Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78597
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷zh_TW
dc.contributor.advisorYi-Yin Doen
dc.contributor.author黃怡尹zh_TW
dc.contributor.authorYi-Yin Huangen
dc.date.accessioned2021-07-11T15:06:20Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation王郁棻、李哖、張耀乾. 2009. 乙烯及1-Methylcyclopropene對秋石斛蘭盆花產後品質之影響. 台灣園藝 55 : 207-217.
李宜龍. 2008. 苦瓜與蝴蝶蘭EIN3同源基因之選殖與分析. 國立臺灣大學生物資源暨農學院園藝學系碩士論文.
林鄉薰、李哖、張天鴻. 2003. 乙烯與1-MCP前處理對台灣蝴蝶蘭盆花花朵萎凋之影響. 中國園藝 49 : 199-210.
陳欣郁. 2015. 應用文心蘭基因默化轉殖延緩老化及抵抗喜姆比蘭嵌紋病毒與齒舌蘭輪斑病毒. 國立臺灣大學生物資源暨農學院園藝暨景觀學系博士論文.
黃肇家. 1998. 文心蘭切花之乙烯生成以及外加乙烯與去除花藥蓋對花朵品質之影響. 中華農業研究 47(2):125-134.
蔡幸君. 2004. 四種園藝作物EIN3同源cDNA之選殖與分析. 國立臺灣大學園藝學研究所.
An, F., Q. Zhao, Y. Ji, W. Li, Z. Jiang, X. Yu, C. Zhang, Y. Han, W. He, Y. Liu, S. Zhang, J.R. Ecker, and H. Guo. 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384-2401.
Arora, L., and A. Narula. 2017. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci. 8:1932.
Belhaj, K., A. Chaparro-Garcia, S. Kamoun, N. J. Patron, and V. Nekrasov. 2015. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol. 32:76- 84.
Binder, B.M., J.M. Walker, J.M. Gagne, T.J. Emborg, G. Hemmann, A.B. Bleecker, and R.D. Vierstra. 2007. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509-523.
Binder, B.M., C. Chang, and G.E. Schaller. 2012. Perception of ethylene by plants: ethylene receptors. In MT McManus, ed, annual plant reviews: the plant hormone ethylene, Vol 44. Wiley-Blackwell, Oxford, UK, pp117-145.
Brooks, C., V. Nekrasov, Z. B. Lippman, and J. Van Eck. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system. Plant Physiol. 166(3):1292-7.
Chang, C., S.F. Kwok, A.B. Bleecker, and E.M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539-544.
Chang, K.N., S. Zhong, M.T. Weirauch, G. Hon, M. Pelizzola, H. Li, S.S. Huang, R.J. Schmitz, M.A. Urich, D. Kuo, J.R. Nery, H. Qiao, A. Yang, A. Jamali, H. Chen, T. Ideker, B. Ren, Z. Bar-Joseph, T.R. Hughes, and J.R. Ecker. 2013. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2:e00675.
Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi, and J.R. Ecker. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 89:1133-1144.
Chen, S. Y., H. C. Tsai, R. Raghu, Y. Y. Do, and P. L. Huang. 2011. cDNA cloning and functional characterization of ethylene insensitive 3 orthologs from oncidium gower ramsey involved in flower cutting and pollinia cap dislodgement. Plant Physiol. Biochem. 49:1209-1219.
Du, H.Y., X.R. Zeng, M. Zhao, X.P. Cui, Q. Wang, H. Yang, H. Cheng, and D. Yu. 2015. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol. 217:90-97.
Félix, L.P., and M. Guerra. 2000. Cytogenetics and cytotaxonomy of some Brazilian species of Cymbidioid orchids. Genet. Mol. Biol. 23(4):957-978.
Feng, Z.Y., B.T. Zhang, W.N. Ding, X.D. Liu, D.L. Yang, P.L. Wei, F. Cao, S. Zhu, F. Zhang, Y. Mao, and J.K. Zhu. 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23:1229-1232.
