Perez-Valle, J., Rothe, J., Primo, C., Martinez Pastor, M., Arino, J., Pascual-Ahuir, A., Mulet, J.M., Serrano, R., and Yenush, L. (2010). Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism. Eukaryot Cell 9, 1881-1890. Primo, C., Ferri-Blazquez, A., Loewith, R., and Yenush, L. (2017). Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation. J Biol Chem 292, 563-574. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684. Ragusa, M.J., Stanley, R.E., and Hurley, J.H. (2012). Architecture of the Atg17 Complex as a Scaffold for Autophagosome Biogenesis. Cell 151, 1501-1512. Rao, Y., Perna, M.G., Hofmann, B., Beier, V., and Wollert, T. (2016). The Atg1–kinase complex tethers Atg9-vesicles to initiate autophagy. Nature communications 7, 10338. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology 12, 747-U715. Reggiori, F., Shintani, T., Nair, U., and Klionsky, D.J. (2005). Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1, 101-109. Reggiori, F., Tucker, K.A., Stromhaug, P.E., and Klionsky, D.J. (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6, 79-90. Rodriguez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochim Biophys Acta 1469, 1-30. Rubinsztein, D.C., Codogno, P., and Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery 11, 709-U784. Schoenberg, D.R. (2011). Mechanisms of endonuclease-mediated mRNA decay. Wiley Interdiscip Rev RNA 2, 582-600. Scott, S.V., Guan, J., Hutchins, M.U., Kim, J., and Klionsky, D.J. (2001). Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Molecular Cell 7, 1131-1141. Scott, S.V., Hefner-Gravink, A., Morano, K.A., Noda, T., Ohsumi, Y., and Klionsky, D.J. (1996). Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci U S A 93, 12304-12308. Shintani, T., Huang, W.P., Stromhaug, P.E., and Klionsky, D.J. (2002). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3, 825-837. Shintani, T., and Klionsky, D.J. (2004). Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. Journal of Biological Chemistry 279, 29889-29894. Slomovic, S., and Schuster, G. (2011). Exonucleases and endonucleases involved in polyadenylation-assisted RNA decay. Wiley Interdiscip Rev RNA 2, 106-123. Sridharan, S., Jain, K., and Basu, A. (2011). Regulation of autophagy by kinases. Cancers (Basel) 3, 2630-2654. Stephan, J.S., Yeh, Y.Y., Ramachandran, V., Deminoff, S.J., and Herman, P.K. (2009). The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. P Natl Acad Sci USA 106, 17049-17054. Suzuki, K., Kubota, Y., Sekito, T., and Ohsumi, Y. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209-218. Thumm, M., Egner, R., Koch, B., Schlumpberger, M., Straub, M., Veenhuis, M., and Wolf, D.H. (1994). Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349, 275-280. Torggler, R., Papinski, D., and Kraft, C. (2017). Assays to Monitor Autophagy in Saccharomyces cerevisiae. Cells 6. Trumbly, R.J., and Bradley, G. (1983). Isolation and characterization of aminopeptidase mutants of Saccharomyces cerevisiae. J Bacteriol 156, 36-48. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174. Tucker, K.A., Reggiori, F., Dunn, W.A., Jr., and Klionsky, D.J. (2003). Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278, 48445-48452. Weisman, L.S. (2003). Yeast vacuole inheritance and dynamics. Annual review of genetics 37, 435-460. Wen, X., and Klionsky, D.J. (2016). An overview of macroautophagy in yeast. J Mol Biol 428, 1681-1699. Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109. Xiong, X.W., Tao, R.Y., DePinho, R.A., and Dong, X.C. (2012). The Autophagy-related Gene 14 (Atg14) Is Regulated by Forkhead Box O Transcription Factors and Circadian Rhythms and Plays a Critical Role in Hepatic Autophagy and Lipid Metabolism. Journal of Biological Chemistry 287, 39107-39114. Yamamoto, H., Fujioka, Y., Suzuki, S.W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., Noda, N.N., et al. (2016). The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes. Dev Cell 38, 86-99. Yamamoto, H., Kakuta, S., Watanabe, T.M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., and Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198, 219-233. Yen, W.L., Legakis, J.E., Nair, U., and Klionsky, D.J. (2007). Atg27 is required for autophagy-dependent cycling of Atg9. Molecular Biology of the Cell 18, 581-593. Yorimitsu, T., and Klionsky, D.J. (2005a). Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16, 1593-1605. Yorimitsu, T., and Klionsky, D.J. (2005b). Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2, 1542-1552. Yorimitsu, T., Zaman, S., Broach, J.R., and Klionsky, D.J. (2007). Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Molecular Biology of the Cell 18, 4180-4189. Young, A.R.J., Chan, E.Y.W., Hu, X.W., Koch, R., Crawshaw, S.G., High, S., Hailey, D.W., Lippincott-Schwartz, J., and Tooze, S.A. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. Journal of Cell Science 119, 3888-3900. Yu, Y., Cao, L.Z., Yang, L.C., Kang, R., Lotze, M., and Tang, D.L. (2012). microRNA 30A promotes autophagy in response to cancer therapy. Autophagy 8, 853-855. Zhao, Y., Yang, J., Liao, W.J., Liu, X.Y., Zhang, H., Wang, S., Wang, D.L., Feng, J.N., Yu, L., and Zhu, W.G. (2010). Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biology 12, 665-U688. Zhu, S.H., Sobolev, A.Y., and Wek, R.C. (1996). Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. Journal of Biological Chemistry 271, 24989-24994. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78619 | - |
dc.description.abstract | 細胞自噬是一個高度保守的機制,藉由雙層膜構造–自噬小體,來選擇性或是非選擇性地包裹細胞質中的物質,隨之自噬小體與液泡或是溶小體融合,由水解酵素將細胞質的成分分解。細胞自噬,需要被適當地調控以避免有害影響以及維持胞內恆定。前人研究中證實Hal4和Hal5對於維持運輸蛋白在細胞膜上的穩定性扮演重要角色,且由高通量的實驗中發現Hal5跟Atg31具有交互作用的關係,而在本研究中則發現,Hal4和Hal5具有調控細胞自噬的功能。我們在踢除hal4與hal5基因的酵母菌中,觀察到細胞自噬活性下降跟細胞生長嚴重遲緩,而藉由在培養液中添加鉀離子或是大量表現Npr1蛋白,則可以改善突變細胞的生長缺失,但是對自噬能力的修復作用有限。在養分缺失的環境中,hal4與hal5基因剔除的細胞執行細胞自噬的能力下降,且細胞中Atg1激酶複合體脫離自噬體前驅構造的效率也明顯減緩。根據我們的實驗結果,我們推測Hal4和Hal5蛋白激酶可能參與調控細胞自噬的晚期步驟。 | zh_TW |
dc.description.abstract | Autophagy is a highly conserved pathway responsible for the degradation of cytoplasmic components. During autophagy, cargo is selectively or non-selectively engulfed by a unique double membrane structure referred to as an autophagosome and subsequently fused with the vacuole or lysosome. This pathway requires proper regulation to prevent deleterious effects and preserve homeostasis. Previous studies had proved the important role of the functionally redundant Hal4 (Sat4) and Hal5 protein kinases in the regulation of plasma membrane transporter stability. In addition, the interaction between Hal5 and Atg31 had been found by a high-throughput experiment. In this research, we discovered a new function for the functionally redundant protein kinases, Hal4 and Hal5, on general autophagy regulation. In budding yeast, chromosomal deletion of HAL4 and HAL5 genes causes server defects on autophagy activity and growth rate. By supplementing potassium or overexpressing Npr1, the growth, but not of the autophagy, defects of the mutant could be largely rescued. Simultaneous loss of Hal4 and Hal5 results in decreasing of autophagy activity under nutrient-depletion conditions and this result is associated with block of the Atg1 kinase complex release from the pre-autophagosomal structure (PAS). Our results suggest that Hal4 and Hal5 kinase proteins might regulate general autophagy through affecting the late stage of autophagy pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:07:43Z (GMT). No. of bitstreams: 1 ntu-108-R05b21042-1.pdf: 2131073 bytes, checksum: 9efd590d1062f5b2023b735b4147b668 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 1.INTRODUCTION 1 OVERVIEW OF AUTOPHAGY 1 OVERVIEW OF THE CVT PATHWAY 3 TRANSCRIPTIONAL REGULATION OF AUTOPHAGY 4 POST-TRANSCRIPTIONAL REGULATION OF AUTOPHAGY 5 POST-TRANSLATIONAL REGULATION OF AUTOPHAGY 6 HAL4, HAL5 AND GCN2 ARE IN THE SAME KINASE FAMILY GROUP 8 THE IMPORTANCE OF POTASSIUM HOMEOSTASIS IN YEAST 9 ANALYZE HAL4 AND HAL5 REGULATING AUTOPHAGY 10 2 MATERIALS AND METHODS 11 2.1 STRAINS AND MEDIA 11 2.2 FLUORESCENCE MICROSCOPY 12 2.3 PREPARATION OF WHOLE YEAST CELL EXTRACTS FOR IMMUNOBLOTTING ANALYSIS 12 2.4 PHO8△60 ASSAY 13 2.5 YEAST TWO-HYBRID ASSAY 14 2.6 GROWTH CURVE 14 3. RESULT 15 3.1 GENERAL AUTOPHAGY IS STRONGLY SUPPRESSED IN CELLS LACKING HAL4 AND HAL5 15 3.2 CELLS LACK HAL4 AND HAL5 DO NOT CAUSE THE CVT PATHWAY DEFECT 18 3.3 RESCUE THE SLOW GROWTH DEFECT OF THE HAL4∆HAL5∆ STRAIN CAN PARTIALLY REVERSE ITS AUTOPHAGY DEFECT 19 3.4 REGULATION OF THE TORC1 ACTIVITY IS NOT AFFECTED IN HAL4∆HAL5∆ CELLS UNDER NITROGEN STARVATION STRESS 21 3.5 ATG9 SHOWS NORMAL FUNCTIONS UNDER NITROGEN STARVATION CONDITION IN THE HAL4∆HAL5∆ STRAIN 22 3.6 THE ESSENTIAL COMPONENT OF THE ATG1 KINASE MACHINERY, ATG1, IS MISLOCALIZED IN THE ABSENCE OF HAL4 AND HAL5 PROTEIN KINASES 24 3.7 THE INTERACTION BETWEEN HAL5 AND ATG31 25 4. DISCUSSION 26 5. REFERENCES 32 6. FIGURES AND TABLES 47 TABLES 1. YEAST STRAUNS USED IN THIS STUDY. 47 TABLE 2. PRIMERS USED FOR PLASMIDS CONSTRUCTION 49 TABLE 3. PLASMIDS USED IN THIS STUDY 50 FIGURE 1 51 FIGURE 2 53 FIGURE 3 56 FIGURE 4 57 FIGURE 5 58 FIGURE 6 59 FIGURE 7 61 FIGURE 8 62 FIGURE 9 64 FIGURE 10 65 FIGURE 11 66 FIGURE 12 67 FIGURE 13 68 FIGURE 14 69 | - |
dc.language.iso | en | - |
dc.title | Hal4和Hal5對於細胞自噬途徑的調控 | zh_TW |
dc.title | Hal4 and Hal5 are redundant kinases regulating general autophagy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 潘建源;朱家瑩;羅凱尹 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Yuan Pan;Chia-Ying Chu;Kai-Yin Luo | en |
dc.subject.keyword | 細胞自噬,Hal4蛋白,Hal5蛋白,Atg31蛋白,蛋白質激?, | zh_TW |
dc.subject.keyword | autophagy,Hal4 protein,Hal5 protein,Atg31 protein,protein kinase, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU201903345 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-13 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
dc.date.embargo-lift | 2024-08-26 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。