請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78591完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張麗冠 | zh_TW |
| dc.contributor.author | 黃琳禎 | zh_TW |
| dc.contributor.author | Lin-Chen Huang | en |
| dc.date.accessioned | 2021-07-11T15:05:58Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Adesso, L., Calabretta, S., Barbagallo, F., Capurso, G., Pilozzi, E., Geremia, R., . . . Sette, C. (2013). Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene, 32(23), 2848-2857. doi:10.1038/onc.2012.306
Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L., & Pestova, T. V. (2006). In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell, 125(6), 1125-1136. doi:10.1016/j.cell.2006.04.035 Batool, A., Aashaq, S., & Andrabi, K. I. (2019). Eukaryotic initiation factor 4E (eIF4E): A recap of the cap-binding protein. J Cell Biochem. doi:10.1002/jcb.28851 Bauer, G., Hofler, P., & Zur Hausen, H. (1982). Epstein-Barr virus induction by a serum factor. I. Induction and cooperation with additional inducers. Virology, 121(1), 184-194. Baumann, M., Feederle, R., Kremmer, E., & Hammerschmidt, W. (1999). Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J, 18(21), 6095-6105. doi:10.1093/emboj/18.21.6095 Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., & Sonenberg, N. (1996). Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J, 15(3), 658-664. Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., & Topisirovic, I. (2015). Targeting the translation machinery in cancer. Nat Rev Drug Discov, 14(4), 261-278. doi:10.1038/nrd4505 Braunstein, S., Karpisheva, K., Pola, C., Goldberg, J., Hochman, T., Yee, H., . . . Schneider, R. J. (2007). A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell, 28(3), 501-512. doi:10.1016/j.molcel.2007.10.019 Buchkovich, N. J., Yu, Y., Zampieri, C. A., & Alwine, J. C. (2008). The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol, 6(4), 266-275. doi:10.1038/nrmicro1855 Chang, K., L., Chuang, J. Y., Nakao, M., & Liu, S. T. (2010). MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res, 38(14), 4687-4700. doi:10.1093/nar/gkq243 Chang, K., L., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M., & Liu, S. T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res, 33(20), 6528-6539. doi:10.1093/nar/gki956 Chang, P. J., Chang, Y. S., & Liu, S. T. (1998). Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol, 72(6), 5128-5136. Chen, Chang, P. J., Delecluse, H. J., & Miller, G. (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol, 79(15), 9635-9650. doi:10.1128/JVI.79.15.9635-9650.2005 Chen, Y. L., Chen, Y. J., Tsai, W. H., Ko, Y. C., Chen, J. Y., & Lin, S. F. (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle, 8(1), 58-65. doi:10.4161/cc.8.1.7411 Daughenbaugh, K. F., Fraser, C. S., Hershey, J. W., & Hardy, M. E. (2003). The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J, 22(11), 2852-2859. doi:10.1093/emboj/cdg251 Derenzini, M., Montanaro, L., & Trere, D. (2017). Ribosome biogenesis and cancer. Acta Histochem, 119(3), 190-197. doi:10.1016/j.acthis.2017.01.009 DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., & Calos, M. P. (1987). Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol, 7(1), 379-387. doi:10.1128/mcb.7.1.379 Dugan, J. P., Coleman, C. B., & Haverkos, B. (2019). Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol, 9, 127. doi:10.3389/fonc.2019.00127 El-Guindy, A., Ghiassi-Nejad, M., Golden, S., Delecluse, H. J., & Miller, G. (2013). Essential role of Rta in lytic DNA replication of Epstein-Barr virus. J Virol, 87(1), 208-223. doi:10.1128/JVI.01995-12 Epstein, M. A., Achong, B. G., & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet, 1(7335), 702-703. doi:10.1016/s0140-6736(64)91524-7 Fang, C. Y., Lee, C. H., Wu, C. C., Chang, Y. T., Yu, S. L., Chou, S. P., . . . Chen, J. Y. (2009). Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer, 124(9), 2016-2025. doi:10.1002/ijc.24179 Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., & Delecluse, H. J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J, 19(12), 3080-3089. doi:10.1093/emboj/19.12.3080 Fixman, E. D., Hayward, G. S., & Hayward, S. D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol, 69(5), 2998-3006. Furic, L., Rong, L., Larsson, O., Koumakpayi, I. H., Yoshida, K., Brueschke, A., . . . Sonenberg, N. (2010). eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A, 107(32), 14134-14139. doi:10.1073/pnas.1005320107 Gale, M., Jr., Tan, S. L., & Katze, M. G. (2000). Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev, 64(2), 239-280. doi:10.1128/mmbr.64.2.239-280.2000 Gibson, W. (1996). Structure and assembly of the virion. Intervirology, 39(5-6), 389-400. doi:10.1159/000150509 Gierman, H. J., Indemans, M. H., Koster, J., Goetze, S., Seppen, J., Geerts, D., . . . Versteeg, R. (2007). Domain-wide regulation of gene expression in the human genome. Genome Res, 17(9), 1286-1295. doi:10.1101/gr.6276007 Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., & Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A, 93(11), 5578-5583. doi:10.1073/pnas.93.11.5578 Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S., & Sonenberg, N. (1998). A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol, 18(1), 334-342. doi:10.1128/mcb.18.1.334 Grant, C. M. (2011). Regulation of translation by hydrogen peroxide. Antioxid Redox Signal, 15(1), 191-203. doi:10.1089/ars.2010.3699 Grzmil, M., & Hemmings, B. A. (2012). Translation regulation as a therapeutic target in cancer. Cancer Res, 72(16), 3891-3900. doi:10.1158/0008-5472.CAN-12-0026 Guidry, J. T., Birdwell, C. E., & Scott, R. S. (2018). Epstein-Barr virus in the pathogenesis of oral cancers. Oral Dis, 24(4), 497-508. doi:10.1111/odi.12656 Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T., & Sonenberg, N. (1996). The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol, 70(12), 8444-8450. He, B., Gross, M., & Roizman, B. (1997). The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A, 94(3), 843-848. doi:10.1073/pnas.94.3.843 Hellen, C. U. (2009). IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim Biophys Acta, 1789(9-10), 558-570. doi:10.1016/j.bbagrm.2009.06.001 Hershey, J. W., Sonenberg, N., & Mathews, M. B. (2012). Principles of translational control: an overview. Cold Spring Harb Perspect Biol, 4(12). doi:10.1101/cshperspect.a011528 Hinuma, Y., Konn, M., Yamaguchi, J., Wudarski, D. J., Blakeslee, J. R., Jr., & Grace, J. T., Jr. (1967). Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol, 1(5), 1045-1051. Hoffmann, A., Villalba, M., Journot, L., & Spengler, D. (1997). A novel tetracycline-dependent expression vector with low basal expression and potent regulatory properties in various mammalian cell lines. Nucleic Acids Res, 25(5), 1078-1079. doi:10.1093/nar/25.5.1078 Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y., & Tsai, C. H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol, 86(Pt 2), 317-322. doi:10.1099/vir.0.80556-0 Hung, C. H., Chen, L. W., Wang, W. H., Chang, P. J., Chiu, Y. F., Hung, C. C., . . . Liu, S. T. (2014). Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol, 88(20), 12133-12145. doi:10.1128/JVI.02033-14 Isaksson, A., Berggren, M., & Ricksten, A. (2003). Epstein-Barr virus U leader exon contains an internal ribosome entry site. Oncogene, 22(4), 572-581. doi:10.1038/sj.onc.1206149 Jackson, R. J. (2013). The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol, 5(2). doi:10.1101/cshperspect.a011569 Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol, 11(2), 113-127. doi:10.1038/nrm2838 Jakobsson, M. E., Malecki, J., & Falnes, P. O. (2018). Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation. RNA Biol, 15(3), 314-319. doi:10.1080/15476286.2018.1440875 Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., & Wimmer, E. (1988). A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol, 62(8), 2636-2643. Jensen, R. A., & Haas, F. L. (1963). Electrokinetics and Cell Physiology. Ii. Relationship of Surface Charge to Onset of Bacterial Competence for Genetic Transformation. J Bacteriol, 86, 79-86. Johnson, A. G., Grosely, R., Petrov, A. N., & Puglisi, J. D. (2017). Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci, 372(1716). doi:10.1098/rstb.2016.0177 Kapp, L. D., & Lorsch, J. R. (2004). GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol, 335(4), 923-936. Klein, G., Sugden, B., Leibold, W., & Menezes, J. (1974). Infection of EBV-genome-negative and -positive human lymphoblastoid cell lines with biologically different preparations of EBV. Intervirology, 3(4), 232-244. doi:10.1159/000149760 Lange, Allison, Mills, Ryan E., Lange, Christopher J., Stewart, Murray, Devine, Scott E., & Corbett, Anita H. (2007). Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin α. Journal of Biological Chemistry, 282(8), 5101-5105. doi:10.1074/jbc.R600026200 Lee, K. M., Chen, C. J., & Shih, S. R. (2017). Regulation Mechanisms of Viral IRES-Driven Translation. Trends Microbiol, 25(7), 546-561. doi:10.1016/j.tim.2017.01.010 Lee, Y. H., Chiu, Y. F., Wang, W. H., Chang, L. K., & Liu, S. T. (2008). Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. Journal of General Virology, 89(10), 2437-2446. doi:10.1099/vir.0.2008/003897-0 Lin, Ding-Yen, & Shih, Hsiu-Ming. (2002). Essential Role of the 58-kDa Microspherule Protein in the Modulation of Daxx-dependent Transcriptional Repression as Revealed by Nucleolar Sequestration. Journal of Biological Chemistry, 277(28), 25446-25456. doi:10.1074/jbc.M200633200 Liu, S. T., Wang, W. H., Hong, Y. R., Chuang, J. Y., Lu, P. J., & Chang, L. K. (2006). Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASxbeta. Virus Res, 119(2), 163-170. doi:10.1016/j.virusres.2006.01.004 Lloyd, R. E. (2006). Translational control by viral proteinases. Virus Res, 119(1), 76-88. doi:10.1016/j.virusres.2005.10.016 Luka, J., Kallin, B., & Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94(1), 228-231. Marciano, R., Leprivier, G., & Rotblat, B. (2018). Puromycin labeling does not allow protein synthesis to be measured in energy-starved cells. Cell Death Dis, 9(2), 39. doi:10.1038/s41419-017-0056-x Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., Coppey-Moisan, M., & Nicolas, J. C. (1999). Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J Virol, 73(5), 4385-4392. Marissen, W. E., & Lloyd, R. E. (1998). Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells. Mol Cell Biol, 18(12), 7565-7574. doi:10.1128/mcb.18.12.7565 McCormick, C., & Khaperskyy, D. A. (2017). Translation inhibition and stress granules in the antiviral immune response. Nat Rev Immunol, 17(10), 647-660. doi:10.1038/nri.2017.63 Merrick, W. C. (2004). Cap-dependent and cap-independent translation in eukaryotic systems. Gene, 332, 1-11. doi:10.1016/j.gene.2004.02.051 Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J Virol, 76(4), 1537-1547. doi:10.1128/jvi.76.4.1537-1547.2002 Monick, M. M., Powers, L. S., Gross, T. J., Flaherty, D. M., Barrett, C. W., & Hunninghake, G. W. (2006). Active ERK contributes to protein translation by preventing JNK-dependent inhibition of protein phosphatase 1. J Immunol, 177(3), 1636-1645. doi:10.4049/jimmunol.177.3.1636 Mulvey, M., Poppers, J., Sternberg, D., & Mohr, I. (2003). Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle. J Virol, 77(20), 10917-10928. doi:10.1128/jvi.77.20.10917-10928.2003 Murata, T., Narita, Y., Sugimoto, A., Kawashima, D., Kanda, T., & Tsurumi, T. (2013). Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency. J Virol, 87(18), 10148-10162. doi:10.1128/JVI.01002-13 Mure, F., Panthu, B., Zanella-Cleon, I., Delolme, F., Manet, E., Ohlmann, T., & Gruffat, H. (2018). Epstein-Barr Virus Protein EB2 Stimulates Translation Initiation of mRNAs through Direct Interactions with both Poly(A)-Binding Protein and Eukaryotic Initiation Factor 4G. J Virol, 92(3). doi:10.1128/JVI.01917-17 Odumade, O. A., Hogquist, K. A., & Balfour, H. H., Jr. (2011). Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev, 24(1), 193-209. doi:10.1128/CMR.00044-10 Parsyan, A., Svitkin, Y., Shahbazian, D., Gkogkas, C., Lasko, P., Merrick, W. C., & Sonenberg, N. (2011). mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol, 12(4), 235-245. doi:10.1038/nrm3083 Pause, A., Belsham, G. J., Gingras, A. C., Donze, O., Lin, T. A., Lawrence, J. C., Jr., & Sonenberg, N. (1994). Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature, 371(6500), 762-767. doi:10.1038/371762a0 Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320-325. doi:10.1038/334320a0 Pena, C., Hurt, E., & Panse, V. G. (2017). Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol, 24(9), 689-699. doi:10.1038/nsmb.3454 Pestova, T. V., & Kolupaeva, V. G. (2002). The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev, 16(22), 2906-2922. doi:10.1101/gad.1020902 Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J., & Hellen, C. U. (1998). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev, 12(1), 67-83. doi:10.1101/gad.12.1.67 Proud, C. G. (2005). eIF2 and the control of cell physiology. Semin Cell Dev Biol, 16(1), 3-12. doi:10.1016/j.semcdb.2004.11.004 Ragoczy, T., & Miller, G. (1999). Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol, 73(12), 9858-9866. Roberts, L. O., Jopling, C. L., Jackson, R. J., & Willis, A. E. (2009). Viral strategies to subvert the mammalian translation machinery. Prog Mol Biol Transl Sci, 90, 313-367. doi:10.1016/S1877-1173(09)90009-6 Robichaud, N., del Rincon, S. V., Huor, B., Alain, T., Petruccelli, L. A., Hearnden, J., . . . Sonenberg, N. (2015). Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene, 34(16), 2032-2042. doi:10.1038/onc.2014.146 Roux, P. P., & Topisirovic, I. (2012). Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol, 4(11). doi:10.1101/cshperspect.a012252 Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H., & Rickinson, A. B. (1992). Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol, 66(1), 122-131. Salas-Marco, J., & Bedwell, D. M. (2004). GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol, 24(17), 7769-7778. doi:10.1128/MCB.24.17.7769-7778.2004 Sato, H., Masuda, M., Kanai, M., Tsukiyama-Kohara, K., Yoneda, M., & Kai, C. (2007). Measles virus N protein inhibits host translation by binding to eIF3-p40. J Virol, 81(21), 11569-11576. doi:10.1128/JVI.00570-07 Schmidt, E. K., Clavarino, G., Ceppi, M., & Pierre, P. (2009). SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods, 6(4), 275-277. doi:10.1038/nmeth.1314 Schneider, R. J., & Mohr, I. (2003). Translation initiation and viral tricks. Trends Biochem Sci, 28(3), 130-136. doi:10.1016/S0968-0004(03)00029-X Siddiqui, N., & Sonenberg, N. (2015). Signalling to eIF4E in cancer. Biochem Soc Trans, 43(5), 763-772. doi:10.1042/BST20150126 Silvera, D., Arju, R., Darvishian, F., Levine, P. H., Zolfaghari, L., Goldberg, J., . . . Schneider, R. J. (2009). Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol, 11(7), 903-908. doi:10.1038/ncb1900 Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042 Spilka, R., Ernst, C., Mehta, A. K., & Haybaeck, J. (2013). Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett, 340(1), 9-21. doi:10.1016/j.canlet.2013.06.019 Spriggs, K. A., Bushell, M., & Willis, A. E. (2010). Translational regulation of gene expression during conditions of cell stress. Mol Cell, 40(2), 228-237. doi:10.1016/j.molcel.2010.09.028 Susorov, D., Zakharov, N., Shuvalova, E., Ivanov, A., Egorova, T., Shuvalov, A., . . . Alkalaeva, E. (2018). Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. J Biol Chem, 293(14), 5220-5229. doi:10.1074/jbc.RA117.000761 Thomson, E., Ferreira-Cerca, S., & Hurt, E. (2013). Eukaryotic ribosome biogenesis at a glance. J Cell Sci, 126(Pt 21), 4815-4821. doi:10.1242/jcs.111948 Topisirovic, I., Ruiz-Gutierrez, M., & Borden, K. L. (2004). Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res, 64(23), 8639-8642. doi:10.1158/0008-5472.CAN-04-2677 Topisirovic, I., Svitkin, Y. V., Sonenberg, N., & Shatkin, A. J. (2011). Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA, 2(2), 277-298. doi:10.1002/wrna.52 Tsao, S. W., Tsang, C. M., & Lo, K. W. (2017). Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci, 372(1732). doi:10.1098/rstb.2016.0270 Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata, S., & Fukunaga, R. (2004). Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol, 24(15), 6539-6549. doi:10.1128/MCB.24.15.6539-6549.2004 von der Haar, T., Gross, J. D., Wagner, G., & McCarthy, J. E. (2004). The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol, 11(6), 503-511. doi:10.1038/nsmb779 Walsh, D., Mathews, M. B., & Mohr, I. (2013). Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol, 5(1), a012351. doi:10.1101/cshperspect.a012351 Walsh, D., & Mohr, I. (2004). Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes Dev, 18(6), 660-672. doi:10.1101/gad.1185304 Walsh, D., & Mohr, I. (2011). Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol, 9(12), 860-875. doi:10.1038/nrmicro2655 Walsh, D., Perez, C., Notary, J., & Mohr, I. (2005). Regulation of the translation initiation factor eIF4F by multiple mechanisms in human cytomegalovirus-infected cells. J Virol, 79(13), 8057-8064. doi:10.1128/JVI.79.13.8057-8064.2005 Wang, W. H., Kuo, C. W., Chang, L. K., Hung, C. C., Chang, T. H., & Liu, S. T. (2015). Assembly of Epstein-Barr Virus Capsid in Promyelocytic Leukemia Nuclear Bodies. J Virol, 89(17), 8922-8931. doi:10.1128/JVI.01114-15 Watson, James D., Baker, Tania A., Bell, Stephen P., Gann, Alexander, Levine, Michael, & Losick, Richard. (2014). Molecular biology of the gene (7 ed.). PERSON. Wendel, H. G., Silva, R. L. A., Malina, A., Mills, J. R., Zhu, H., Ueda, T., . . . Lowe, Scott W. (2007). Dissecting eIF4E action in tumorigenesis. Genes & Development, 21(24), 3232-3237. doi:10.1101/gad.1604407 Wilson, J. E., Pestova, T. V., Hellen, C. U., & Sarnow, P. (2000). Initiation of protein synthesis from the A site of the ribosome. Cell, 102(4), 511-520. Wu, C. C., Fang, C. Y., Cheng, Y. J., Hsu, H. Y., Chou, S. P., Huang, S. Y., . . . Chen, J. Y. (2017). Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci, 24(1), 2. doi:10.1186/s12929-016-0313-9 Xi, C., Wang, L., Yu, J., Ye, H., Cao, L., & Gong, Z. (2018). Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer. Biochem Biophys Res Commun, 503(4), 2286-2292. doi:10.1016/j.bbrc.2018.06.150 Yajima, M., Kanda, T., & Takada, K. (2005). Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol, 79(7), 4298-4307. doi:10.1128/JVI.79.7.4298-4307.2005 Yates, J. L., Warren, N., & Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 313(6005), 812-815. doi:10.1038/313812a0 Zhang, F., Moon, A., Childs, K., Goodbourn, S., & Dixon, L. K. (2010). The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J Virol, 84(20), 10681-10689. doi:10.1128/JVI.01027-10 zur Hausen, H., O'Neill, F. J., Freese, U. K., & Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature, 272(5651), 373-375. doi:10.1038/272373a0 黃斯沛, 2018. Promotion of BZLF1 translation by Rta from the BRLF1-BZLF1 bicistronic mRNA of Epstein-Barr virus. 國立臺灣大學碩士論文. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78591 | - |
| dc.description.abstract | EB 病毒 (Epstein-Barr virus, EBV) 又稱為第四型人類皰疹病毒。EB 病毒的生活史可分為潛伏期 (latency) 以及溶裂期 (lytic cycle)。在溶裂期極早期時會表現轉錄因子 Rta 蛋白質,活化溶裂期早期基因與晚期基因的表現,促使病毒顆粒的合成與組裝,並普遍認為不在病毒的潛伏期時表現;本實驗室先前的研究發現表現 Rta 會與 18S rRNA 及 mRNA 5’端帽結合且與核糖體有所關連,並可作為 ITAF 幫助下游基因 BZLF1 的轉譯,因此推測 Rta 可能參與調控細胞的轉譯作用。本研究發現過量表現 Rta 會使 HEK293T 細胞中 eIF4G 表現量下降。利用慢病毒建立了 Rta 靜默化的細胞株,結果發現潛伏期 Rta 會抑制 eIF4E 及 eIF2 的磷酸化作用。另外,利用免疫共沈澱法證實 Rta 會與 eIF2 及核糖體小亞基組成蛋白 S6 結合。接著利用 puromycin 以及 L-azidohomoalanine (AHA) 標定新生蛋白質藉此監測 Rta 蛋白質對轉譯作用速率的影響,結果發現 Rta 能夠促進細胞內總體轉譯 (global translation) 的速率。此外,本實驗室先前研究中發現,在潛伏期時可透過西方墨點法觀察到 Rta 訊號,且可於共軛焦顯微鏡下觀察到 Rta 多會聚集於核仁中,本研究進一步以西方墨點法再次驗證在受到 EB 病毒潛伏感染 (latent infection) 的細胞中確實有的 Rta 表現,同時也以共軛焦顯微進觀察到潛伏期 Rta 多存在於細胞核中。
本研究依據上述結果提出假設,細胞核仁中的潛伏期 Rta 可以透過與 40S 核糖體結合隨之運送至細胞質,穩定 eIF4F 複合體及 43S 轉譯起始前複合體的結合,並抑制 eIF2 的磷酸化作用,進而促進宿主細胞的總體轉譯作用。 | zh_TW |
| dc.description.abstract | Epstein-Barr virus (EBV), is also known as human herpesvirus 4 (HHV4). The life cycle of this virus can be divided into two phases, latency and the lytic cycle. Rta, a transcription factor, is defined as an immediate-early protein of EBV, and is required for activating the viral lytic genes. In our previous study, we found Rta has been associated with ribosomes and 5’ cap structure of mRNA, and is involved in the translation of the downstream BZLF1 gene, acting as an ITAF (IRES trans-acting factor). Therefore, we speculate that Rta might participate in regulating global translation. This study found that overexpressing Rta reduced the levels of eIF4G in HEK293T cells. Meanwhile, latency Rta suppressed the phosphorylation of eIF2 and eIF4E in Rta-silencing B lymphocytes, which was generated by lentivirus infection. Moreover, co-immunoprecipitation assay demonstrated that Rta is associated with eIF2α and S6. In addition, this study monitored the global translation rate by puromycin-labeling and AHA-labeling assay, the results indicated that Rta enhances global translation in HEK293T.Besides, we unexpectedly observed weak staining of Rta in the nucleouus of latently infected B lymphocytes by immunoblotting and immunofluorescence in our previous study. In this study, Rta was detected by immunoblotting and immunofluorescence in P3HR1 cells, suggesting that Rta is expressed during latency.
To sum up, this research proposes that latency Rta binds to 40S subunits in nucleolus, then being exported to the cytoplasm. Rta can stabilize the binding between eIF4F and 43S preinitiation complex, and suppress the phosphorylation of eIF2α, therefore promoting the global translation of host cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:05:58Z (GMT). No. of bitstreams: 1 ntu-108-R06b22032-1.pdf: 11754459 bytes, checksum: cc0c8242ef61040444d00cb28403692d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 前言 1 1. 真核細胞的轉譯作用 1 2. 真核轉譯起始的類型 2 3. 真核轉譯作用的調控 4 4. 病毒對真核轉譯起始的調控 6 5. EB病毒簡介 7 6. EB病毒的生活史 8 7. EB 病毒溶裂期極早期蛋白質 Rta 9 8. Rta 蛋白質其他功能 10 9. 研究動機 11 材料與方法 12 1. 細胞株與細胞培養 12 2. EB 病毒溶裂誘導 13 3. 細菌 13 4. 細菌轉型作用 (Transformation) 13 5. 質體 DNA 萃取 13 6. 細胞轉染作用 (Transfection) 14 7. 萃取潛伏期細胞裂解液 (Lysate) 14 8. 蛋白質定量法 (Bradford assay) 15 9. 嘌呤黴素標定法 & AHA 標定法 15 10. 帶有 AHA 標記之蛋白質的生物素 (biotin) 標定 16 11. 甲醇/氯仿沈澱法 (Methanol/chloroform precipitation) 16 12. 西方墨點法 (Western blot) 16 13. 慢病毒載體感染法 (Lentiviral vector infection) 與穩定細胞株建立 17 14. 免疫共沈澱法 (Co-immunoprecipitation) 18 15. 免疫螢光染色法 18 16. 細胞增殖分析 19 結果 20 1. 潛伏期 Rta 不會影響 B 細胞的細胞增殖 20 2. Rta 會降低 HEK293T 細胞中 eIF4G 及 P-eIF4G 的表現量 21 3. 潛伏期 Rta 會降低 B 細胞中 eIF2α 及 eIF4E 的磷酸化作用 21 4. Rta 與 eIF2α 及 S6 的結合 22 5. Rta 能夠促進 HEK293T 細胞的總體轉譯作用 22 6. Rta 會在 EB 病毒潛伏期時表現 24 討論 27 Rta 與細胞增殖的關係 27 Rta 會降低 HEK293T 細胞中 eIF4G 的表現量 28 潛伏期 Rta 會降低 eIF4E 的磷酸化 31 潛伏期 Rta 會降低 eIF2α 的磷酸化 32 Rta 與 eIF4F 複合體及 43S preinitiation complex 的結合關係 33 Rta 對總體轉譯作用的調控 34 Rta 在潛伏期的表現情形 36 潛伏期 Rta 與轉譯作用的關係 37 結論 38 圖表 40 圖1、Cap-dependent 的轉譯起始機制 40 圖2、eIF2 的磷酸化作用 41 圖3、EB 病毒結構示意圖 42 圖4、EB 病毒生活史 43 圖5、潛伏期 Rta 對於 B 細胞之細胞增殖的影響 44 圖6、過量表現Rta對真核轉譯起始因子表現量的影響 45 圖7、Latency Rta 對真核轉譯起始因子表現量的影響 46 圖8、Rta對真核轉譯起始因子的結合關係 47 圖9、Rta對於 HEK293T 細胞總體轉譯作用的影響 48 圖10、使用 Puromycin 及 AHA 標定新生蛋白質檢測 Rta 對 HEK293T 細胞總體轉譯作用的影響 49 圖11、以西方墨點法偵測 B 細胞中潛伏期 Rta 的表現情形 50 圖12、少量 Rta 在 293TetER 細胞中的分佈位置 51 圖13、潛伏期 Rta 在 B 細胞中的分佈位置 53 圖14、本研究之假設示意圖 54 表1、本研究所使用之質體 55 表2、本研究所建構之質體 56 表3、本研究所使用引子之序列 57 表4、本研究所使用的抗體 58 附錄 59 附錄1、Rta對 293TetER、2089 及 293 細胞細胞增殖的影響 59 附錄2、Rta與5’端帽的結合關係 60 參考文獻 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | EB病毒 | zh_TW |
| dc.subject | 真核轉譯起始 | zh_TW |
| dc.subject | 真核起始因子 | zh_TW |
| dc.subject | 潛伏期 | zh_TW |
| dc.subject | Rta蛋白質 | zh_TW |
| dc.subject | Epstein-Barr virus | en |
| dc.subject | Rta | en |
| dc.subject | latency | en |
| dc.subject | translational initiation | en |
| dc.subject | eIFs | en |
| dc.title | EB病毒Rta蛋白質對轉譯的調控 | zh_TW |
| dc.title | Regulation of translation by Rta of Epstein-Barr virus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉世東;張沛鈞;羅凱尹;廖憶純 | zh_TW |
| dc.contributor.oralexamcommittee | ;;; | en |
| dc.subject.keyword | EB病毒,Rta蛋白質,潛伏期,真核轉譯起始,真核起始因子, | zh_TW |
| dc.subject.keyword | Epstein-Barr virus,Rta,latency,translational initiation,eIFs, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU201903280 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 11.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
