請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78602
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林招松 | zh_TW |
dc.contributor.advisor | Chao-Sung Lin | en |
dc.contributor.author | 陳瑞廷 | zh_TW |
dc.contributor.author | Rui-Ting Chen | en |
dc.date.accessioned | 2021-07-11T15:06:39Z | - |
dc.date.available | 2024-07-09 | - |
dc.date.copyright | 2019-08-22 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] 陳哲生,〈設備的防蝕塗裝〉,中工高雄會刊,第17卷,第3期,2012年。
[2] G. A. El-Mahdy, A. Nishikata, T. Tsuru, “Electrochemical corrosion monitoring of galvanized steel under cyclic wet-dry conditions”, Corrosion Science, 42 (2000) 183-194. [3] V. Padilla, A. Alfantazi, “Corrosion film breakdown of galvanized steel in sulphate-chloride solutions”, Construction and Building Materials, 66 (2014) 447-457. [4] V. Moutarlier, M. P. Gigandet, L. Ricq, J. Pagetti, “Electrochemical characterization of anodic oxidation films formed in presence of corrosion inhibitors”, Applied Surface Science, 183 (2001) 1-9. [5] J. W. Bibber, “Non-chrome-containing conversion coating for zinc and zinc alloys: Environmentally friendly alternatives provide equal or better adhesion and corrosion resistance as conventional methods”, Metal Finishing, 106 (2008) 41-46. [6] Q. L. Zou, N. Li, D. Y. Li, H. P. Liu, S. L. Mu, “A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates”, Journal of Alloys and Compounds, 509 (2011) 503-507. [7] H. Guan, R. G. Buchheit, “Corrosion protection of aluminum alloy 2024-T3 by vanadate conversion coatings”, Corrosion Science, 60 (2004) 284-296. [8] M. Iannuzzi, T. Young, G. S. Frankel, “Aluminum alloy corrosion inhibition by vanadate”, Journal of The Electrochemical Society, 153 (2006) B533-B541. [9] M. Iannuzzi, G. S. Frankel, “Mechanisms of corrosion inhibition of AA2024-T3 by vanadates”, Corrosion Science, 49 (2007) 2371-2391. [10] Z. Q. Gao, D. W. Zhang, S. M. Jiang, Q. F. Zhang, X. G. Li, “XPS investigations on the corrosion mechanism of V(IV) conversion coatings on hot-dip galvanized steel”, Corrosion Science, 139 (2018) 163-171. [11] Z. Q. Gao, D. W. Zhang, X. P. Qiu, S. M. Jiang, Y. C. Wu, Q. F. Zhang, X. G. Li, “The mechanisms of corrosion inhibition of hot-dip galvanized steel by vanadyl oxalate: A galvanic corrosion investigation supported by XPS”, Corrosion Science, 142 (2018) 153-160. [12] A. A. O. Magalhaes, I. C. P. Margarit, O. R. Mattos, “Molybdate conversion coatings on zinc surfaces”, Journal of electroanalytical Chemistry, 572 (2004) 433-440. [13] B. L. Lin, J. T. Lu, G. Kong, ”Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel”, Corrosion Science, 50 (2008) 962-967. [14] C. G. da Silva, I. C. P. Margarit, O. R. Mattos, H. Perrot, B. Tribollet, V. Vivier, “The molydbate-zinc conversion process”, Corrosion Science, 51 (2009) 151-158. [15] M. Hosseini, H. A. Sorkhabi, H. A. Y. Ghiasvand, “Corrosion protection of electro-galvanized steel by green conversion coatings”, Journal of Rare Earths, 25 (2007) 537-543. [16] M. A. Arenas, C. Casado, V. N. Pujol, J. de Damborenea, “Influence of the conversion coating on the corrosion