Feng, C., J. Yuan, R. Wang, Y. Liu, J.A. Birchler, and F.P. Han. 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Genom. 43:37-43.
Fister, A. S., Z. Shi, Y. Zhang, E. E. Helliwell, S. N. Maximova, and M. J. Guiltinan. 2016. Protocol: transient expression system for functional genomics in the tropical tree Theobroma cacao L. Plant Methods. 12:19.
Fister, A. S., L. Landherr, S. N. Maximova, and M. J. Guiltinan. 2018. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front. Plant Sci. 9:268.
Fujimoto, S.Y., M. Ohta, A. Usui, H. Shinshi, and M. Ohme-Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell 12:393-404.
Gagne, J.M., J. Smalle, D.J. Gingerich, J.M. Walker, S.D. Yoo, S. Yanagisawa, and R.D. Vierstra. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 101:6803-6808.
Guo, H., and J.R. Ecker. 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/ EBF2)-dependent proteolysis of EIN3 transcription factor. Cell. 115:667-677.
Hirayama, T., J.J. Kieber, N. Hirayama, M. Kogan, P. Guzman, S. Nourizadeh, J.M. Alonso, W.P. Dailey, A. Dancis, and J.R. Ecker. 1999. RESPONSIVE-TOANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383-393.
Hua, J., C. Chang, Q. Sun, and E.M. Meyerowitz. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712-1714.
Hua, J., and E.M. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261-271.
Huang, C.C., and R. E. Paull. 2009. The responses to Oncidium cut flowers to ethylene and 1-MCP. J. Taiwan Agric. Res. 58:1-6.
Huang, Y., H. Li, C.E. Hutchison, J. Laskey, and J.J. Kieber. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33:221-233.
Ishino, Y., H. Shinagawa, K. Makino, M. Amemura, and A. Nakata. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169(12):5429-5433.
Ito, Y., N. Y. Ayako, E. Masaki, M. Masafumi, and T. Seiichi. 2015. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 467:76-82.
Jia, H.G., and N. Wang. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806.
Johnson, P.R., and J.R. Ecker. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32:227-254.
Ju, C., G.M. Yoon, J.M. Shemansky, D.Y. Lin, Z.I. Ying, J. Chang, W.M. Garrett, M. Kessenbrock, G. Groth, M.L. Tucker, B. Cooper, J.J. Kieber, and C. Chang. 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. USA 109:19486-19491.
Kieber, J.J., M. Rothenberg, G. Roman, K.A. Feldmann, and J.R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427-441.
Li, Z., J. Peng, X. Wen, and H. Guo. 2013a. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311-3328.
Li, J. F., J. E. Norville, J. Aach, M. M. Cormack, D. Zhang, J. Bush, G. M. Church, and J. Sheen. 2013b. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688-691.
Li, Z.S., Z.B. Liu, A.Q. Xing, B.P. Moon, J.P. Koellhoffer, L.X. Huang, R.T. Ward, E. Clifton, S.C. Falco, and A.M. Cigan. 2015.Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169:960-970.
Liang Z., K. Zhang, K.L. Chen, C.X. Gao. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 41:63-68.
Liang, Z., K. Chen, T. Li, Y. Zhang, Y. Wang, Q. Zhao, J. Liu, H. Zhang, C. Liu, Y. Ran, and C. Gao. 2016. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8:14261.
Lin, C.-S., C.-T. Hsu, L.-H. Yang, L.-Y. Lee, J.-Y. Fu, Q.-W. Cheng, F.-H. Wu, C.-W. Han, Y. Zhang, R. Zhang, W.-J. Chang, C.-T. Yu, W. Wang, L.-J. Liao, S. B. Gelvin, and M.-C. Shih. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotech. J. 1-16.
Liu, X., S. Wu, J. Xu, C. Sui, and J. Wei. 2017. Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B 7(3):292-302.
Maliga, P., H. Lorz, G. Lazar, and F. Nagy. 1982. Cytoplasmic-protoplast fusion for interspecific chloroplast transferinNicotiana. Molec. Gen. Genet. 185:211-215.
Mao, Y.F., Z.J. Zhang, Z.Y. Feng, P.L. Wei, H. Zhang, J.R. Botella, and J.K. Zhu. 2016. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol. J. 14:519-532.
Mayerhofer, H., S. Panneerselvam, and J. Mueller-Dieckmann. 2012. Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J. Mol. Biol. 415:768-779.
Mbéguié-A-Mbéguié, D., O. Hubert, B. Fils-Lycaon, M. Chillet, and F.C. Baurens. 2008. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine). Physiol. Plant. 133:435-448.
Mikami, M., S. Toki, and M. Endo. 2015. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol. Biol. 88:561-572.
Nekrasov, V., B. Staskawicz, D. Weigel, J.D. Jones, and S. Kamoun. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691-693.
Nishihara, M., A. Higuchi, A. Watanabe, and K. Tasaki. 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Bio. 18:331.
Peng, J., Z. Li, X. Wen, W. Li, H. Shi, L. Yang, H. Zhu, and H. Guo. 2014. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. 10:e1004664.
Potuschak, T., E. Lechner, Y. Parmentier, S. Yanagisawa, S. Grava, C. Koncz, and P. Genschik. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell. 115:679-689.
Qiao, H., Z. Shen, S.S. Huang, R.J. Schmitz, M.A. Urich, S.P. Briggs, and J.R. Ecker. 2012. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390-393.
Sakai, H., J. Hua, Q.G. Chen, C. Chang, L.J. Medrano, A.B. Bleecker, and E.M. Meyerowitz. 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 95:5812-5817.
Shakeel, S.N., X. Wang, B.M. Binder, and G.E. Schaller. 2013. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signaling roles in a receptor family. AoB Plants 5:plt010.
Shan, Q.W., Y. Wang, J. Li, Y. Zhang, K. Chen, Z. Liang, K. Zhang, J. Liu, J. J. Xi, J.-L. Qiu, and C. Gao. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:686-8.
Shan, Q.W., Y.P. Wang, J. Li, and C.X. Gao. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9:2340-2395.
Shou, H., B.R. Frame, S.A. Whitham, and K. Wang. 2004. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding 13: 201–208.
Shi, Y., S. Tian, L. Hou, X. Huang, X. Zhang, H. Guo, S. Yang. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578-2595.
Shi, J., H. Gao, H. Wang, H. R. Lafitte, R. L. Archibald, M. Yang, S. M. Hakimi, H. Mo, and J. E. Habben. 2017. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15:207-216.
Solano, R., A. Stepanova, Q. Chao, and J.R. Ecker. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENEINSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12:3703-3714.
Steinert, J., S. Schiml, F. Fauser, and H. Puchta. 2015. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcusaureus. Plant J. 84:1295-1305.
Svitashev, S., C. Schwartz, B. Lenderts, J. K. Young, and A. Mark Cigan. 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7:13274.
Tieman, D. M., Ciardi, J. A., Taylor, M. G. & Klee, H. J. 2001. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 26: 47–58.
Wang, T., J.J. Wei, D.M. Sabatini, and E.S. Lander. 2014a. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84.
Wang, Y., X. Cheng, Q. Shan, Y. Zhang, J. Liu, C. Gao, and J.L. Qiu. 2014b. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32:947-951.
Wen, X., C. Zhang, Y. Ji, Q. Zhao, W. He, F. An, L. Jiang, and H. Guo. 2012. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 22:1613-1616.
Woo, J.W., J. Kim, S.I. Kwon, C. Corvalán, S.W. Cho, H. Kim, S.G. Kim, S.T. Kim, S. Choe and J.S. Kim. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Bio. 33(11):1162-1165.
Xing, H.L., L. Dong, Z.P. Wang, H.Y. Zhang, C.Y. Han, B. Liu, X.C. Wang, and Q.J. Chen. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14:327.
Zhang, H., J.S. Zhang, P.L. Wei, B.T. Zhang, F. Gou, Z.Y. Feng, Y. Mao, L. Yang, H. Zhang, N. Xu, and J.K. Zhu. 2014.The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12:797-807.
Zhang, B., X. Yang, C. Yang, M. Li, and Y. Guo. 2016. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci. Rep. 6:20315.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78597-
dc.description.abstract文心蘭為我國最大宗外銷切花。文心蘭在採收及分級過程中,易因花藥蓋脫落而加速內生乙烯生成,進而造成花瓣老化喪失商品價值。ETHYLENE INSENSITIVE 3 (EIN3)為乙烯訊息傳導途徑之正調控因子,可促進許多不同反應乙烯以及逆境的基因表現,剔除EIN3基因功能,可阻斷乙烯訊息傳導,達到延長花期的效果。已知於文心蘭花苞中表現的EIN3基因OgEIL1及OgEIL2,並於花多開始萎凋時達最大表現量,故本研究利用CRISPR/Cas9基因編輯系統,剔除文心蘭OgEIL1或OgEIL2基因功能。首先於OgEIL1及OgEIL2基因序列,依sgRNA之鹼基偏好、GC含量、位置等條件,各挑選2個區域作為sgRNA的目標序列,合成寡核苷酸後構築至通用表現載體。分別將10、20、30 μg表現質體DNA經由聚乙二醇 (polyethylene glycol, PEG) 轉殖法導入文心蘭原生質體,各培養24、48、72小時後,萃取基因組DNA以高解析熔解曲線分析 (high resolution melting curve analysis, HRM) 及T7核酸內切酶I (T7 endonuclease I, T7E1) 分析,檢測結果顯示,目標序列已受到CRISPR/Cas9編輯而產生突變,再經定序比對未轉殖細胞之目標序列,編輯效率為3.3%,基因序列為單一核苷酸突變,造成胺基酸由精胺酸改變為麩醯胺酸。另外以農桿菌真空滲入法基因轉殖至文心蘭葉片,進行短暫表現分析,尚未偵測到突變的目標序列。分別以距離6、9、12公分對文心蘭癒傷組織進行基因槍轟擊,以6公分處理所觀察到的GFP螢光表現量最多。利用基因槍法以及農桿菌媒介法轉殖CRISPR/Cas9表現質體至癒傷組織,進行穩定表現基因轉殖,透過抗生素篩選,擬轉殖細胞將經分子檢測及再生,獲得EIN3基因突變之轉殖株,期望將來透過自交,去除外來基因,獲得非基因轉殖之突變後代,並可有效延緩文心蘭之花瓣老化。zh_TW
dc.description.abstractOncidesa is the largest export cut flower in Taiwan. Loss the pollinia cap during harvest and classification induces production of endogenous ethylene in Oncidesa. ETHYLENE INSENSITIVE 3 (EIN3) is a positive regulator of the ethylene signaling pathway that promotes the expression of many different ethylene and stress genes. In this study, the CRISPR/Cas9 gene editing system was used to knock-out the gene function of OgEIL1 or OgEIL2 gene, which all two expressed abundantly EIN3 genes in Oncidesa flower. First of all, two target sequence from both OgEIL1 and OgEIL2 genes were selected according to the base preference, GC content and location in the gene to synthesis oligonucleotides and constructed into the universal expression vector. Ten, twenty, thirty μg of CRISPR/Cas9 expression vectors were introduced into protoplasts via polyethylene glycol (PEG), and then genomic DNA was extracted for high-resolution melting after 24, 48, 72 hours of culture. Results of high resolution melting curve analysis (HRM) and T7 endonuclease I (T7E1) assay showed that the target sequences had been edited by CRISPR/Cas9 as a single nucleotide mutation with 3.3% editing efficiency. In addition, the expression vectors were transferred to the leaves of Oncidesa by vacuum-assisted agroinfiltration, and no target sequence was edited. particle bombardment was performed at 6, 9, 12 cm target distance to Oncidesa callus, and the GFP fluorescence was observed at 6, 9 cm. Callus transformed with CRISPR/Cas9 expression vectors using particle bombardment or Agrobacterium-mediated method were selected by antibiotics. After regeneration and confirmation of genome editing, the transgenic plants will be self-pollinated to obtain self-life prolonged mutant progeny without foreign sequence.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:06:20Z (GMT). No. of bitstreams: 1
ntu-108-R06628126-1.pdf: 2981641 bytes, checksum: 7e386a078ac6a2ae4a5dd3c26cc97ee4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents壹、 前言 1
貳、 前人研究 2
一、 乙烯對花瓣老化之影響 2
二、 乙烯訊息傳導路徑 2
三、 EIN3基因之相關研究 3
五、 CRISPR/Cas9基因編輯系統 6
六、 CRISPR/Cas9基因編輯於植物上之應用 7
參、 材料與方法 9
一、 材料 9
(一) 質體材料 9
(二) 植物材料 9
二、 試驗方法 9
(一) 表現載體構築 9
1. sgRNA挑選及合成 9
2. 聚合酶連鎖反應 10
3. CRISPR/Cas9系統構築至pBluescript載體 10
4. CRISPR/Cas9系統構築至pGreen載體 10
5. 質體DNA之小量製備 11
6. 質體DNA之大量製備 11
7. DNA片段之回收 12
8. 接合反應與質體DNA之轉型 12
9. 農桿菌勝任細胞之製備 13
10. 農桿菌電穿孔轉型 13
11. 農桿菌質體DNA之小量製備 13
12. 農桿菌質體DNA之限制酶酶切檢測 14
(二) 文心蘭原生質體聚乙二醇法基因轉殖 14
1. 文心蘭原生質體分離 14
2. 原生質體PEG轉殖流程 14
(三) 文心蘭葉片農桿菌真空滲入法基因轉殖 15
(四) 文心蘭癒傷組織之誘導 15
(五) 文心蘭癒傷組織基因槍法基因轉殖 15
1. 微粒子製備 15
2. DNA包覆與基因槍轟擊 15
(六) 文心蘭癒傷組織農桿菌媒介法基因轉殖 16
(七) 報導基因分析 16
1. 綠色螢光蛋白螢光顯微觀察 16
2. β-葡萄糖苷酸酶活性組織化學染色法 16
(八) 基因編輯之分子檢測 17
1. 植物基因組DNA之萃取 17
2. 高解析熔解曲線分析 17
3. T7核酸內切酶I分析 17
4. 選殖定序分析 18
5. 高通量次世代定序 18
肆、 結果 19
一、 sgRNA之挑選及表現載體之構築 19
二、 文心蘭原生質體PEG法基因轉殖 19
三、 文心蘭葉片農桿菌真空滲入法基因轉殖 20
四、 文心蘭頂端分生組織癒傷組織之誘導 20
五、 文心蘭癒傷組織基因槍法基因轉殖 20
六、 文心蘭癒傷組織農桿菌媒介法基因轉殖 21
伍、 討論 22
陸、 結語 25
柒、 參考文獻 47
-
dc.language.isozh_TW-
dc.title利用CRISPR/Cas9系統編輯文心蘭EIN3基因延緩花瓣老化zh_TW
dc.titleGenome editing on EIN3 using CRISPR/Cas9 system to delay Oncidesa petal senescenceen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.coadvisor黃鵬林zh_TW
dc.contributor.coadvisorPung- Lin Huangen
dc.contributor.oralexamcommittee廖芳心;何錦玟zh_TW
dc.contributor.oralexamcommitteeFang-Shin Liao;Chin-Wen Hoen
dc.subject.keyword基因編輯,原生質體,聚乙二醇轉殖法,高解析熔解曲線分析,基因槍轉殖法,農桿菌媒介轉殖法,zh_TW
dc.subject.keywordgene editing,protoplast,polyethylene glycol mediated transformation,high resolution melting curve analysis,particle bombardment transformation,Agrobacterium-mediated transformation,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU201903056-
dc.rights.note未授權-
dc.date.accepted2019-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2029-12-31-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved