Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78587
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富zh_TW
dc.contributor.advisorChing-Fuh Linen
dc.contributor.author張惟哲zh_TW
dc.contributor.authorWei-Che Changen
dc.date.accessioned2021-07-11T15:05:43Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-27-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Tollefson, J., Graphic detail countries with highest CO2-emitting power sectors (tons per year) (vol 450, pg 327, 2007). Nature, 2007. 450(7169): p. 470-470.
2. 106年臺中市衛生統計年報, https://www.health.taichung.gov.tw/media/386244/106%E5%B9%B4%E8%87%BA%E4%B8%AD%E5%B8%82%E8%A1%9B%E7%94%9F%E7%B5%B1%E8%A8%88%E5%B9%B4%E5%A0%B1.pdf.
3. Stepanov, B.I., Gustav Robert Kirchhoff (on the ninetieth anniversary of his death). Journal of Applied Spectroscopy, 1977. 27(3): p. 1099-1104.
4. Ball, D.W., Modern Spectroscopy, J. Michael Hollas. New York: John Wiley & Sons, Inc., 2004, 428 pp., $45.00, paperback. ISBN 0-470-84416-7. Clinical Chemistry, 2004. 50(12): p. 2469-2470.
5. Bernath, P.F., Spectra of atoms and molecules. 2015: Oxford university press.
6. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis. 2017: Cengage Learning.
7. Harris, D.C. and M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. 1989: Dover Publications.
8. Werle, P., et al., Near-and mid-infrared laser-optical sensors for gas analysis. Optics and lasers in engineering, 2002. 37(2-3): p. 101-114.
9. Nordberg, Å., et al., Monitoring of a biogas process using electronic gas sensors and near-infrared spectroscopy (NIR). Water Science and Technology, 2000. 41(3): p. 1-8.
10. Li-Chan, E., J.M. Chalmers, and P.R. Griffiths, Applications of Vibrational Spectroscopy in Food Science. 2010: Wiley.
11. Nadkarni, R.A., A.S.f. Testing, and Materials, Modern Instrumental Methods of Elemental Analysis of Petroleum Products and Lubricants. 1991: ASTM.
12. Williams, P. and K. Norris, Near-infrared technology in the agricultural and food industries. 1987: American Association of Cereal Chemists, Inc.
13. Osborne, B.G., Near‐infrared spectroscopy in food analysis. Encyclopedia of analytical chemistry: applications, theory and instrumentation, 2006.
14. Cen, H. and Y. He, Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 2007. 18(2): p. 72-83.
15. Khalafinejad, S., et al., Exoplanetary atmospheric sodium revealed by orbital motion-Narrow-band transmission spectroscopy of HD 189733b with UVES. Astronomy & Astrophysics, 2017. 598: p. A131.
16. Pickett, E.E. and S.R. Koirtyohann, Emission flame photometry--a new look at an old method. Analytical Chemistry, 1969. 41(14): p. 28A-42A.
17. Azároff, L.V., et al., X-ray Diffraction. Vol. 3. 1974: McGraw-Hill New York.
18. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 2013: Elsevier Science.
19. Graves, P. and D. Gardiner, Practical raman spectroscopy. Springer, 1989.
20. Chalmers, J.M. and P.R. Griffiths, Handbook of Vibrational Spectroscopy. 2002: Wiley.
21. Haug, H. and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors: Fivth Edition. 2009: World Scientific Publishing Company.
22. Ding, H., et al., Smartphone-based spectrometer with high spectral accuracy for mHealth application. Sensors and Actuators A: Physical, 2018. 274: p. 94-100.
23. Tittel, F.K., D. Richter, and A. Fried, Mid-infrared laser applications in spectroscopy, in Solid-state mid-infrared laser sources. 2003, Springer. p. 458-529.
24. Li, T., M. Mastro, and A. Dadgar, III–V Compound Semiconductors: Integration with Silicon-Based Microelectronics. 2016: CRC Press.
25. Ilegems, M., G. Weimann, and J. Wagner, Compound Semiconductors 2002. 2003: Taylor & Francis.
26. Stewart, B. and C.P. Wild, World cancer report 2014. 2014.
27. Perera, F.P., Environment and cancer: who are susceptible? Science, 1997. 278(5340): p. 1068-1073.
28. Rushton, L., How much does the environment contribute to cancer? Occupational and environmental medicine, 2003. 60(2): p. 150-156.