of galvanized reinforcing steel”, Journal of Alloys and Compounds, 28 (2006) 267-275. [17] B. R. W. Hinton, “Corrosion inhibition with rare earth metal salts”, Journal of Alloys and Compounds, 180 (1992) 12-25. [18] D. Wang, G. P. Bierwagen, “Sol–gel coatings on metals for corrosion protection”, Progress in Organic Coatings, 64 (2009) 327-338. [19] C. J. Brinker, “Hydrolysis and Condensation of Silicates: Effects on Structure”, Journal of Non-crystalline Solids, 100 (1988) 31-50. [20] 鄭舜宇,"以溶膠凝膠法合成高分子基氧化矽複合材料之研究",國立中山大學材料研究所碩士論文,2001。 [21] B. Beverskog, I. Puigdomenech, “Revised pourbaix diagrams for zinc at 25-300℃”, Corrosion Science, 39 (1997) 107-114. [22] C. J. Brinker, G. W. Scherer, “SOLGEL SCIENCE The Physics and Chemistry of Sol-Gel Processing”, ACADEMIC PRESS INC., 1990. [23] M. Fedel, M. Olivier, M. Poelman, F. Deflorian, S. Rossi, and M. E. Druart, “Corrosion protection properties of silane pre-treated powder coated galvanized steel”, Progress in Organic Coatings, 66 (2009) 118-128. [24] N. Asadi, R. Naderi, and M. Saremi, “Effect of Curing Conditions on the Protective Performance of an Ecofriendly Hybrid Silane Sol–Gel Coating with Clay Nanoparticles Applied on Mild Steel”, Industrial & Engineering Chemistry Research, vol. 53, no. 26, pp. 10644-10652, 2014. [25] M. L. Zheludkevich, I. M. Salvado, M. G. S. Ferreira, “Sol-gel coatings for corrosion protection of metals”, vol. 15, 2005. [26] L. Wang, C. S. Liu, H. Y. Yu, C. Q. An, “Structure and Corrosion Resistance of a Composite γ-Amino Propyl Triethoxy Silane and γ-Glycidoxy Propyl Trimethoxy Silane Conversion Coating on Galvanized Steel”, Journal of Iron and Steel Rsearch, 19 (2012) 46-51. [27] 常宸堉,《LED戶外看板的新型底部防潮披覆膜之研究與探討》,碩士論文,2013。 [28] R. L. Parkhill, E. T. Knobbe, M. S. Donley, ”Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 2024-T3”, Progress in Organic Coatings, 41(2001) 261-265. [29] M. Fedel, M. Olivier, M. Poelman, F. Deflorian, “Corrosion protection properties of silane pre-treated powder coated galvanized steel”, Progress in Organic Coatings, 66 (2009) 118-128. [30] M. F. Montemor, A. Rosqvist, H. Fagerholm, M. G. S. Ferreria, “The early corrosion behavior of hot dip galvanized steel pre-treated with bis-1,2-(triethoxysilyl)ethane”, Progress in Organic Coatings, 51 (2004) 188-194. [31] A. N. Khramov, V. N. Balbyshev, N. N. Voevodin, M. S. Donley, “Nanostructured sol-gel derived conversion coating based on epoxy and amino silanes”, Progress in Organic Coatings, 47 (2003) 207-213. [32] M. F. Montemor, M. G. S. Ferrreira, “Cerium salts activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanized steel substrates”, Electrochimica Acta, 52 (2007) 6976-6987. [33] M. F. Montemor, W. Trabelsi, M. Zheludevich, M. G. S. Ferreira, “Modification of bis-silane solutions with rare earth cations for improved corrosion protection of galvanized steel substrates”, Progress in Organic Coatings, 57 (2006) 67-77. [34] W. Trabelsi, E. Triki, L. Dhouibi, M. G. S. Ferreira, M. L. Zheludevich, M. F. Montemor, “The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanized steel substrates”, Surface and Coatings Technology, 200 (2006) 4240-4250. [35] W. Trabelsi, M. G. S. Ferreira, K. Yasakau, M. L. Zheludevich, M. F. Montemor, “Surface evaluation and electrochemical behavior of doped silane pre-treatments on galvanized steel substrate”, Progress in Organic Coatings, 59 (2007) 214-223. [36] M. F. Montemor, M. G. S. Ferriera, “Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanized steel substrates”, Progress in Organic Coatings, 63 (2008) 330-337. [37] 高波、董立洋、朱廣林、高超、周英偉,熱浸鍍鋅鋼板雙矽烷無鉻鈍化膜性能研究,《表面技術》,第46卷,2017。 [38] 王雷、劉常升、于海云、安成強,《電鍍鋅板上複合矽烷膜的製備及性能》,東北大學學報,第33版,2012。 [39] F. Deflorian, S. Rossi, M. Fedel, C. Motte, “Electrochemical investigation of high performance silane sol-gel films containing clay nanoparticles”, Progress in Organic Coatings, 69 (2010) 158-166. [40] S. H. Adsul, T. Siva, S. Sathiyanarayanan, S. H. Sonawane, R. Subasri, “Aluminum pillared montmorillonite clay-based self-healing coatings for corrosion protection of magnesium alloy AZ91D”, Surface and Coatings Techmology, 352 (2018) 445-461. [41] K. A. Yasakau, M. G. S. Ferreira, M. L. Zheludkevich, “Sol-Gel coatings with nanocontainers of corrosion inhibitors for active corrosion protection of metallic materials”, Springer International Publishing, (2018) 2435-2466. [42] S. N. Pak, Z. H. Jiang, Z. P. Yao, J. M. Ju, K. S. Ju, U. J. Pak, “Fabrication of environmentally friendly anti-corrosive composite coatings on AZ31B Mg alloy by plasma electrolytic oxidation and phytic acid/3-aminopropyltrimethoxysilane post treatment”, Surface and Coatings Technology, 325 (2017) 579-587. [43] A. Majedi, F. Davar, A. Abbase, “Citric acid-silane modified zirconia nanoparticals: Preparation, characterization and adsorbent effiency”, Journal of Environment Chemical Engineering, 6 (2018) 701-709. [44] P. R. Sere, W. Egli, A. R. Di Sarli, C. Deya, “Preparation and characterization of silanes folms to protect electrogalvanized steel”, Journal of Materials Engineering and Performance, 27 (2018) 1194-1202. [45] V. Dalmoro, D. S. Azambuja, C. Aleman, E. Armelin, “Hybrid organophosphonic-silane coating for corrosion protection of magnesium alloy AZ91:The influence of acid and alkali pre-treatments”, Surface and Coatings Technology, 357 (2019) 728-739. [46] World Steel in Figures 2018, World Steel Association, 2018. Retrived from https://www.worldsteel.org/publications/bookshop/product-details [47] E. McCafferty, “Introduction to Corrosion Science”, Spinger, USA, 2009. [48] R. Winston, H. H. Uhlig, “Corrosion and Corrosion Control An Introduction to Corrosion Science and Engineering”, Willy Interscience, Canada, 4 2008 1-2. [49] M. G. Fontana, N. D. Greene, “Corrosion Engineering”, McGraw-Hill, USA, 1978. [50] ISO 9223, “Corrosion of metal and alloys – Classification of corrosivity of atmosphere. [51] 邱永芳、朱金元、羅建明、柯正龍、謝明志,〈2017年台灣大氣腐蝕劣化因子調查研究資料年報〉,交通部運輸研究所,民國107年。 [52] P. Vanysek, “Handbook of Chemistry and Physics 99th edition”, CRS Press, 2018. [53] T. E. Graedel, R. P. Frankenthal, “Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere”, Journal of Electrochemistry society, 137 (1990) 2385-2394. [54] H. Tamura, “The role of rusts in corrosion and corrosion protection of iron and steel”, Corrosion Science, 50 (2008) 1872-1883. [55] M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, Pergamon Press, 1966. [56] 黃振賢,〈機械材料〉,文經圖書,民國87年。 [57] A. R. Marder, “The metallurgy of zinc-coated steel”, Progress in Materials Science, 45 (2000) 191-271. [58] L. Rambausek, E. Bruneel, G. De Mey, L. Van Langenhove, “Polyimide dielectric layer on filaments for organic field effect transistors:choice of solvent, solution composition and dip-coating speed”, Autex Research Journal, 14 (2014) 125. [59] E. Shim, “Joining Textiles Principles and Application”, Woodhead Publishing, (2013) 309-351. [60] D. Lindstrom, I. O. Wallinder, “Long-term use of galvanized steel in external application. Aspects of patina formation, zinc runoff, barrier properties of surface treatments, and coatings and environmental fate”, Environmental Monitoring and Assessment, 173 (2011) 139-153. [61] “Techanical Process Bulletin: Alodine 1200S”, Henkel Surface Technologies, (1999). [62] G. D. Wilox, J. A. Wharton, “A review of chromate-free passivation treatments for zinc and zinc alloys”, Transactions of the Institute of Metal Finishing, 75 (1997) 140-142. [63] X. Lin, E. Akiyama, G. Frankel, R. McCreery, “Storage and release of soluble hexavalent chromium from chromate conversion coatings”, Journal of The Electrochemical Society, 147 (2000) 2556-2562. [64] L. Assem, H. Zhu, “Chromium Toxicological Overview”, Health Protection Agency, 1 (2007) [65] R. B. Hayes, “The carcinogenicity of metals in humans”, Cancer Causes and Control, 8 (1997) 371-385. [66] European Commision Environment, “The RoHS Directive”, Retrived from: http://ec.europa.eu/environment/waste/rohs_eee/index_en.htm. [67] European Commision Environment, “Waste Electrical and Electronic Equipment”, Retrived from: http://ec.europa.eu/environment/waste/weee/index_en.htm. [68] I. Milosev, G. S. Frankel, “Review-Conversion Coatings Based on Zirconium and/or Titanium”, Journal of The Electrochemical Society, 165 (2018) C127-C144. [69] L. Zhu, F. Yang, N. Ding, “Corrosion resistance of the electro-galvanized steel treated in a titanium conversion solution”, Surface and Coatings Technology, 201 (2007) 7829-7834. [70] O. Lunder, C. Simensen, Y. Yu, K. Nisancioglu, “Formation and characterization of Ti-Zr based conversion layers on AA6060 aluminium”, Surface and Coatings Technology, 184 (2004) 278-290. [71] O. Lunder, F. Lapique, B. Johnsen, K. Nisancioglu, “Effect of pre-treatment on durability of epoxy-bonded AA6060 aluminium joints”, International Journal of Adhesion and Adhesives, 24 (2004) 107-117. [72] A. Sarfraz, R. Posner, M. M. Lange, K. Lill, A. Erbe, “Role of intermetallics and copper in the deposition of ZrO2 conversion coating on AA6014”, Journal of The Electrochemical Society, 161 (2014) C509-C516. [73] J. Cerezo, I. Vandendael, R. Posner, K. Lill, J. H. W. de Wit, J. M. C. Mol, H. Terryn, ”Initiation and growth of modofoed Zr-based conversion coatings on multi-metal surfaces”, Surface and Coatings Technology, 236 (2013) 284-289. [74] J. Cerezo, P. Taheri, I Vandendael, R. Posner, K. Lill, J. H. W. de Wit, J. M. C. Mol, H. Terryn, “Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy”, Surface and Coatings Technology, 254 (2014) 277-283. [75] M. A. Smit, J. A. Hunter, J. D. B. Sharman, G. M. Scamans, J. M. Sykes, “Effect of organic additives on the performance of titanium-based conversion coatings”, Corrosion Science, 45 (2003) 1903-1920. [76] X. Chen, G. Li, J. Lian, Q. Jiang, “ An organic chromium-free conversion coatingon AZ91D magnesium alloy”, Applied Surface Science, 255 (2008) 2322-2328. [77] G. Yoganandan, K. P. Premkumar, J. N. Balaraju, “Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy”, Surface and Coatings Technology, 270 (2015) 249-258. [78] C. Cai, X. Q. Liu, X. Tan, G. D. Li, H. Wang, J. M. Li, J. F. Li, “A Zr- and Cr(III)-containing conversion coating on Al alloy 2024-T3 and its self-repairing behavior”, Materials and Corrosion, 68 (2017) 338-346. [79] ThermoFisher Scientific, “Safety data sheet: Tetraethyl orthosilicate”, 2018. [80] Sigma-Aldrich, “Safety data sheet: (3-glycidyloxypropyl)trimethoxysilane”, 2016. [81] T. K. Bollinger, P. Mineau, M. L. Wickstrom, “Toxicity of sodium chloride to house sparrows”, Journal of Wildlife Diseases, 41 (2005) 368. [82] 王益民、張柏禮、靳世久、王津生,《錐板式黏度計工作原理及有關使用問題分析》,天津中醫藥,21 (2004) 263-264。 [83] S. Rajendran, B. V. Apparao, “Synergistic effect of Zn2+ and ATMP in corrosion inhibition of mild steel in neutral environment”, Bulletin of Electrochemistry, 12 (1996) 15-19. [84] V. Dalmoro, J. H. Gdos Santos, E. Armelin, C. Aleman, D. S. Azambuja, “Phosphonic acid/silica-based films: A potential treatment for corrosion protection “, Corrosion Science, 60 (2012) 173-180. [85] V. Dalmoro, J. H. Z. dos Santos, E. Armelin, C. Alemen, D. S. Azambuja, “A Synergistic combination of tetraehylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy”, Applied Surface Science, 273 (2013) 758-768. [86] R. Yan, W. He, T. H. Zhai, H. Y. Ma, “Corrosion protective performance of amino trimethylene phosphonic acid metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly”, Applied Surface Science, 442 (2018) 264-274. [87] H. Y. Su, P. L. Chen, C. S. Lin, “Sol-gel coatings doped with organosilane and cerium to improve properties of hot-dip galvanized steel”, Corrosion Science, 102 (2016) 63-71. [88] E. A. Manaa, “Selective Leaching of Vanadium from Boiler Oiled Ash Residue Using Sodium Carbonate-Bicarbonate Binary Solution”, Chemical Technology: An Indian Journal, 13 (2018) 1-10. [89] J. Livage, M. Henry, C. Sanchen, “Sol gel chemistry of transition metal oxides”, Progress in Solid State Chemistry, 18 (1988) 299. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78602 | - |
dc.description.abstract | 熱浸鍍鋅鋼板為廣泛使用的鋼鐵材料之一,與未經熱浸鍍的鋼板相比,擁有優異的抗腐蝕能力,故大量運用在車輛、船舶、建築、通訊等領域。鍍鋅層具有障蔽保護以及犧牲陽極保護性能以抑制紅鏽發生。然而鋅在腐蝕環境中容易氧化,形成氧化鋅等白色鏽蝕物,影響鋼板美觀性及鋅層抗蝕能力。因此,藉由表面鈍化處理來延緩鍍鋅鋼板的腐蝕速率是相當重要的。本論文利用有機-無機矽烷輥塗鈍化處理來提升鍍鋅鋼板抗蝕性,分為: (1)探討不同矽烷前驅物、pH值、水解時間與腐蝕抑制劑對鈍化液穩定性及提升塗膜抗蝕能力影響;(2)探討矽烷化合物及添加腐蝕抑制劑後鈍化膜的耐蝕機制。
實驗結果顯示鈍化後的鍍鋅鋼板抗蝕性與矽烷前驅物種類、酸種類、pH值、加熱條件以及添加物息息相關。研究主要分為三個部分,第一部分為建立GA系統,以GPTMS(3-縮水甘油醚氧基丙基三甲氧基矽烷)與AEAPS(N-胺乙基-3-胺丙基甲基二甲氧基矽烷)配製方式探討對熱浸鍍鋅鋼板抗蝕性影響,並以此為基石研究含矽塗膜特性。此外,將GA系統與其他矽烷前驅物系統如GT(GPTMS與TEOS四乙基矽氧烷)、GO(GPTMS與OTES辛基三乙氧基矽烷)及GM(GPTMS與MTES甲基三乙氧基矽烷)等比較。從實驗結果發現,GA系統具有較佳之塗膜耐蝕性與溶液安定性,除了試片經48小時鹽霧測試腐蝕面積小於5%,溶液經過120天之黏度變化仍未超過10 cp。而透過添加苯甲酸與加熱等方式可再提升GA系統鈍化膜的抗蝕能力。然而,經熱鹼洗後再經24小時鹽霧測試試片全面鏽蝕,表示矽烷鈍化膜無法抵抗鹼基攻擊。第二部分為研究GA系統的溶液安定性、微結構與耐蝕機制。實驗結果發現GPTMS與AEPAS的長鏈可以使溶液具有較佳的安定性,且矽烷帶有的環氧基與胺基經開環反應增加塗膜交聯程度。同時,多元磷酸除了作為酸催化劑水解用途外,還兼具作為腐蝕抑制劑的功能,提高矽烷鈍化膜抗蝕性。此外,利用SEM觀察塗膜發現表面未產生裂縫,膜厚約為0.1~1.2 μm,表示塗膜薄且緻密。第三部分則是透過添加金屬離子以探討塗膜耐蝕性、耐鹼影響。從鹽霧試驗結果發現添加鈦、鋯、釩離子後塗膜耐蝕性大幅提升,經168小時試驗後腐蝕面積仍<5%,但抗鹼洗性未獲改善。此外,添加鈦、鋯離子會使溶液安定性下降,配製後1天隨即膠化無法使用,而添加釩離子則對溶液安定性影響較小。 | zh_TW |
dc.description.abstract | Hot-dip galvanized (HDG) steel sheet is one of the widely used steel products. Compared to bare steel sheet, HDG steel sheet has superior corrosion resistance and is extensively used for automobile, ship, building, and communication equipment industries. Although Zn coatings provide both barrier and sacrificial protections to the underlying steel substrate, they tend to suffer corrosion in the atmosphere. The resulting white ZnO corrosion products adversely affect the cosmetic appearance and corrosion protection of Zn coatings. Passivation treatment is thus indispensable for HDG steel sheet. In this thesis, an organic-inorganic silane coating was developed to enhance the corrosion resistance of HDG steel sheet, including (1) the effect of silane precursors, pH, corrosion inhibitors, and hydrolysis time on the stability of the sol-gel solution and the corrosion resistance of the resulting coating; (2) the investigation of the corrosion mechanism of the silane coating with the addition of corrosion inhibitors.
It was found that the corrosion resistance of silane coatings strongly depended on the types of silane precursors and acidic additives, pH, and pre-heating treatments. The first part of this thesis is to study the effect of the 3-glycidyloxypropyltrimethoxysilane (GPTMS) / 3-2-aminoethylaminopropyldimethoxymethylsilane (AEAPS) (GA) silane system and its preparation on the corrosion resistance of the silane coating on HDG steel sheet. The comparison of the GA system to GPTMS / tetraethoxysilane (TEOS), GPTMS / triethoxyoctylsilane (OTES), and GPTMS / methyltriethoxysilane (MTES) systems was made. Among these distinct systems, the GA system was the most stable and the resulting silane coating exhibited the best corrosion resistance. The GA sol underwent a viscosity change ≤ 10 cp after 120 days of aging at room temperature. Meanwhile, the GA-coated HDG steel sheet suffered less than 5 % corrosion after 48 h of the salt spray test (SST). The silane coating formed with the addition of benzoic acid to GA system was also markedly enhanced. But, after alkaline pretreatment, this coating suffered 100 % corrosion after 24 h of SST, indicating the coating lacks of resistance to alkaline attack. The second part of this thesis is to further elevate the stability of the GA sol and detail the microstructure and anticorrosion mechanism of the silane coating. The long side chains of GPTMS and AEAPS were found to confer sol stability. This is because the opening reaction between an epoxy ring and an amine contributes to the condensation of the gel coating. Moreover, polyphosphoric acid acts a role not only for acidic catalysis toward precursors hydrolysis but also as corrosion inhibitor to improve the corrosion resistance of silane coating. The silane coating was free of cracks and 0.1 ~ 1.2 μm in thickness, indicating it is compact and uniformly covers on top of the HDG steel sheet. The third part of this thesis is to explore the effect of the addition of inorganic salts such as titanate, zirconate, and vanadate. These inorganic salts were shown to enhance to corrosion resistance of the silane coating to 168 h of SST, but had insignificant improvement against alkaline attack. Finally, the addition of vanadate hardly influenced the sol stability; in contrast, the sol in the presence of titanate and zirconate completely jellified after 24 h. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:06:39Z (GMT). No. of bitstreams: 1 ntu-108-R06527031-1.pdf: 7061076 bytes, checksum: 3ec634732903ee6ca047e1200a551aba (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iv 總目錄 vi 圖目錄 ix 表目錄 xiv 第一章 緒論 1 第二章 文獻回顧 3 2.1 鋼鐵材料 3 2.2 鋼鐵材料的腐蝕 3 2.2.1 腐蝕的定義 3 2.2.2 台灣的腐蝕環境 5 2.2.3 鋼鐵材料的腐蝕 6 2.2.4 鋼鐵材料的腐蝕防護 9 2.3 鍍鋅鋼板及其腐蝕行為 11 2.4 鍍鋅層的鈍化處理 13 2.4.1 鈍化處理製程 14 2.4.2 六價鉻酸鹽鈍化處理 17 2.4.3 鈦/鋯酸鹽鈍化處理 21 2.4.4 釩酸鹽鈍化處理 25 2.4.5 矽烷鈍化處理 28 第三章 實驗方法與評估標準 43 3.1 實驗方法及流程 43 3.1.1 實驗方法 43 3.2 實驗材料及藥品 45 3.2.1 熱浸鍍鋅鋼板 45 3.2.2 矽烷化合物前驅物 45 3.2.3 化學藥品 47 3.3 實驗步驟 47 3.3.1 鈍化液配製 47 3.3.2 熱鹼洗處理 48 3.3.3 輥塗式鈍化處理流程 49 3.4 鈍化液與鈍化膜性質量測 49 3.4.1 黏度 49 3.4.2 固形分 50 3.4.3 鹽霧試驗 50 3.4.4 動電位極化曲線 50 3.4.5 電化學交流阻抗 52 3.4.6 硫酸銅點滴測試 53 3.4.7 浸泡實驗 53 3.4.8 掃描式電子顯微鏡 53 3.4.9 能量分散光譜儀 53 3.4.10 聚焦離子束與電子束顯微系統 54 3.4.11 傅立葉紅外線轉換光譜 54 第四章 實驗結果與討論 55 4.1 GA系統耐蝕性影響 55 4.1.1 不同酸種類影響 55 4.1.2 不同pH值影響 59 4.1.3 不同矽烷前驅物影響 63 4.1.4 不同水解時間影響 66 4.1.5 溶液加熱時間影響 68 4.1.6 添加固化劑影響 73 4.1.7 複合處理與比較 76 4.1.8 塗膜抗熱鹼洗影響 79 4.2 GA系統之塗膜微結構分析 81 4.2.1 塗膜形貌 81 4.2.2 腐蝕發生起點與原因 83 4.2.3 塗膜耐蝕機制 88 4.3 添加金屬離子影響 88 4.3.1 添加金屬離子對耐蝕性影響 88 4.3.2 添加金屬離子對塗膜抗鹼洗影響 92 4.3.3 添加金屬離子對溶液穩定性影響 93 4.3.4 塗膜形貌 95 4.3.5 塗膜耐蝕機制 103 第五章 結論 105 第六章 後續工作 106 第七章 參考文獻 107 | - |
dc.language.iso | zh_TW | - |
dc.title | 鍍鋅鋼板矽氧烷鈍化處理研究與耐蝕機制探討 | zh_TW |
dc.title | Silane Passivation Treatments on Galvanized Steel and their Corrosion Protection Mechanisms | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡文達;汪俊延;葛明德;郭敬國 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 溶膠凝膠鍍層,熱浸鍍鋅鋼板,有機無機矽烷,抗蝕性,釩酸根, | zh_TW |
dc.subject.keyword | sol-gel coating,hot-dip galvanized steel sheet,organic-inorganic hybrid silane,corrosion resistance,vanadate, | en |
dc.relation.page | 116 | - |
dc.identifier.doi | 10.6342/NTU201903504 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-14 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
dc.date.embargo-lift | 2024-08-22 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 6.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。