請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78614
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭柏秀 | |
dc.contributor.author | Ka-Sin Hong | en |
dc.contributor.author | 洪嘉倩 | zh_TW |
dc.date.accessioned | 2021-07-11T15:07:24Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | REFERENCE:
1. Burcusa SL, Iacono WG. Risk for recurrence in depression. Clin Psychol Rev. 2007;27(8):959-985. doi:10.1016/j.cpr.2007.02.005 2. Perlis RH, Ostacher MJ, Patel JK, et al. Predictors of Recurrence in Bipolar Disorder: Primary Outcomes From the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am J Psychiatry. 2006:8. 3. Courtet P, Olié E. Circadian dimension and severity of depression. Eur Neuropsychopharmacol. 2012;22:S476-S481. doi:10.1016/j.euroneuro.2012.07.009 4. Karatsoreos IN. Links between Circadian Rhythms and Psychiatric Disease. Front Behav Neurosci. 2014;8. doi:10.3389/fnbeh.2014.00162 5. Vadnie CA, McClung CA. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast. 2017;2017:1-28. doi:10.1155/2017/1504507 6. Cretu JB, Culver JL, Goffin KC, Shah S, Ketter TA. Sleep, residual mood symptoms, and time to relapse in recovered patients with bipolar disorder. J Affect Disord. 2016;190:162-166. doi:10.1016/j.jad.2015.09.076 7. Hori H, Koga N, Hidese S, et al. 24-h activity rhythm and sleep in depressed outpatients. J Psychiatr Res. 2016;77:27-34. doi:10.1016/j.jpsychires.2016.02.022 8. Gonzalez R, Tamminga CA, Tohen M, Suppes T. The Relationship Between Affective State and the Rhythmicity of Activity in Bipolar Disorder. J Clin Psychiatry. 2014;75(04):e317-e322. doi:10.4088/JCP.13m08506 9. Full KM, Kerr J, Grandner MA, et al. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography. Sleep Health. 2018;4(2):209-216. doi:10.1016/j.sleh.2017.12.007 10. Kaplan KA, Talbot LS, Gruber J, Harvey AG. Evaluating sleep in bipolar disorder: comparison between actigraphy, polysomnography, and sleep diary: Evaluating sleep in bipolar disorder. Bipolar Disord. 2012;14(8):870-879. doi:10.1111/bdi.12021 11. Martin JL, Hakim AD. Wrist Actigraphy. Chest. 2011;139(6):1514-1527. doi:10.1378/chest.10-1872 12. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires * Commentary. Br J Sports Med. 2003;37(>3):197-206. doi:10.1136/bjsm.37.3.197 13. Aminian K, Robert Ph, Buchser EE, Rutschmann B, Hayoz D, Depairon M. Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med Biol Eng Comput. 1999;37(3):304-308. doi:10.1007/BF02513304 14. Taraldsen K, Chastin SFM, Riphagen II, Vereijken B, Helbostad JL. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: A systematic literature review of current knowledge and applications. Maturitas. 2012;71(1):13-19. doi:10.1016/j.maturitas.2011.11.003 15. Krane-Gartiser K, Henriksen TEG, Vaaler AE, Fasmer OB, Morken G. Actigraphically Assessed Activity in Unipolar Depression: A Comparison of Inpatients With and Without Motor Retardation. J Clin Psychiatry. September 2015:1181-1187. doi:10.4088/JCP.14m09106 16. Reichert M, Lutz A, Deuschle M, et al. Improving Motor Activity Assessment in Depression: Which Sensor Placement, Analytic Strategy and Diurnal Time Frame Are Most Powerful in Distinguishing Patients from Controls and Monitoring Treatment Effects. Antal A, ed. PLOS ONE. 2015;10(4):e0124231. doi:10.1371/journal.pone.0124231 17. O’Brien JT, Gallagher P, Stow D, et al. A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression. Psychol Med. 2017;47(01):93-102. doi:10.1017/S0033291716002166 18. Banihashemi N, Robillard R, Yang J, et al. Quantifying the effect of body mass index, age, and depression severity on 24-h activity patterns in persons with a lifetime history of affective disorders. BMC Psychiatry. 2016;16(1). doi:10.1186/s12888-016-1023-2 19. Shou H, Cui L, Hickie I, et al. Dysregulation of objectively assessed 24-hour motor activity patterns as a potential marker for bipolar I disorder: results of a community-based family study. Transl Psychiatry. 2017;7(8):e1211. doi:10.1038/tp.2017.136 20. HAMILTON, MAX. Development of a Rating Scale for Primary Depressive Illness. Br J Soc Clin Psychol. 1967;6:278-296. 21. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133(5):429-435. doi:10.1192/bjp.133.5.429 22. Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin Psychol Rev. 1988;8(1):77-100. doi:10.1016/0272-7358(88)90050-5 23. Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model. 2014;11(1):16. doi:10.1186/1742-4682-11-16 24. Tong YL. Parameter Estimation in Studying Circadian Rhythms. Biometrics. 1976;32(1):85. doi:10.2307/2529340 25. Blume C, Santhi N, Schabus M. ‘nparACT’ package for R: A free software tool for the non-parametric analysis of actigraphy data. MethodsX. 2016;3:430-435. doi:10.1016/j.mex.2016.05.006 26. Mitchell JA, Quante M, Godbole S, et al. Variation in actigraphy-estimated rest-activity patterns by demographic factors. Chronobiol Int. 2017;34(8):1042-1056. doi:10.1080/07420528.2017.1337032 27. Lee P, Tse CY. Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults. Gait Posture. 2019;68:141-149. doi:10.1016/j.gaitpost.2018.11.023 28. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213. doi:10.1016/0165-1781(89)90047-4 29. Tai S-Y, Wang W-F, Yang Y-H. Current status of sleep quality in Taiwan: a nationwide walk-in survey. Ann Gen Psychiatry. 2015;14(1). doi:10.1186/s12991-015-0078-7 30. Rocha PMB, Neves FS, Corrêa H. Significant sleep disturbances in euthymic bipolar patients. Compr Psychiatry. 2013;54(7):1003-1008. doi:10.1016/j.comppsych.2013.04.006 31. Millar A, Espie CA, Scott J. The sleep of remitted bipolar outpatients: a controlled naturalistic study using actigraphy. J Affect Disord. 2004;80(2-3):145-153. doi:10.1016/S0165-0327(03)00055-7 32. Grandner MA, Kripke DF, Yoon I-Y, Youngstedt SD. Criterion validity of the Pittsburgh Sleep Quality Index: Investigation in a non-clinical sample. Sleep Biol Rhythms. 2006;4(2):129-136. doi:10.1111/j.1479-8425.2006.00207.x 33. Luik AI, Zuurbier LA, Direk N, Hofman A, Van Someren EJW, Tiemeier H. 24-HOUR ACTIVITY RHYTHM AND SLEEP DISTURBANCES IN DEPRESSION AND ANXIETY: A POPULATION-BASED STUDY OF MIDDLE-AGED AND OLDER PERSONS: Research Article: Rhythms, Sleep, Depression, and Anxiety. Depress Anxiety. 2015;32(9):684-692. doi:10.1002/da.22355 34. Krane-Gartiser K, Henriksen TEG, Morken G, Vaaler A, Fasmer OB. Actigraphic Assessment of Motor Activity in Acutely Admitted Inpatients with Bipolar Disorder. Potash JB, ed. PLoS ONE. 2014;9(2):e89574. doi:10.1371/journal.pone.0089574 35. De Crescenzo F, Economou A, Sharpley AL, Gormez A, Quested DJ. Actigraphic features of bipolar disorder: A systematic review and meta-analysis. Sleep Med Rev. 2017;33:58-69. doi:10.1016/j.smrv.2016.05.003 36. Maglione JE, Ancoli-Israel S, Peters KW, et al. Depressive Symptoms and Circadian Activity Rhythm Disturbances in Community-Dwelling Older Women. Am J Geriatr Psychiatry. 2014;22(4):349-361. doi:10.1016/j.jagp.2012.09.003 37. Helgadóttir B, Forsell Y, Ekblom Ö. Physical Activity Patterns of People Affected by Depressive and Anxiety Disorders as Measured by Accelerometers: A Cross-Sectional Study. Potash JB, ed. PLOS ONE. 2015;10(1):e0115894. doi:10.1371/journal.pone.0115894 38. Moraes CÁ, Cambras T, Diez-Noguera A, et al. A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters. BMC Psychiatry. 2013;13(1). doi:10.1186/1471-244X-13-77 39. Faedda GL, Ohashi K, Hernandez M, et al. Actigraph measures discriminate pediatric bipolar disorder from attention-deficit/hyperactivity disorder and typically developing controls. J Child Psychol Psychiatry. 2016;57(6):706-716. doi:10.1111/jcpp.12520 40. Verkooijen S, van Bergen AH, Knapen SE, et al. An actigraphy study investigating sleep in bipolar I patients, unaffected siblings and controls. J Affect Disord. 2017;208:248-254. doi:10.1016/j.jad.2016.08.076 41. Robillard R, Naismith SL, Smith KL, et al. Sleep-Wake Cycle in Young and Older Persons with a Lifetime History of Mood Disorders. Mongrain V, ed. PLoS ONE. 2014;9(2):e87763. doi:10.1371/journal.pone.0087763 42. Moon J-H, Cho C-H, Son GH, et al. Advanced Circadian Phase in Mania and Delayed Circadian Phase in Mixed Mania and Depression Returned to Normal after Treatment of Bipolar Disorder. EBioMedicine. 2016;11:285-295. doi:10.1016/j.ebiom.2016.08.019 43. Teicher MH. Increased Activity and Phase Delay in Circadian Motility Rhythms in Geriatric Depression: Preliminary Observations. Arch Gen Psychiatry. 1988;45(10):913. doi:10.1001/archpsyc.1988.01800340039005 44. Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol Clin Exp. 2008;23(7):571-585. doi:10.1002/hup.964 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78614 | - |
dc.description.abstract | 情緒障礙病患常常伴隨著晝夜節律紊亂,主要表現為睡覺和活動規模的改變。本篇研究主要比較在情緒疾患病人(躁鬱症、重度躁鬱症)和健康組之間畫夜節律和睡眠的參數,並且利用腕動計 (Actigraphy)測量的參數來辨別疾病的診斷。此外,我們嘗試解釋在情緒疾患病人之中憂鬱症狀嚴重程度與主客觀睡眠參數和活動節律參數的關係。
本篇研究納入來自精神門診的18個躁鬱症和32重度憂鬱症病人。25位健康組則是在社區招募沒有心理疾病的健康成人。利用匹茲堡睡眠品質量表測量主觀睡眠品質;貝氏憂鬱量表則用來測量憂鬱症狀嚴重程度。活動節律參數則是利用腕動計測量。腕動計會記錄參加者的連續七天的活動次數 (每個參加者共有10080筆採樣數據)。利用餘弦分析法(包括中值、振幅和峰值位相值)、無母數分析法(跨日穩定度、日內變異度和相對振幅)、平均活動量及平均久坐(小於58次/分鐘)時間來描述畫夜節律的表現。我們同時通過腕動計取得客觀睡眠參數和睡眠日誌取得主觀睡眠參數,其中睡眠參數則包括睡眠遲滯期、睡眠效率、睡後醒來的時間, 總臥床時間和總睡眠時間。在較正年齡及性別後,利用多元邏輯迴歸斯分辦健康組和病例組。。另外,同樣較正年齡及性別後,利用多元線性迴歸來解釋情緒疾患病人之中憂鬱症狀嚴重程度與主觀睡眠品質、主客觀睡眠參數和活動節律參數的關係。 結果顯示,在睡眠的面向中相對健康組的人,情緒疾患病人相比健康組的人有顯著更高的匹茲堡睡眠品質量表分數(p<0.001),更長的總臥床時間(p=0.001~0.002)、睡眠遲滯期(p=0.021)和總睡眠時間(p=0.005)。另一方面,在活動節律面向結果只顯示憂鬱症的病人相對健康組的人有顯著更長的久坐時間(p=0.003)。早上能量感覺在三組之間存在顯著差異(p=0.038)。在多分類邏輯迴歸結果顯示,儘管模型只包括腕動計測量參數,卻依然足以分辦是否為病患(AUC值:0.881),但並不能分辦疾病的類型 。同時在同一個結果發現,相對健康組而言,情緒障礙病人有顯著更高的活動振幅和更長的久坐時間。在利用多元線性迴歸探討憂慮嚴重程度與睡眠和活動節律的關係結果顯示,在較正年齡和性別後,主觀睡眠品質相比睡眠參數可以解釋更多的變異。更進一步,結果顯示在情緒疾患病人當中,活動節律的變化相比睡眠變化更能解釋憂鬱嚴重程度。 最後總結,在利用多元邏輯斯迴歸分辨健康組及臨床上情緒疾病的診斷時,腕動計測量的參數,由其在振幅和久坐時間的變項可以幫助有效地判別是否有病,並且發現加入更多的面向例如能量感覺、睡眠干擾,可以使模式有更好的判別力。除些之外,我們發現在情緒障礙病患中,異常的畫夜效應主要表現在主觀睡眠品質和活動節律的相位上。 | zh_TW |
dc.description.abstract | Patients with mood disorders often suffered from circadian disturbances, including sleep complaints and changed activity patterns. The current study compared circadian rest-activity rhythms, and sleep parameters between patients with bipolar disorder (BP) or major depressive disorder (MDD), and healthy controls using subjective and actigraphic measurements. In addition, we examined the correlations between depressive symptoms severity and sleep (objectively and subjectively) and activity parameters among mood disorder patients.
We enrolled outpatients of BP (N=18) and MDD (N=32) from psychiatric clinics. Healthy controls (N=25) were recruited from the community without a history of mental illness. Pittsburgh sleep quality index (PSQI) was used to assess sleep quality. The depressive symptoms severity was assessed by the Beck Depression Inventory (BDI). The circadian rest-activity rhythm was collected by actigraphy, including wake-sleep cycle and physical activity counts in 7 consecutive days (each sample had 10080 data). Cosinor analysis (MESOR, amplitude and acrophase), nonparametric analysis (interdaily stability and intradaily variability) and the average of activity and the time of sedentary (< 58counts/min) were processed to describe rest-activity rhythm. We assessed sleep parameters (sleep latency, sleep efficiency, wake after sleep onset, total time in bed and total sleep time) using both actigraphy and sleep diary. Multinomial logistic regression models were used to distinguish the diagnosis groups after adjusted for age and gender. Multiple linear regression models were used to examine the relationships between depressive symptoms severity and sleep quality, objectively and subjectively assessed sleep and activity parameters. We found that patient groups had significantly higher PSQI global score (p<0.001), longer total time in bed (p=0.001~0.002), sleep latency (p=0.021), and total sleep times (P=0.005) than controls. Among the activity parameters, MDD group has significantly longer sedentary time in daytime than controls (p=0.003). Morning feeling was different (P=0.038) between groups. We found that actigraphic measurement in logistic regression analysis can distinguish affective status but not at diagnostic status. Comparing with controls, patient groups exhibited higher amplitude and longer daytime sedentary. For the relationship between depressive severity and sleep parameters, we found that subjective sleep quality explained more variation than objective sleep parameters in the regression models after taken activity variables into account. Among patients with affective disorders, we found that activity rhythms influenced the levels of depressive symptoms more predominantly then sleep variables. In conclusion, actigraphic parameters, including amplitude and sedentary times can distinguish affective disorders from health control, including more domains, such as energy feeling and sleep disturbances in the regression models could improve the prediction. We found that subjective poor sleep quality and the phase of activity rhythm are the primary expressions of circadian disturbances in mood disorder patients. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:07:24Z (GMT). No. of bitstreams: 1 ntu-108-R06849040-1.pdf: 5550216 bytes, checksum: 9aaf547e113322f5983a884d827151d9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 i
ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF SUPPLEMENT x Chapter 1 Introduction 1 Chapter 2 Methods 4 2.1 Participants 4 2.2 Procedure 5 2.3 Manic and depressive measurement 6 2.4 Circadian measurement by actigraphy 7 2.5 Activity domain 8 2.6 Sleep domain 10 2.7 Energy domain 11 2.8 Statistical analysis 12 Chapter 3 Result 13 3.1 Demographic and clinical variables 13 3.2 Sleep domain 14 3.3 Activity domain 15 3.4 Energy feeling 16 3.5 The correlation between variables 17 3.6 Logistic regression for distinguishing the status 19 3.7 Examining the relation between depressive symptoms severity and PSQI, sleep parameters and activity parameters 20 Chapter 4 Discussion 21 4.1 The relationship between PSQI, subjectively and objectively sleep parameters 21 4.2 The relationship between activity parameters 23 4.3 The objective variables as the independent variables to distinguish the affective status and diagnosis status 24 4.4 The relationship between depressive symptom and PQSI, activity, and sleep parameters in affective disorders 26 4.5 Strengths and Limitations 28 Chapter 5 Conclusion 29 REFERENCE: 44 SUPPLEMENT 50 | |
dc.language.iso | en | |
dc.title | 情緒障礙患者的晝夜節律及睡眠參數之研究 | zh_TW |
dc.title | Investigation of Circadian Rest-Activity Rhythms and Sleep Parameters in Mood Disorders | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蕭朱杏 | |
dc.contributor.oralexamcommittee | 李文宗,陳錫中 | |
dc.subject.keyword | 情緒障礙,晝夜節律,睡眠,腕動計, | zh_TW |
dc.subject.keyword | mood disorder,circadian rhythm,sleep,actigraphy, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU201902979 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06849040-1.pdf 目前未授權公開取用 | 5.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。