請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78618
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林芳如(Fang-Ju Lin) | |
dc.contributor.author | Meng-Chen Hsu | en |
dc.contributor.author | 徐孟楨 | zh_TW |
dc.date.accessioned | 2021-07-11T15:07:39Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | 參考文獻
1. 內政部統計處。107年第15週內政統計週報_高齡社會(Accessed July 14, 2019, at https://www.moi.gov.tw/stat/node.aspx?cate_sn=-1&belong_sn=7460&sn=7635) 2. 衛生福利部。106年國人死因統計結果(Accessed July 14, 2019, at https://www.mohw.gov.tw/cp-16-41794-1.html) 3. D’Agostino Ralph B, Vasan Ramachandran S, Pencina Michael J, et al. General cardiovascular risk profile for use in primary care. Circulation. 2008;117(6):743-753. 4. Goff David C, Lloyd-Jones Donald M, Bennett G, et al. 2013 ACC/AHA Guideline on the assessment of cardiovascular risk. Circulation. 2014;129(25_suppl_2):S49-S73. 5. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099. 6. Menotti A, Tverdal A, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European Heart Journal. 2003;24(11):987-1003. 7. Leung J, Lin S, Lee R, Lam T, Schooling C. Framingham risk score for predicting cardiovascular disease in older adults in Hong Kong. Hong Kong Medical Journal. 2018;24(4 Supplement 4). 8. Koller MT, Steyerberg EW, Wolbers M, et al. Validity of the framingham point scores in the elderly: Results from the Rotterdam study. American Heart Journal. 2007;154(1):87-93. 9. Cooney MT, Selmer R, Lindman A, et al. Cardiovascular risk estimation in older persons: SCORE O.P. European Journal of Preventive Cardiology. 2015;23(10):1093-1103. 10. Bambrick P, Tan W, Mulcahy R, Pope G, Cooke J. Vascular risk assessment in older adults without a history of cardiovascular disease. Experimental Gerontology. 2016;79:37-45. 11. Tseng C-H. Clinical features of heart failure hospitalization in younger and elderly patients in Taiwan. European Journal of Clinical Investigation. 2011;41(6):597-604. 12. 衛生福利部。103年各年齡層藥費及醫療費用分布情形(Accessed July 14, 2019, at https://www.mohw.gov.tw/cp-2649-20049-1.html) 13. Jackson CF, Wenger NK. Cardiovascular disease in the elderly. Revista Española de Cardiología (English Edition). 2011;64(08):697-712. 14. Lindroos M, Kupari M, Heikkilä J, Tilvis R. Prevalence of aortic valve abnormalities in the elderly: An echocardiographic study of a random population sample. Journal of the American College of Cardiology. 1993;21(5):1220-1225. 15. Kannel WB, Doyle JT, Shephard RJ, Stamler J, Vokonas PS. Prevention of cardiovascular disease in the elderly. Journal of the American College of Cardiology. 1987;10(2, Supplement 1):25A-28A. 16. Anderson KM, Wilson PW, Odell PM, Kannel WB. An updated coronary risk profile. A statement for health professionals. Circulation. 1991;83(1):356-362. 17. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Journal of the American College of Cardiology. 2018:25709. 18. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. European Heart Journal. 2016;37(39):2999-3058. 19. O'Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Revista Española de Cardiología (English Edition). 2008;61(03):299-310. 20. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475. 21. Krumholz HM, Seeman TE, Merrill SS, et al. Lack of association between cholesterol and coronary heart disease mortality and morbidity and all-cause mortality in persons older than 70 years. JAMA. 1994;272(17):1335-1340. 22. Lind L, Sundström J, Ärnlöv J, Lampa E. Impact of aging on the strength of cardiovascular risk factors: A longitudinal study over 40 years. Journal of the American Heart Association. 2018;7(1):e007061. 23. Poortvliet RK, de Ruijter W, de Craen AJ, et al. Blood pressure trends and mortality: the Leiden 85-plus Study. Journal of Hypertension. 2013;31(1):63-70. 24. Sabayan B, van Vliet P, de Ruijter W, Gussekloo J, de Craen Anton JM, Westendorp Rudi GJ. High Blood Pressure, Physical and cognitive function, and risk of stroke in the oldest old. Stroke. 2013;44(1):15-20. 25. Ligthart SA, van Charante EPM, Van Gool WA, Richard E. Treatment of cardiovascular risk factors to prevent cognitive decline and dementia: a systematic review. Vascular Health and Risk Management. 2010;6:775. 26. Paciaroni M, Bogousslavsky J. Connecting cardiovascular disease and dementia: Further evidence. Journal of the American Heart Association. 2013;2(6):e000656. 27. Veronese N, Cereda E, Stubbs B, et al. Risk of cardiovascular disease morbidity and mortality in frail and pre-frail older adults: Results from a meta-analysis and exploratory meta-regression analysis. Ageing Research Reviews. 2017;35:63-73. 28. Bell SP, Saraf A. Risk stratification in very old adults: How to best gauge risk as the basis of management choices for patients aged over 80. Progress in Cardiovascular Diseases. 2014;57(2):197-203. 29. Berliner Judith A, Navab M, Fogelman Alan M, et al. Atherosclerosis: Basic mechanisms. Circulation. 1995;91(9):2488-2496. 30. Grundy SM. Primary prevention of cardiovascular disease with statins: Assessing the evidence base behind clinical guidance. Lung Cancer. 2018;15:05. 31. Law MR, Wald NJ, Thompson SG. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ. 1994;308(6925):367. 32. Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA. 2000;284(3):311-318. 33. Group SSSS. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). The Lancet. 1994;344(8934):1383-1389. 34. Group L-TIwPiIDS. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. New England Journal of Medicine. 1998;339(19):1349-1357. 35. Investigators SPbARiCL. High-dose atorvastatin after stroke or transient ischemic attack. New England Journal of Medicine. 2006;355(6):549-559. 36. Koren MJ, Hunninghake DB, investigators A. Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics: the alliance study. Journal of the American College of Cardiology. 2004;44(9):1772-1779. 37. Brugts JJ, Yetgin T, Hoeks SE, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ. 2009;338:b2376. 38. Savarese G, Gotto AM, Paolillo S, et al. Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. Journal of the American College of Cardiology. 2013;62(22):2090-2099. 39. Ramos R, Comas-Cufí M, Martí-Lluch R, et al. Statins for primary prevention of cardiovascular events and mortality in old and very old adults with and without type 2 diabetes: retrospective cohort study. BMJ. 2018;362:k3359. 40. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2019. Diabetes Care. 2019;42(Supplement 1):S103-S123. 41. Rabar S, Harker M, O’flynn N, Wierzbicki AS. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. BMJ. 2014;349:g4356. 42. Baigent C, Collins R, Appleby P, Parish S, Sleight P, Sleight R. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet. 1988;2:349-360. 43. Libby P, Ridker Paul M, Maseri A. Inflammation and Atherosclerosis. Circulation. 2002;105(9):1135-1143. 44. Schrör K. Aspirin and Platelets: The antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Seminars in Thrombosis and Hemostasis. 1997;23(04):349-356. 45. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Heart Journal. 2016;37(29):2315-2381. 46. Bibbins-Domingo K. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: US Preventive Services Task Force recommendation statement. Annals of Internal Medicine. 2016;164(12):836-845. 47. McNeil JJ, Wolfe R, Woods RL, et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. New England Journal of Medicine. 2018;379(16):1509-1518. 48. Kjeldsen SE. Hypertension and cardiovascular risk: General aspects. Pharmacological Research. 2018;129:95-99. 49. Committee ftTtNTS, Investigators, Committee ftTtNTS, et al. J-curve revisited: An analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial†. European Heart Journal. 2010;31(23):2897-2908. 50. James PA, Oparil S, Carter BL, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8)2014 Guideline for management of high blood pressure2014 guideline for management of high blood pressure. JAMA. 2014;311(5):507-520. 51. Liu M. Chinese expert consensus on the diagnosis and treatment of hypertension in the elderly (2017). Aging Medicine. 2018;1(2):106-116. 52. Federation ID. International Diabetes Federation. IDF Diabetes Atlas, 7 ed. Brussels, Belgium:. 2015. 53. Jiang Y-D, Chang C-H, Tai T-Y, Chen J-F, Chuang L-M. Incidence and prevalence rates of diabetes mellitus in Taiwan: Analysis of the 2000–2009 Nationwide Health Insurance database. Journal of the Formosan Medical Association. 2012;111(11):599-604. 54. Porneala B, He W, Leong A, et al. Hypoglycemia in diabetes mellitus as a coronary artery disease risk factor in patients at elevated vascular risk. The Journal of Clinical Endocrinology & Metabolism. 2016;101(2):659-668. 55. Chow E, Bernjak A, Williams S, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63(5):1738. 56. 11. Older Adults: <em>Standards of medical care in diabetes—2018</em>. In: Diabetes Care. Vol 41.2018:S119. 57. Barry AR, O'Neill DE, Graham MM. Primary Prevention of cardiovascular disease in older adults. The Canadian Journal of Cardiology. 2016;32(9):1074-1081. 58. Yong J, Lin D, Tan X-R. Primary prevention of cardiovascular disease in older adults in China. World Journal of Clinical Cases. 2017;5(9):349-359. 59. Roser HRaM. Causes of Death. OurWorldInDataorg. 2019. 60. He J, Gu D, Wu X, et al. Major causes of death among men and women in China. New England Journal of Medicine. 2005;353(11):1124-1134. 61. Dawber TR, Meadors GF, Moore FE, Jr. Epidemiological approaches to heart disease: the Framingham Study. American Journal of Public Health and the Nation's Health. 1951;41(3):279-281. 62. Kannel WB FM, Mcnamara PM, Garrison RJ, Castelli WP. Investigation of coronary heart disease in families: The Framingham Offspring Study. American Journal of Epidemiology. 1979;110(3):281-290. 63. Lloyd-Jones Donald M. Cardiovascular risk prediction. Circulation. 2010;121(15):1768-1777. 64. Mazza A, Tikhonoff V, Schiavon L, Casiglia E. Triglycerides+high-density-lipoprotein-cholesterol dyslipidaemia, a coronary risk factor in elderly women: The CArdiovascular STudy in the ELderly. Internal Medicine Journal. 2005;35(10):604-610. 65. Saeed A, Nambi V, Sun W, et al. Short-Term global cardiovascular disease risk prediction in older adults. Journal of the American College of Cardiology. 2018;71(22):2527-2536. 66. Liu J, Hong Y, D'Agostino S, Ralph B., et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese multi-provincial cohort study. JAMA. 2004;291(21):2591-2599. 67. Brindle P, Jonathan E, Lampe F, et al. Predictive accuracy of the Framingham coronary risk score in British men:prospective cohort study. BMJ. 2003;327(7426):1267. 68. DeFilippis AP, Young R, Carrubba CJ, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort calibration and discrimination among CVD risk scores. Annals of Internal Medicine. 2015;162(4):266-275. 69. 衛生福利部中央健康保險署。全民健康保險年報2017-2018(Assessed July 14, 2019, at https://www1.nhi.gov.tw/Nhi_E LibraryPubWeb/CustomPage/P_Detail.aspx?CP_ID=207) 70. Ho C-H, Chen Z-C, Chu C-C, Wang J-J, Chiang C-Y. Temporal trends of in-hospital mortality in patients treated with intra-aortic balloon pumping: A nationwide population study in Taiwan, 1998-2008. Plos One. 2015;10(6):e0131575-e0131575. 71. Hockenberry JM, Lien H-M, Chou S-Y. Surgeon and hospital volume as quality indicators for CABG in Taiwan: examining hazard to mortality and accounting for unobserved heterogeneity. Health Services Research Journal. 2010;45(5 Pt 1):1168-1187. 72. Lu T-H, Huang Y-T, Lee J-C, et al. Characteristics of early and late adopting hospitals providing percutaneous coronary intervention in Taiwan. Journal of the American Heart Association. 2015;4(12):e002840. 73. Saczynski JS, Andrade SE, Harrold LR, et al. A systematic review of validated methods for identifying heart failure using administrative data. Pharmacoepidemiology and Drug Safety. 2012;21 Suppl 1(0 1):129-140. 74. Jung KJ, Jang Y, Oh DJ, et al. The ACC/AHA 2013 pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease. Atherosclerosis. 2015;242(1):367-375. 75. Yang X, Li J, Hu D, et al. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population. Circulation. 2016;134(19):1430-1440. 76. Wen Y-C, Chen L-K, Hsiao F-Y. Predicting mortality and hospitalization of older adults by the multimorbidity frailty index. Plos One. 2017;12(11):e0187825. 77. Consultation WE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet. 2004;363(9403):157-163. 78. Assmann G, Cullen P, Schulte H. Simple scoring scheme for salculating the risk of acute coronary events based on the 10-year gollow-up of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation. 2002;105(3):310-315. 79. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972;18(6):499. 80. Nauck M, Warnick GR, Rifai N. Methods for measurement of LDL-cholesterol: A critical assessment of direct measurement by homogeneous assays versus calculation. Clinical Chemistry. 2002;48(2):236. 81. Li P, Stuart EA, Allison DB. Multiple imputation: a flexible tool for handling missing data. JAMA. 2015;314(18):1966-1967. 82. Yuan YC. Multiple imputation for missing data: Concepts and new development. Paper presented at: Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference2000. 83. Barzi F, Woodward M. Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. American Journal of Epidemiology. 2004;160(1):34-45. 84. Akaike H. Information Theory and an Extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G, eds. Selected Papers of Hirotugu Akaike. New York, NY: Springer New York; 1998:199-213. 85. Snipes M, Taylor DC. Model selection and Akaike Information Criteria: An example from wine ratings and prices. Wine Economics and Policy. 2014;3(1):3-9. 86. Vergouwe Y, Steyerberg EW. Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal. 2014;35(29):1925-1931. 87. Taktak A, Eleuteri A, Lake S, Fisher A. Evaluation of prognostic models: discrimination and calibration performance. Comput Intell Med (Plymouth). 2007. (Access July 14, 2019, at http://pcwww.liv.ac.uk/~afgt/CIMED07_1.pdf .) 88. DW Hosmer SL. Applied logistic regression,2nd Ed.Chapter 5. 2000:160-164. 89. Harrell FE, Jr., Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of Medical Tests. JAMA. 1982;247(18):2543-2546. 90. Cook Nancy R. Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction. Circulation. 2007;115(7):928-935. 91. D'agostino R, Nam B-H. Evaluation of the performance of survival analysis models: discrimination and calibration measures. Handbook of Statistics. 2003;23:1-25. 92. Demler OV, Paynter NP, Cook NR. Tests of calibration and goodness-of-fit in the survival setting. Statistic in Medicine. 2015;34(10):1659-1680. 93. Crowson CS, Atkinson EJ, Therneau TM. Assessing calibration of prognostic risk scores. Statistical Methods in Medical Research. 2016;25(4):1692-1706. 94. Sullivan LM, Massaro JM, D'Agostino Sr RB. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Statistics in Medicine. 2004;23(10):1631-1660. 95. Barton M, Meyer MR. Postmenopausal hypertension: mechanisms and therapy. Hypertension. 2009;54(1):11-18. 96. Matthews KA, Meilahn E, Kuller LH, Kelsey SF, Caggiula AW, Wing RR. Menopause and risk factors for coronary heart disease. New England Journal of Medicine. 1989;321(10):641-646. 97. Mosca L, Barrett-Connor E, Kass Wenger N. Sex/Gender differences in cardiovascular disease prevention. Circulation. 2011;124(19):2145-2154. 98. Yu K-H, See L-C, Kuo C-F, Chou I-J, Chou M-J. Prevalence and incidence in patients with autoimmune rheumatic diseases: A nationwide population-based study in Taiwan. Arthritis Care & Research. 2013;65(2):244-250. 99. Fairweather D, Rose NR. Women and autoimmune diseases. Emerging Infectious Disease.. 2004;10(11):2005-2011. 100. Roger Véronique L, Go Alan S, Lloyd-Jones Donald M, et al. Heart disease and stroke statistics—2011 Update. Circulation. 2011;123(4):e18-e209. 101. Huynh QL, Reid CM, Chowdhury EK, et al. Prediction of cardiovascular and all-cause mortality at 10 years in the hypertensive aged population. American Journal of Hypertension. 2014;28(5):649-656. 102. Venketasubramanian N, Yoon BW, Pandian J, Navarro JC. Stroke epidemiology in south, east, and south-east Asia: A Review. J Stroke. 2017;19(3):286-294. 103. Feigin VL, Lawes CMM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. The Lancet Neurology. 2009;8(4):355-369. 104. Kim K, Lee CJ, Shim C-Y, et al. Statin and clinical outcomes of primary prevention in individuals aged >75 years: The SCOPE-75 study. Atherosclerosis. 2019;284:31-36. 105. Maas AHEM, Appelman YEA. Gender differences in coronary heart disease. Neth Heart J. 2010;18(12):598-602. 106. Kane AE, Howlett SE. Differences in Cardiovascular Aging in Men and Women. In: Kerkhof PLM, Miller VM, eds. Sex-Specific Analysis of Cardiovascular Function. Cham: Springer International Publishing; 2018:389-411. 107. Ulucam MZ. Cardiovascular risk factors in the elderly. In: Cardiovascular Risk Factors. IntechOpen; 2012. 108. Packard CJ, Ford I, Robertson M, et al. Plasma lipoproteins and apolipoproteins as predictors of cardiovascular risk and treatment benefit in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Circulation. 2005;112(20):3058-3065. 109. Tóth PP, Potter D, Ming EE. Prevalence of lipid abnormalities in the united states: the national health and nutrition examination survey 2003–2006. Journal of clinical lipidology. 2012;6(4):325-330. 110. Frank Ariel TH, Zhao B, Jose Powell O, Azar Kristen MJ, Fortmann Stephen P, Palaniappan Latha P. Racial/Ethnic Differences in dyslipidemia patterns. Circulation. 2014;129(5):570-579. 111. Collaboration APCS. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation. 2004;110(17):2678-2686. 112. Pylypchuk R, Wells S, Kerr A, et al. Cardiovascular disease risk prediction equations in 400 000 primary care patients in New Zealand: a derivation and validation study. The Lancet. 2018;391(10133):1897-1907. 113. Joint British Societies’ consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart. 2014;100(Suppl 2):ii1-ii67. 114. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: Evidence for a phenotype. The Journals of Gerontology: Series A. 2001;56(3):M146-M157. 115. Durante A, Bronzato S. The increased cardiovascular risk in patients affected by autoimmune diseases: review of the various manifestations. Journal of Clinical Medicine Research. 2015;7(6):379-384. 116. Koene Ryan J, Prizment Anna E, Blaes A, Konety Suma H. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104-1114. 117. Jefferson Angela L, Himali Jayandra J, Beiser Alexa S, et al. Cardiac index is associated with brain aging. Circulation. 2010;122(7):690-697. 118. Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301(15):1565-1572. 119. Mizuno K, Nakaya N, Ohashi Y, et al. Usefulness of pravastatin in primary prevention of cardiovascular events in women. Circulation. 2008;117(4):494-502. 120. Mombelli G, Bosisio R, Calabresi L, et al. Gender-related lipid and/or lipoprotein responses to statins in subjects in primary and secondary prevention. Journal of Clinical Lipidology. 2015;9(2):226-233. 121. Cangemi R, Romiti GF, Campolongo G, et al. Gender related differences in treatment and response to statins in primary and secondary cardiovascular prevention: The never-ending debate. Pharmacological Research. 2017;117:148-155. 122. Menotti A, Nissinen A, Kromhout D, et al. Predicting cardiovascular risk in the elderly in different European countries. European Heart Journal. 2002;23(4):294-300. 123. Rodondi N, Locatelli I, Aujesky D, et al. Framingham risk score and alternatives for prediction of coronary heart disease in older adults. Plos One. 2012;7(3):e34287-e34287. 124. Smith GD, Shipley MJ, Marmot MG, Rose G. Plasma cholesterol concentration and mortality: the Whitehall Study. JAMA. 1992;267(1):70-76. 125. De Backer G, Ambrosioni E, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). European Heart Journal. 2003;24(17):1601-1610. 126. Ravnskov U, de Lorgeril M, Diamond DM, et al. LDL-C does not cause cardiovascular disease: a comprehensive review of the current literature. Expert Review of Clinical Pharmacology. 2018;11(10):959-970. 127. Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid levels in patients hospitalized with coronary artery disease: An analysis of 136,905 hospitalizations in Get With The Guidelines. American Heart Journal. 2009;157(1):111-117.e112. 128. Al-Mallah MH, Hatahet H, Cavalcante JL, Khanal S. Low admission LDL-cholesterol is associated with increased 3-year all-cause mortality in patients with non ST segment elevation myocardial infarction. Cardiology Journal. 2009;16(3):227-233. 129. Clarke R, Emberson JR, Parish S, et al. Cholesterol fractions and apolipoproteins as risk factors for heart disease mortality in older men. Archives of Internal Medicine. 2007;167(13):1373-1378. 130. Nilsson G, Öhrvik J, Lönnberg I, Hedberg P. Ten-year survival in 75-year-old men and women: Predictive ability of total cholesterol, HDL-C, and LDL-C. Current Gerontology and Geriatrics Research. 2009;2009:7. 131. Hamazaki T OH, Ogushi Y, et al. Towards a paradigm shift in cholesterol treatment. A re-examination of the cholesterol issue in Japan: Abstracts. Annals of Nutrition and Metabolism. 2015;66(suppl 4)(Suppl. 4):1-116. 132. Anum EA, Adera T. Hypercholesterolemia and coronary heart disease in the elderly: a meta-analysis. Annals of Epidemiology. 2004;14(9):705-721. 133. van Bussel EF, Richard E, Busschers WB, et al. A cardiovascular risk prediction model for older people: Development and validation in a primary care population. The Journal of Clinical Hypertension. 2019;0(0). 134. Lu W, Resnick HE, Jablonski KA, et al. Non-HDL Cholesterol as a predictor of cardiovascular disease in type 2 diabetes. The Strong Heart Study. 2003;26(1):16-23. 135. Lin F-J, Tseng W-K, Yin W-H, Yeh H-I, Chen J-W, Wu C-C. Residual risk factors to predict major adverse cardiovascular events in atherosclerotic cardiovascular disease patients with and without diabetes mellitus. Scientific Reports. 2017;7(1):9179. 136. Bruno G, Merletti F, Biggeri A, et al. Effect of age on the association of non-high-density-lipoprotein cholesterol and apolipoprotein B with cardiovascular mortality in a Mediterranean population with type 2 diabetes: the Casale Monferrato study. Diabetologia. 2006;49(5):937-944. 137. Wägner AM, Pérez A, Zapico E, Ordóñez-Llanos J. Non-HDL cholesterol and apolipoprotein B in the dyslipidemic classification of type 2 diabetic patients. Diabetes Care. 2003;26(7):2048-2051. 138. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ. 2007;335(7611):136. 139. Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011;97(9):689-697. 140. Organization WH. Global health and aging (NIH publication no. 11-7737). National Institutes of Health, US Department of Health and Human Services. 2011. 141. Su T-C, Bai C-H, Chang H-Y, et al. Evidence for improved control of hypertension in Taiwan: 1993–2002. Journal of Hypertension. 2008;26(3):600-606. 142. Hwang L-C, Bai C-H, Chen C-J. Prevalence of obesity and metabolic syndrome in Taiwan. Journal of the Formosan Medical Association. 2006;105(8):626-635. 143. Sivapalaratnam S, Boekholdt SM, Trip MD, et al. Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart (British Cardiac Society). 2010;96(24):1985-1989. 144. Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. Journal of the American College of Cardiology. 2018:25711. 145. Zethelius B, Berglund L, Sundström J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. New England Journal of Medicine. 2008;358(20):2107-2116. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78618 | - |
dc.description.abstract | 研究背景
心血管疾病是全球老年人的首要死因,因此極需早日找出高風險病人並給予藥物或非藥物治療。然而目前心血管風險預測的研究族群大多為中壯年人,因老年人的風險因子與中壯年有所不同,故現行的評估工具無法適用於老年人;此外,現今常用的心血管風險量表主要建立在西方高加索族群,不同種族間會因為先天差異而造成疾病風險不同,因此為亞洲老年人建立一個心血管風險評估工具是必要且重要的。 研究目的 本研究欲為亞洲75歲以上的男性及女性老年人分別建立五年心血管風險預測工具並進行確效。 研究方法 此為一回溯性研究,使用之資料庫為台大醫院整合資料庫中於2006-2017年間曾具三高疾病或心臟血管疾病診斷之病人資料,並與全民健康保險資料庫串聯以獲得追蹤期間完整的用藥紀錄和疾病診斷。收納對象為2008年2月至2012年12月間曾有台大醫院就診紀錄且就醫年紀為75歲以上的病人,排除過去曾經有心血管疾病診斷者。研究族群依男、女性分組後再各自隨機以80%、20%比例分為建立模型組和確效模型組,研究終點為廣義心血管事件,包含心因性死亡、中風、冠心症、周邊動脈疾病、心衰竭住院事件和冠狀動脈成形手術,納入分析的潛在風險因子為年齡、身體質量指數、血脂、高血壓、糖尿病、自體免疫疾病、其它慢性疾病和使用藥品。模型建立分為兩步驟:首先,利用雙變項分析檢視單一風險因子與心血管事件的關聯性,P < 0.25的變項則進入Cox比例風險模型,利用逐步選擇法篩選出最適模型。最終模型建立後,我們使用C-statistic檢視模型鑑別力,並比較預測風險及實際風險的數值接近程度來確認模型校準力,另外,本研究也將利用確效組的模型表現來檢視預測模型的外推性,並進行相關的敏感性分析。 研究結果 本研究共納入12,174位病人,平均追蹤年限7.4年 (四分位差5.4-9.2),有2,779位病人發生終點事件,女性終點事件發生率略低於男性 (35/1,000 vs. 40/1,000 人年)。屬於心血管傳統風險因子的年紀、吸菸史、HDL-C (女性) 及TG (男性) 仍留在最終模型,此外,衰弱、慢性腎臟病和心房顫動會顯著增加男、女性心血管風險,在女性預測模型中,全身性紅斑狼瘡、重症肌無力、轉移性癌症和失智與心血管疾病有顯著關聯性,若使用抗凝血藥物或aspirin也會增加女性心血管風險,而statins類藥品在女性中顯示能降低14%心血管風險。 預測模型的鑑別力C-statistic在女性、男性分別為0.66和0.64,且使用類別型變項的模型鑑別力與使用連續型變項的模型並無顯著差異。確效模型組與建立模型組有相似的鑑別力,但校準力較差 (P < 0.05)。敏感性分析中顯示若將原研究終點排除心衰竭、出血性中風及冠狀動脈成形手術後,女性預測模型AUC則從0.65上升為0.66,單一重大心血管事件如心肌梗塞、心因性死亡之女性模型AUC可各自達到0.70和0.72,然而男性模型AUC於敏感性分析中皆並未大幅改善。 結論 本研究為男、女性的亞洲老年人找出心血管風險因子,並分別建立心血管風險預測工具,雖然此預測工具僅具普通的模型表現,但仍能做為輔助醫療人員臨床決策的參考。期許未來研究持續找出重要但尚未量測的風險因子,並將此風險預測工具套用在其他亞洲地區或國家的老年人以驗證其外推性。 | zh_TW |
dc.description.abstract | Background
Cardiovascular diseases (CVD) are the leading cause of death in older adults globally. It is important to identify high-risk patients so that non-pharmacological therapy or medications can be initiated as early as possible. However, most existing risk prediction tools were derived from middle-aged populations and thus are inappropriate for older adults since the cardiovascular (CV) risk factors could be different in the elderly. Moreover, risk scores currently in use were mainly developed in Caucasians. Cardiovascular risk differs between ethnicities due to indigenous difference. It is crucial to develop a risk assessment tool for older adults in the Asian population. Objectives The aim of this study was to develop and validate a gender-specific 5-year CV risk tool in individuals aged 75 years or older. Methods In this retrospective study, we used the Integrated Medical Database of National Taiwan University Hospital (NTUH-iMD) for patients who had a diagnosis of hypertension, diabetes, dyslipidemia or CV disease between 2006 and 2017. The NTUH-iMD was linked to the National Health Insurance Research Database (NHIRD) to obtain the complete health information during follow-up. Patients who visited the National Taiwan University Hospital between Feb 2008 and Dec 2012 were first included, and those aged 75 years or above and without a history of CVD were further identified. Study subjects was divided by gender and randomly split into a derivation cohort (80%) and validation cohort (20%). Gender-specific risk assessment models were developed to predict composite CVD, an endpoint consisting of CV death, strokes, coronary heart diseases, peripheral artery diseases, hospitalization of heart failure, and cardiac revascularization. Potential risk factors analyzed included age, body mass index, lipid profiles, hypertension, diabetes, autoimmune diseases, other chronic comorbidities, and medications. A two-step approach was used: bivariate analysis was first performed to evaluate the unadjusted association between each risk factor and the outcome, and variables with P < 0.25 were then included in the stepwise selection process of Cox proportional hazards regression to derive the final model. After the prediction models were developed, we assessed discrimination of the model by C-statistic and evaluated calibration by comparing the predicted and observed survival. Validation cohort was used to test the model’s external validity. Sensitivity analyses were also conducted. Results There were 12,174 patients included in the final analysis. With a median follow-up of 7.4 years (interquartile range: 5.4-9.2), 2,779 patients developed the composite CVD outcome. The incidence rate of cardiovascular events in women was lower than in men (35/1,000 vs. 40/1,000 person-years). Traditional risk factors remaining significant in the final model were age, smoking, HDL-C, and TG. Additionally, frailty, chronic kidney disease, and atrial fibrillation substantially increased the cardiovascular risk in both women and men. Systemic lupus erythematosus, myasthenia gravis, metastatic cancer, dementia and administration of oral anticoagulants and aspirin were the other significant factors associated with increased risk of CVD in women’s model. On the other hand, statins showed a protective effect that women users had a 14% reduced risk of CVD. The C-statistic for prediction models were 0.66 (women) and 0.64 (men). Discrimination of the models having categorical variables was found to be comparable to containing continuous variables. In the derivation cohort, model discrimination was similar but had poorer calibration than in the validation cohort (P < 0.05). Sensitivity analyses showed that when excluding heart failure, hemorrhagic stroke, and revascularization from the composite outcome endpoint, AUC of the women’s model increased from 0.65 to 0.66. The AUC of women’s model increased to 0.70 and 0.72 when the risk of individual major cardiovascular events such as MI and CVD death was predicted respectively. However, the AUC of men’s model did not improve in the sensitivity analyses. Conclusions In this study, cardiovascular risk factors were identified, and the gender-specific CV risk assessment tool was developed and validated to quantify risk in Asian older adults. Although the model performance was only fair, this risk assessment tool can still facilitate the clinical decision making by health professionals. Further research is needed to continuously identify important but unmeasured risk factors, and this model should be applied in other Asian regions or countries to confirm the external validity. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:07:39Z (GMT). No. of bitstreams: 1 ntu-108-R06451002-1.pdf: 2486044 bytes, checksum: 6b7c45628b3d24151f8a4eeeeb07e79a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii ABSTRACT iv 圖目錄 x 表目錄 xi 第一章 緒論 1 第二章 文獻回顧 2 2.1老年人發生心血管疾病的流行病學 2 2.1.1 老年人心臟疾病死亡率、罹病率及相關醫療花費 2 2.1.2 老年人較易發生心血管疾病之生理機轉 3 2.2心血管疾病風險因子 4 2.2.1 中壯年人心血管疾病風險因子 4 2.2.2 老年人心血管疾病風險因子 5 2.3老年人心血管疾病之初級預防 5 2.3.1 使用statins做為心血管疾病之初級預防 5 2.3.2 用於初級預防的其他藥物與非藥物治療 8 2.4心血管風險評估工具 10 2.4.1 建立風險評估工具之重要性 10 2.4.2 現今常用的心血管風險評估工具 11 2.4.3 建立老年人心血管評估工具之重要性 11 第三章 研究目的 20 第四章 研究方法 21 4.1 研究材料 21 4.2 研究設計與研究對象 22 4.2.1 研究設計 22 4.2.2 研究對象 23 4.3 變項之測量與定義 25 4.3.1 研究終點 25 4.3.2 候選預測變項 27 4.3.3 追蹤時間 30 4.3.4 遺失值處理 30 4.4 統計分析 31 4.4.1 描述性分析 31 4.4.2 建立模型 31 4.5 模型表現與最終模型選擇 32 4.5.1 鑑別力 (Discrimination) 32 4.5.2 校準力 (Calibration) 32 4.5.3 最終模型選擇 33 4.6 模型確效 33 4.7 敏感性分析 33 4.7.1 完整案例分析 (Complete cases analysis) 33 4.7.2 改變終點事件定義 34 4.8 統計軟體 34 4.9 風險計算公式 35 4.10心血管風險分數量表 35 第五章 研究結果 36 5.1納入之研究對象 36 5.1.1 篩選流程 36 5.1.2 研究對象之基礎特性 38 5.2預測風險因子與心血管疾病之相關性 42 5.2.1 終點事件之描述 42 5.2.2 雙變項分析篩選之預測因子 44 5.3建立心血管風險預測模型 49 5.3.1 女性心血管風險預測模型 49 5.3.2 男性心血管風險預測模型 49 5.4最終預測模型與模型表現 51 5.5預測模型之確效 51 5.6敏感性分析 57 5.7 風險分數量表 59 第六章 討論 62 6.1研究對象特性 62 6.2終點事件發生率 62 6.3老年人顯著心血管風險因子之探討 63 6.3.1傳統心血管風險因子 63 6.3.2慢性共病 64 6.3.3藥品使用 65 6.4非顯著的傳統心血管風險因子探討 65 6.5模型表現討論 67 6.6臨床意義與應用 68 6.5研究優勢與限制 68 6.5.1 研究優勢 68 6.5.2 研究限制 69 第七章 結論及未來展望 72 參考文獻 73 附錄 85 圖目錄 Figure 4.1 Illustration of study time frame 22 Figure 5.1 Study flow chart 37 Figure 5.2 ROC curve of models: (A) Women (B) Men 53 Figure 5.3 Predicted and observed risk by decile of predicted risk 56 Figure 5.4 Sensitivity analysis I– Calibration plots in complete cases analysis 58 表目錄 Table 2.1 Cardiovascular risk prediction tools in use nowadays 13 Table 2.2 Existing cardiovascular risk prediction tools for elderly 17 Table 4.1 ICD-9-CM diagnosis codes for exclusion criteria (CVD history) 24 Table 4.2 ICD-9-CM and ICD-10-CM diagnosis codes for defining study outcome .26 Table 4.3 Potential predictor variables 28 Table 4.4 Definition of endpoints in sensitivity analysis 34 Table 5.1 Baseline characteristics 39 Table 5.2 Baseline demographic data of full cohort after multiple imputation (MI) 41 Table 5.3 Follow-up time and CVD incidence rate 43 Table 5.4 Bivariate analysis of each risk factor and CVD outcome in women 45 Table 5.5 Bivariate analysis of each risk factor and CVD outcome in men 47 Table 5.6 Variables in Cox model derived by stepwise selection 50 Table 5.7 Comparison of models with different type of variables for risk prediction of CVD 52 Table 5.8 Predictive model for estimation for 5-year risk of CVD in women 54 Table 5.9 Predictive model for estimation for 5-year risk of CVD in men 55 Table 5.10 Discrimination and calibration performance of prediction models 56 Table 5.11 Sensitivity analysis I– Model performance of complete cases in validation cohort 58 Table 5.12 Sensitivity analysis II– Model discrimination for different endpoint definitions 58 Table 5.13 CVD risk score sheet for women 59 Table 5.14 Predicted CVD risk for women based on score sheet 60 Table 5.15 CVD risk score sheet for men 60 Table 5.16 Predicted CVD risk for men based on score sheet 61 Appendix 1 Procedure codes for PCI and CABG 85 Appendix 2.1 Women Cox models for predicting composite CVDs with different type of variables 87 Appendix 2.2 Men Cox models for predicting composite CVDs with different type of variables 88 | |
dc.language.iso | zh-TW | |
dc.title | 建立75歲以上亞洲老年人之五年心血管風險評估工具及其確效 | zh_TW |
dc.title | Development and Validation of a 5-year Cardiovascular Risk Assessment Tool for Asian Elderly over 75 Years of Age | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳造中(Chau-Chung Wu),王繼娟(Chi-Chuan Wang) | |
dc.subject.keyword | 心血管風險,預測模型,評估工具,老年人,亞洲, | zh_TW |
dc.subject.keyword | cardiovascular risk,prediction model,assessment tool,elderly,Asian, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU201903502 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 臨床藥學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06451002-1.pdf 目前未授權公開取用 | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。