29. Taranovs, R., et al., An approach for meeting room activity monitoring and analysis. Technologies of Computer Control, 2014. 15: p. 63-68.
30. Braun, F., Ueber die Stromleitung durch Schwefelmetalle. Annalen der Physik, 1875. 229(12): p. 556-563.
31. Kasap, S.O. and R.K. Sinha, Optoelectronics and photonics: principles and practices. Vol. 340. 2001: Prentice Hall New Jersey.
32. Anderson, B. and R. Anderson, Fundamentals of semiconductor devices. 2004: McGraw-Hill, Inc.
33. Kasap, S.O.譯.林.張., 光電子學. 2015: 臺灣培生教育, 高立.
34. Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: John wiley & sons.
35. Sah, C.-T., Fundamentals of solid state electronics. 1991: World Scientific Publishing Company.
36. Himpsel, F., G. Hollinger, and R. Pollak, Determination of the Fermi-level pinning position at Si (111) surfaces. Physical Review B, 1983. 28(12): p. 7014.
37. Sankey, O.F., R.E. Allen, and J.D. Dow, Si/transition-metal Schottky barriers: Fermi-level pinning by Si dangling bonds at interfacial vacancies. Solid state communications, 1984. 49(1): p. 1-5.
38. Scales, C. and P. Berini, Thin-film Schottky barrier photodetector models. IEEE Journal of quantum electronics, 2010. 46(5): p. 633-643.
39. Chen, C.K., B. Nechay, and B.-Y. Tsaur, Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode. IEEE Transactions on Electron Devices, 1991. 38(5): p. 1094-1103.
40. Mooney, J.M., The dependence of the Schottky emission coefficient on reverse bias. Journal of Applied Physics, 1989. 65(7): p. 2869-2871.
41. Palumbo, F. and E. Miranda, Modeling of the tunneling current in MOS devices after proton irradiation using a nonlinear series resistance correction. IEEE Transactions on Nuclear Science, 2011. 58(3): p. 770-775.
42. Lin, K.-T., et al., Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nature communications, 2014. 5: p. 3288.
43. Gabudean, A., D. Biro, and S. Astilean, Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. Journal of Molecular Structure, 2011. 993(1-3): p. 420-424.
44. Hankus, M.E., D.N. Stratis-Cullum, and P.M. Pellegrino. Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application. in Biosensing and Nanomedicine IV. 2011. International Society for Optics and Photonics.
45. Xu, Z., et al., Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy. Journal of Nanophotonics, 2011. 5(1): p. 053526.
46. Bakker, R.M., et al., Enhanced localized fluorescence in plasmonic nanoantennae. Applied Physics Letters, 2008. 92(4): p. 043101.
47. Raether, H., Physics of thin films. Advances in Research and Development, 1977. 9.
48. Berini, P., Long-range surface plasmon polaritons. Advances in optics and photonics, 2009. 1(3): p. 484-588.
49. Malureanu, R. and A. Lavrinenko, Ultra-thin films for plasmonics: a technology overview. Nanotechnology Reviews, 2015. 4(3): p. 259-275.
50. Emboras, A., et al., MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices. Optics Express, 2012. 20(13): p. 13612-13621.
51. Volpati, D., et al., Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence. Analyst, 2015. 140(2): p. 476-482.
52. Kong, D., et al., Effect of chloride concentration on passive film properties on copper. Corrosion Engineering, Science and Technology, 2018. 53(2): p. 122-130.
53. Liu, Z., et al., Continuous copper film structures with broadband optical transparency. Materials Letters, 2015. 139: p. 12-14.
54. Sang, X.-z. and D. Zhang, Research on the SPR Properties of Copper Thin Film with Regulation of Titanium Dioxide. Vol. 36. 2016. 2027-2030.
55. Leelawattananon, T., K. Lorchalearnrat, and S. Chittayasothorn, Simulation of Copper Thin Film Thickness Optimization for Surface Plasmon using the Finite Element Method. 2017. 188-195.
56. Oliveira, L.C., et al., Optical Properties and Instrumental Performance of thin Noble Metal (Cu, Au, Ag) Films Near the Surface Plasmon Resonance. Procedia Engineering, 2016. 168: p. 834-837.
57. 莊閎傑, 矽基紅外光譜偵測關鍵技術之研究, The Investigation of Si-based Infrared Spectrum Detection Critical Techniques in 國立台灣大學光電工程學研究所碩士論文.
58. Li, J., et al., Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photonics, 2015. 9(9): p. 601.
59. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95.
60. Xie, R., et al., Emission enhancement of light-emitting diode by localized surface plasmon induced by Ag/p-GaN double grating. Optics Communications, 2018. 419: p. 108-113.
61. Zhang, X., R.-M. Ma, and S. Ota, Plasmon laser sensor. 2018, Google Patents.
62. Alavirad, M., L. Roy, and P. Berini, Surface plasmon enhanced photodetectors based on internal photoemission. Journal of Photonics for Energy, 2016. 6(4): p. 1-24, 24.
63. Desiatov, B., et al., Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015. 2(4): p. 335-338.
64. Gosciniak, J., et al., Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Scientific reports, 2019. 9(1): p. 6048.
65. Muehlschlegel, P., et al., Resonant optical antennas. science, 2005. 308(5728): p. 1607-1609.
66. Lal, S., S. Link, and N.J. Halas, Nano-optics from sensing to waveguiding. Nature photonics, 2007. 1(11): p. 641.
67. Knight, M.W., et al., Photodetection with active optical antennas. Science, 2011. 332(6030): p. 702-704.
68. Brongersma, M.L., N.J. Halas, and P. Nordlander, Plasmon-induced hot carrier science and technology. Nature nanotechnology, 2015. 10(1): p. 25.
69. Stern, J.M., et al., Selective prostate cancer thermal ablation with laser activated gold nanoshells. The Journal of urology, 2008. 179(2): p. 748-753.
70. Hung, S.-C., et al., Fabrication of crystalline Si waveguides on (1 0 0) bulk Si substrate using laser reformation method. Journal of Lightwave Technology, 2013. 31(21): p. 3368-3373.
71. Cao, L., et al., Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano letters, 2007. 7(11): p. 3523-3527.
72. Mukherjee, S., et al., Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano letters, 2012. 13(1): p. 240-247.
73. Christopher, P., et al., Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature materials, 2012. 11(12): p. 1044.
74. Mubeen, S., et al., An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature nanotechnology, 2013. 8(4): p. 247.
75. Archer, R. and J. Cohen, Schottky barrier infrared detector having ultrathin metal layer. 1973, Google Patents.
76. Armin, A., et al., Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature communications, 2015. 6: p. 6343.
77. Shen, L., et al., A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale, 2016. 8(26): p. 12990-12997.
78. Knight, M.W., et al., Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano letters, 2013. 13(4): p. 1687-1692.
79. Liu, J.G., et al., Relaxation of plasmon-induced hot carriers. ACS Photonics, 2017. 5(7): p. 2584-2595.
80. Goykhman, I., et al., Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano letters, 2011. 11(6): p. 2219-2224.
81. Alavirad, M., et al., High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Optics express, 2016. 24(20): p. 22544-22554.
82. Tanzid, M., et al., Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics, 2018. 5(9): p. 3472-3477.
83. Gabor, N.M., et al., Hot carrier–assisted intrinsic photoresponse in graphene. Science, 2011. 334(6056): p. 648-652.
84. Freitag, M., et al., Photoconductivity of biased graphene. Nature Photonics, 2013. 7(1): p. 53.
85. Sun, Z., et al., Infrared photodetectors based on CVD‐grown graphene and PbS quantum dots with ultrahigh responsivity. Advanced materials, 2012. 24(43): p. 5878-5883.
86. Yan, J., et al., Dual-gated bilayer graphene hot-electron bolometer. Nature nanotechnology, 2012. 7(7): p. 472.
87. Rossi, F. and T. Kuhn, Theory of ultrafast phenomena in photoexcited semiconductors. Reviews of Modern Physics, 2002. 74(3): p. 895.
88. Winnerl, S., et al., Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Physical review letters, 2011. 107(23): p. 237401.
89. Rosenwaks, Y., et al., Hot-carrier cooling in GaAs: Quantum wells versus bulk. Physical Review B, 1993. 48(19): p. 14675.
90. Jalabert, R. and S. Das Sarma, Inelastic scattering in a doped polar semiconductor. Vol. 41. 1990. 3651-3654.
91. Petersen, C.L. and S.A. Lyon, Observation of hot-electron energy loss through the emission of phonon-plasmon coupled modes in GaAs. Physical Review Letters, 1990. 65(6): p. 760-763.
92. Sicault, D., et al., Experimental study of hot-electron inelastic scattering rate in $p$-type InGaAs. Physical Review B, 2002. 65(12): p. 121301.
93. Xiao, J., et al., Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules. Nature Communications, 2012. 3: p. 1170.
94. CAPASSO, F., Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices. Science, 1987. 235(4785): p. 172-176.
95. Kang, Y., et al., Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photonics, 2008. 3: p. 59.
96. Ramiro, Í., et al., Optically Triggered Infrared Photodetector. Nano Letters, 2015. 15(1): p. 224-228.
97. Lao, Y.-F., et al., Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nature Photonics, 2014. 8: p. 412.
98. https://plasma.oxinst.com/campaigns/technology/pecvd. PECVD.
99. https://www.thorlabs.de/thorProduct.cfm?partNumber=TLK-L1550R, Thorlab 1550 nm Tunable laser kit.
100. camera, R.P.B.C.c., Thorlabs : WPH05M-1064 - Ø1/2" Zero-Order Half-Wave Plate/PBS12-1064-HP - 1/2" High-Power Polarizing Beamsplitter Cube/DCC1545M CMOS Camera, 1280 x 1024, Monochrome Sensor.
101. https://www.eotech.com/cart/category42/photodetectors/ingaas-photodetectors. ET-3000 - InGaAs Photodetector.
102. https://www.thorlabs.com/, P.P., Free-Space InAsSb Amplified Detector with TEC.
103. Gunapala, S.D., et al., Quantum Well Infrared Photodetector Technology and Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2014. 20(6): p. 154-165.
104. Kwong-kit, C., The physics of quantum well infrared photodetectors. Vol. 7. 1997: World Scientific.
105. Balsano, R., A. Matsubayashi, and V.P. LaBella, Schottky barrier height measurements of Cu/Si (001), Ag/Si (001), and Au/Si (001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy. AIP Advances, 2013. 3(11): p. 112110.
106. 鄭竣中, 可見光/紅外光偵測器技術之研究,, in 國立台灣大學光電工程學研究所碩士論文.
107. Haeri, H., Materials in Environmental Engineering: Proceedings of the 4th Annual International Conference on Materials Science and Environmental Engineering. 2017: De Gruyter.
108. Pant, A., et al., Kinetics of platinum silicide formation during rapid thermal processing. Journal of applied physics, 1992. 72(5): p. 1833-1836.
109. Naem, A., Platinum silicide formation using rapid thermal processing. Journal of applied physics, 1988. 64(8): p. 4161-4167.
110. The Properties of Thin Platinum Silicide Films. Platinum Metals Rev., 1976,. 20, (1)(9).
111. Lin, T.-L., et al., Long-wavelength PTSI infrared detectors and method of fabrication thereof. 1997, Google Patents.
112. Silverman, J. and J.M. Mooney. Processing of IR images from PtSi Schottky barrier detector arrays. in Applications of Digital Image Processing XI. 1988. International Society for Optics and Photonics.
113. Mehrara, H., et al., Pore size dependence of PtSi/Porous Si Schottky barrier detectors on quantum efficiency response. Sensors and Actuators A: Physical, 2012. 184: p. 119-123.
114. Sinha, A., Electrical Characteristics and Thermal Stability of Platinum Silicide‐to‐Silicon Ohmic Contacts Metalized with Tungsten. Journal of The Electrochemical Society, 1973. 120(12): p. 1767-1771.
115. Gholami, S. and M. Khakbaz, Measurement of IV characteristics of a PtSi/p-Si Schottky barrier diode at low temperatures. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2011. 5(9).
116. Chin, V.W.L., J.W.V. Storey, and M.A. Green, P-type PtSi Schottky-diode barrier height determined from I–V measurement. Solid-State Electronics, 1989. 32(6): p. 475-478.
117. Quan, B., et al., Fabrication of inverted pyramidal pits with Nano-opening by laser interference lithography and wet etching. Microelectronic Engineering, 2016. 163: p. 110-114.
118. Fan, Y., et al., Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells. Vol. 264. 2013. 761-766.
119. Xu, Z., et al., Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy. Journal of Nanophotonics, 2011. 5(1): p. 1-12, 12.
120. Neamen, D.A., Semiconductor physics and devices: basic principles. 2012: New York, NY: McGraw-Hill.
121. Saleh, B.E. and M.C. Teich, Fundamentals of photonics. 2019: John Wiley & Sons.
122. Williams, A., et al., InGaAs/InP waveguide photodetector with high saturation intensity. Electronics Letters, 1992. 28(24): p. 2258-2259.
123. Effect of Beam Size on Photodiode Saturation.
124. Kingston, R.H., Detection of optical and infrared radiation. Vol. 10. 2013: Springer.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78587-
dc.description.abstract隨著19世紀急速工業化發展以來,人口快速增加以及工業急遽的發展,汙染物的排放量也於人類的歷史中前所未見的,環境中的不可見、不可聞之汙染對人類產生不可忽視的影響。隨身、高可靠度之光譜檢測裝置在未來安全舒適的生活中有極大之商品潛力,本論文將探討光譜偵測技術中最為重要且昂貴之紅外光偵測器,並且研究如何提升矽基金屬半導體於近-中紅外的偵測效率。由於所使用之製程技術與材料為矽基半導體,對於擁有先進製程技術與完整供應鏈之台灣,能大幅將低偵測元件製程成本,使其有望能取代目前常用之三五族半導體偵測器。
本論文研究主題將圍繞於平面型金屬-半導的蕭特基能障二極體偵測元件、週期性倒置式金字塔結構所引發之局域表面電漿共振現象與應用熱載子效應於提升元件中紅外波段響應速度。透過對平面型銅/p-型二極體偵測器之歐姆接觸快速熱退火處理與脈衝式偏壓量測方式,成功製作出電性表現極優良,於1550奈米光通訊常用之波長偵測響應可達1.69 (mA/W)於0偏壓時。
除此之外,本研究將此平面型光偵測元件導入局域表面電漿共振結構,全面提升元件之近紅外光電響應表現,並且對比商用型InGaAs偵測器,於短波紅外波段就有良好偵測性能。由於金字塔結構具有超寬頻局域表面電漿共振之特性,此研究突破傳統蕭特基能障元件截止截止波長偵測極限,成功量測到中紅外訊號。
另外於導入熱載子效應於提升中紅外光子偵測之響應速度,於本研究也有初步成果,顯示熱載子效應於金屬-半導之蕭特基能障二極體可行性。本論文對於近-中紅外偵測之結果可望為後續發展之氣體濃度偵測器與取代光譜分析儀器組件奠定良好研究基礎。
zh_TW
dc.description.abstractDue to rapid industrialization since the late 19th century, the increasing emission of pollutants has been a cause of great concern. Therefore, a portable, high-reliability spectrum detection device for identifying these pollutants and their concentrations could have a high commercial potential in the industry. This research explores the most expensive component in spectrum detection technology, infrared detectors, and studies how to improve the efficiency of silicon-based metal semiconductors in Near-to-Mid infrared band. The cost of silicon-based semiconductors used currently, can be reduced significantly. The detector built in this research is expected to replace the ubiquitous but expensive III-V compound semiconductor detectors.
This thesis will mainly focus on three topics: the planar metal-semiconductor Schottky barrier diode photodetector, the local surface plasma resonance phenomenon of periodic inverted pyramid structure and the application of the hot carrier effect in metal-semiconductor to increase the response time of Mid-IR band.
For copper/p-type silicon schottky diode photodetector, rapid thermal annealing treatment on Ohmic contact and voltage pulsed measurement method were applied to enhance the responsivity of the device in the optical communication band. The response can go as high as 1.69 (mA/W) at 0 V bias for 1550 nm radiation.
In addition, this study introduces localized surface plasma resonance structure into the planar detector, which comprehensively enhances the short-wavelength IR photoelectric performance in comparison with the commercial InGaAs detector. Due to the ultra-wideband characteristics of this inverted pyramid structure, this research breaks through the detection limit of the traditional Schottky barrier cut-off wavelength, and successfully measures the mid-infrared response signal.
Furthermore, a preliminary study of the introduction of the hot carrier effect to enhance the response speed of mid-infrared photon detection has been conducted, depicting the feasibility of the hot carrier effect on the metal-semiconductor Schottky barrier diode. The results of the near-mid-infrared detection in this thesis are expected to lay a good foundation for the development of gas sensing equipment and substitute conventional spectral analysis instrument components.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:05:43Z (GMT). No. of bitstreams: 1
ntu-108-R06941060-1.pdf: 11489770 bytes, checksum: e002c8fd763ca5b936edf14b62b46f88 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目次
碩士論文 1
摘要2
ABSTRACT 3
目次4
圖目錄 7
表目錄 14
第1 章 緒論 15
1.1 研究背景 15
1.2 研究動機 17
1.3 論文大綱 20
第2 章 理論基礎與文獻回顧 22
2.1 蕭特基能障二極體 22
2.1.1 金屬-半導體接觸 22
2.1.2 內部光激發吸收機制 25
2.2 表面電漿共振 28
2.3 熱載子效應 32
第3 章 研究儀器與設備介紹 40
3.1 電子束蒸鍍系統 41
3.2 電漿增強化學氣相沉積儀 42
3.3 黃光微影系統 43
3.4 反應式離子蝕刻 44
3.5 光譜分析儀 46
3.6 X-射線繞射分析 47
3.7 1550 奈米可調雷測套件 48
3.8 脈衝式電源電錶 49
3.9 中紅外光學參量產生系統 50
3.10 單光儀、商用型光偵測器與短波長紅外光源系統 53
第4 章 平面型P 型矽蕭特基能障二極體 56
4.1 實驗動機 56
4.2 銅/p 型矽蕭特基能障二極體 58
4.2.1 金屬電極材料選擇與蕭特基能障估算 58
4.2.2 元件結構與製備流程 59
4.2.3 元件量測與分析 60
4.3 鉑與矽歐姆接觸之快速熱退火處理(RTP) 64
4.3.1 鉑與矽接面之快速熱退火製程參數優化 64
4.3.2 鉑與矽接面快速熱退火處理之XRD 量測 68
4.3.3 改善元件穩定性與響應提升 71
4.4 脈衝式電源量測 73
4.4.1 元件量測結果與浮動雜訊分析 73
4.5 結論 76
第5 章 倒置式金字塔型紅外線偵測元件製作與量測 77
5.1 實驗動機 77
5.2 IPS 結構製作流程優化 78
5.3 Cu/p-型IPS 光偵測器元件與穿透反射頻譜 83
5.4 銅/p 型平面型與IPS 元件之1550 nm 紅外光量測 85
5.4.1 銅/p 型平面型與IPS 元件1550 nm 光源量測 85
5.4.2 銅/p 型平面型與IPS 元件1550 nm 光源不同光公率量測 89
5.5 銅/p 型IPS 光偵測元件之局域表面電漿共振模擬 97
5.6 結論 101
第6 章 寬頻倒立金字塔型金屬-半導體光偵測元件 102
6.1 實驗動機 103
6.2 銅/p 型平面型與IPS 元件SWIR 光源掃譜 104
6.3 中紅外光學參量產生系統(OPG)量測 110
6.4 寬頻中紅外發射器架構與元件量測 113
6.4.1 3.22 μm & 4.16 μm 中紅外發射器架構與元件量測 113
6.4.2 銅/p 型IPS 元件對3.22 μm & 4.16 μm 之近場光場模擬 122
6.4.3 中紅外6.86 μm 發射器IPS 金屬-半導體元件量測 125
6.5 外部可見光子激發熱載子於金屬-半導體介面 128
6.6 結論 133
第7 章 結論與未來展望 135
7.1 結論 135
7.2 未來展望 137
參考文獻 138
著作列表 149
-
dc.language.isozh_TW-
dc.subject矽基光偵測器zh_TW
dc.subject紅外光zh_TW
dc.subject蕭特基能障二極體偵測器zh_TW
dc.subject局域表面電漿共振zh_TW
dc.subject熱載子效應zh_TW
dc.subject脈衝式電壓量測zh_TW
dc.subject快速熱退火製程zh_TW
dc.subject矽化鉑zh_TW
dc.subjectrapid thermal annealing processen
dc.subjectSi-based photodetectoren
dc.subjectinfrared lighten
dc.subjectPlatinum silicideen
dc.subjectvoltage pulse source measurementen
dc.subjectSchottky diode barrier diodeen
dc.subjectLocalized surface plasma resonanceen
dc.subjecthot carrier effecten
dc.title矽基紅外光偵測技術與效率之提升與研究zh_TW
dc.titleThe investigation of improving Silicon-based Infrared detecting technology and efficiencyen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李嗣涔;林致廷;黃建璋zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword矽基光偵測器,紅外光,蕭特基能障二極體偵測器,局域表面電漿共振,熱載子效應,脈衝式電壓量測,快速熱退火製程,矽化鉑,zh_TW
dc.subject.keywordSi-based photodetector,infrared light,Schottky diode barrier diode,Localized surface plasma resonance,hot carrier effect,voltage pulse source measurement,rapid thermal annealing process,Platinum silicide,en
dc.relation.page149-
dc.identifier.doi10.6342/NTU201902544-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2024-08-27-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
11.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved