Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳zh_TW
dc.contributor.advisorHsiao-Feng Loen
dc.contributor.author曾郁茹zh_TW
dc.contributor.authorYu-Ru,Tsengen
dc.date.accessioned2021-07-11T15:05:09Z-
dc.date.available2024-08-01-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation王會肖、劉昌明. 2000. 作物水分利用效率內涵及研究進展. 水科學進展 11:99-104.
王慶偉、于大炮、代力民、周莉、周旺明、齊光、齊麟、葉雨靜. 2010. 全球氣候變化下植物水分利用效率研究進展. 應用生態學報21:3255-3265.
王昭月. 2015. 淺談番椒野生種原和馴化栽培. 農業試驗所技術服務季刊 104:1-5.
王昭月. 2016. 飄洋過海來台的番椒. 科學發展526:28-33.
王昭月、曾夢蛟. 2010. 利用葉綠素螢光與有效授粉估測甜椒之耐熱性. 台灣農業研究59:237-248.
艾群. 2010. 農業生產節水技術與系統研發. 農業工程與節能減碳學術研討會專刊.農業試驗所編印. p. 21-37.
李阿嬌. 2004. 彩色甜椒栽培技術. 桃園區農技報導25:1-4.
李阿嬌. 2008. 北部設施甜椒栽培管理技術. 桃園區農業專訊64:18-21.
李阿嬌、范淑貞. 2004. 品種與栽培介質對甜椒生長及產量之效應. 桃園區農業改良場研究彙報55:2-14.
高德錚. 2017. 液肥配方在設施蔬菜栽培之調配與應用實務. 臺中區農業改良場特刊133:189-205.
郭孚燿. 1998. 彩色甜椒生產技術-少量多樣化產品. 臺中區農業專訊22:13-23.
郭孚燿. 2009. 彩色甜椒的真相. 臺中區農業改良場
陳家宙、陳明亮、何圓球. 2001. 各具特色的當代土壤水分測量技術. 湖北農業科學 3:25-28.
彭強、梁銀麗、陳晨、賈文燕、田治國. 2010. 土壤水分對辣椒葉片光合特性及保護酶系統的影響. 灌溉排水學報29:101-104.
楊清富. 2014. 土壤水分感測技術及應用. 臺南區農業專刊87:18-21.
楊江益. 2014. 甜椒與設施農業. 國立宜蘭大學農業推廣季刊68.
楊政閔.2013. 根溫處理對甜瓜與番茄生長之影響. 國立中興大學園藝學系碩士論文. 臺中. 臺灣.
歐德濾、李文汕. 2011. 整枝對彩色甜椒‘羅拉’果實產量與品質的影響. 興大園藝 36:27-38.
鄭友誠. 2016. 氣候變遷下農業灌溉水資源調適因應策略. 農政與農情285.
劉敏莉. 2012. 葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報21:1-15.
鄧英春、許永輝. 2007. 土壤水分測量方法研究綜述. 水文27:20-24
賴允政. 2014. 台灣是水資源的過路財神 國家實驗研究院科技政策研究與資訊中心
謝明憲、楊藹華、王仕賢. 2013. 節水灌溉主要過濾設備及組配模式. 臺南區農業專訊86:7-13.
謝明憲. 2014. 節水省肥的滴灌栽培. 科學發展496:20-26.
行政院農委會. 2002. 第四篇-田間灌溉方法. 農田水利入口網. < https://doie.coa.gov.tw/drainage.php>
Abayomi, Y.A., M.O. Aduloju, M.A. Egbewunmi, and B.O. Suleiman. 2012. Effects of soil moisture contents and rates of NPK fertilizer application on growth and fruit yields of pepper (Capsicum spp.) genotypes. Int. J. Agr. Sci. 2:651-663.
Ahmed, A.F., H. Yu, X. Yang, and W. Jiang. 2014. Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience 49:722-728.
Aslam, M., I.A. Khan, M. Saleem, and Z. Ali. 2006. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pak. J. Bot. 38: 1571–1579.
Bilskie, J. 2001. Soil water status: content and potential. Campbell Scientific, Inc., Texas, USA.
Bramley, H., N.C. Turner, K.H.M. Siddique. 2013. Water use efficiency. In: Genomics and breeding for climate-resilient crops. Springer, Berlin, Heidelberg. p. 225-268.
Bruce, R.R., J.L. Chesness, T.C. Keisling, J.E. Pallas, D.A. Smittle, J.R. Stansell, and A.W. Thomas. 1980. Irrigation of crops in the southeastern United States: principles and practices. U.S. Dept. Agric. Sci. Ed. Admin. Agric. Rev. Man. ARM-S-9.
Chai, Q., Y. Gan, C. Zhao, H.L. Xu, R.M. Waskom, Y. Niu, and K.H.M. Siddique. 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. 36:3.
Cobley, L.S. and W.M. Steele. 1976. Introduction to the Botany of Tropical Crops. 2nd Edition. London, Longman, pp. 371.
Canavar, O., K.P. Gotz, F. Ellmer, F.M. Chmielewski, and M.A. Kaynak. 2014. Determination of the relationship between water use efficiency, carbon isotope discrimination and proline in sunflower genotypes under drought stress. Aust. J. Crop Sci. 8:232.
Ćosić, M., N. Djurović, M. Todorović, R. Maletić, B. Zečević, and R. Stričević. 2015. Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper. Agric. Water Manag. 159:139-147.
Deveci, M. and M. Pitir. 2016. Effect of water deficiency on physiological and chemical properties of pepper grown in greenhouse. Appl. Ecol. Environ. Res. 14:587-596.
Dorji, K., M.H. Behboudian, and J.A. Zegbe-Domínguez. 2005. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Sci. Hortic. 104:137-149.
Dukes, M. D., L. Zotarelli, and K.T. Morgan. 2010. Use of irrigation technologies for vegetable crops in Florida. HortTechnology 20:133-142.
English, M. and S.N. Raja. 1996. Perspectives on deficit irrigation. Agric. Water Manag. 32:1-14.
Ehleringer, J.R., A.E. Hall, and G. D. Farquhar. 1993. Stable isotopes and plant carbon-water relations. San Diego, Academic Press.
Fischer, G., F.N. Tubiello, H. Van Velthuizen, and D. A. Wiberg. 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 74:1083-1107.
Fischer, R.A. and N.C. Turner. 1978. Plant productivity in arid and semiarid zones. Annu. Rev. Plant Biol. 29:277-317.
Gleick, P.H. and M. Palaniappan. 2010. Peak water limits to freshwater withdrawal and use. Proc. Natl. Acad. Sci. 107:11155-11162.
Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812-818.
Geerts, S. and D. Raes. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agr. Water Manage. 96:1275-1284.
Greenleaf, W.H. 1986. Pepper breeding, p. 67-134. In: M.J. Basset (ed.). Breeding vegetable crops. The AVI Publishing Company Inc. Westport, Connecticut.
Grubben, G.J.H. 2004. Amaranthus cruenthus in Grubben. G.J.H. and O.A. Denton, (eds.). Plants resources of tropical Africa 2. Vegetables PROTA foundation, Wageningen, Netherlands.
Howell, T.A. 2001. Enhancing water use efficiency in irrigated agriculture. Agron. J. 93:281-289.
Hoffman, G.J., T.A. Towell, and K.H. Solomon. 1990. Management of farm irrigation Systems. ASAE, St. Joseph, MI, USA.
Howell, T.A., A. Yazar, A.D. Schneider, D.A. Dusek, and K.S. Copeland. 1995. Yield and water use efficiency of corn in response to LEPA irrigation. Trans. ASAE. 38:1737-1747.
Ismail, S.M. 2010. Influence of deficit irrigation on water use efficiency and bird pepper production (Capsicum annuum L.). Met. Env. Arid Land Agric. Sci. 21:29-43.
Jiang, Y., H. Liu, and V. Cline. 2009. Correlations of leaf relative water content, canopy temperature, and spectral reflectance in perennial ryegrass under water deficit conditions. HortScience 44:459-462.
Khan, M.A.I., A.M. Farooque, M.A. Haque, M.A. Rahim, and M.A. Hoque. 2008. Effects of water stress at various growth stages on the physio-morphological characters and yield in chilli. Bangladesh J. Agric. Res. 33:353-362.
Kang, S.Z. and J.H. Zhang. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55: 2437-2446.
Katerji, N., M. Mastrorilli, and A. Hamdy. 1992. Effects of water stress at different growth stages on pepper yield. Acta Hort. 335:165-172.
Lindquist, J.L., T.J. Arkebauer, D.T. Walters, K.G. Cassmani, and A. Dobermann. 2005. Maize radiation use efficiency under optimum growth conditions. Agron. J. 97:72-78
Li, R.H., P.G. Guo, B. Michael, G. Stefania, and C. Salvatore. 2006. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agr. Sci. China 5:751-757.
Lascano, R.J. and R.E. Sojka. 2007. Irrigation of agricultural crops. p. 664. 2nd ed. Agronomy Monograph no. 30. ASA-CSSA-SSSA.
Marcar, N.E. 1993. Waterlogging modifies growth, water use and ion concentrations in seedlings of salt-treated Eucalyptus camaldulensis, E. tereticornis, E. robusta and E. globulus. Aust. J. Plant Physiol. 20:1-13.
Morrison, J., M. Morikawa, M. Murphy, and P. Schulte. 2009. Water Scarcity and climate change. Pacific Institute. Oakland, California.
Minolta. 1989. Chlorophyll meter SPAD-502. Instruction manual. Minolta Co., Ltd., Radiometric Instruments Operations, Osaka, Japan.
Ngouajio, M., G. Wang, and R.G. FGoldy. 2008. Timing of drip irrigation initiation affects irrigation water use efficiency and yield of bell pepper under plastic mulch. HortTechnology 18:397-402.
Oliveira Neto, C.F.D., A.K.D.S. Lobato, M.C. Gonçalves-Vidigal, R.C.L.D. Costa, B.G.D. Santos Filho, G.A.R. Alves, W.J.M. Silva Maia, F.J.R. Cruz, H.K.B. Neves, and M.S. Lopes. 2009. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. J. Food Agric. Environ. 7:588-593.
Passioura, J.B. 2007. The drought environment: physical, biological and agricultural perspectives. J. Exp. Bot. 58:113-117.
Pérez-Pastor, A., M.C. Ruiz-Sánchez, R. Domingo. 2014. Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agric. Water Manag. 134:110-118.
Peters, A.J., E.A.Walter-Shea, L. Ji, A. Vina, M. Hayes, and M.D. Svoboda. 2002. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sensing 68:71-75.
Porra, R.J., W.A. Thompson, and P.E. Kreidemann. 1989. Determination of accurate extinctions coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta. 975:384-394.
Rahman, M.R., A.H.M.H. Islam, and M.A. Rahman. 2004. NDVI derived sugarcane area identification and crop condition assessment. Plan Plus 1:1-12.
Sepaskhah, A.R., and S.H. Ahmadi. 2012. A review on partial root-zone drying irrigation. Intl. J. Agron. Plant Prod. 4:241-258.
Sezen, S.M., A. Yazar, H. Şengül, N. Baytorun, Y. Daşgan, A. Akyildiz, S. Tekin, D. Onder, E. Ağçam, Y. Akhoundnejad, and Ö. Gügercin. 2015. Comparison of drip- and furrow-irrigated red pepper yield, yield components, quality and net profit generation. Irrig. Drain. 64:546-556.
Sezen, S. M., A. Yazar, and S. Eker. 2006. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agric. Water Manag. 81:115-131.
Shao, G.C., Z.Y. Zhang, N. Liu, S.E. Yu, and W.G. Xing. 2008. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci. Hortic. 119:11-16.
Shao, H.B., L.Y. Chu, C.A. Jaleel, and C.X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol. 331:215-225.
Silva, M.D.A., J.L. Jifon, J.A. Da Silva, and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 19:193-201.
Siddique, K. and H. Bramley. 2014. Water deficits: Development, p. 1-4. In: Y. Wang (ed.). Encyclopedia of Natural Resources. New York, USA, CRC Press.
Tekinel, O., A. Yazar, B. Çevik, and R. Kanber. 1989. Ex-post evaluation of the Lower Seyhan Project in Turkey. p: 145-152. Pentech Press, London.
Uddling, J., J. Gelang-Alfredsson, K. Piikki, and H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91:37-46.
Wang, W.X., P. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14
Wan, Z., P. Wang, and X. Li. 2004. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 25:61-72.
Yang, H., T. Du, R. Qiu, J. Chen, F. Wang, Y. Li, C. Wang, L. Gao, and S. Kang. 2017. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 179:193-204.
Yildirim, M., K. Demirel, and E. Bahar. 2017. Radiation use efficiency and yield of pepper (Capsicum annuum L. cv. California Wonder) under different irrigation treatments. J. Agr. Sci. Tech. 19:693-705.
Zotarelli, L., M.D. Dukes, J.M.S. Scholberg, K. Femminella, and R. Munoz-Carpena. 2010. Irrigation scheduling for green bell peppers using capacitance soil moisture sensors. J. Irrig. Drain. Eng. 137:73-81.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78578-
dc.description.abstract甜椒(Capsicum annuum L.)為臺灣重要經濟果菜作物之一,栽培時需灌溉充足,方能獲得優良的果實品質與產量。近年農業灌溉水缺乏問題日益嚴峻,亟需改善灌溉模式,提高水分利用效率(water use efficiency)。本研究於國立臺灣大學溫室以90%泥炭土與10%珍珠石之介質栽培甜椒‘和生-101’,使用WatchDog迷你氣象站搭配土壤水分感測器,設定養液開始自動滴灌之介質體積含水量(volumetric water content, VWC)閾值,探討植株生長、果實品質、產量及水分利用效率。栽培全期介質體積含水量試驗共施以四種肥灌方法,對照組在VWC低於40%時開始肥灌,另分別在VWC低於30%、20%和10%時啟動肥灌;則春夏作在介質VWC低於30%時、秋冬作在低於20%時即自動肥灌,其果實品質與單株產量(分別為1797.9 g和1254.1 g)皆與對照組無顯著差異,比對照組分別減少17.44%與68.89%肥灌量,且秋冬作水分利用效率21.67 g∙L-1顯著提高,達節水省肥效益。秋冬作生育階段節水省肥試驗共施以四種肥灌方法,對照組為全期以VWC 40%為肥灌起始點;另分別於營養生長期、開花果實肥大期和果實成熟期以VWC 30%為肥灌起始點,其餘生育期皆在VWC低於40%時啟動肥灌;分別於各生長期節水省肥皆不會對營養生長與果實品質造成負面影響,且單株產量與對照組無顯著差異,分別為1966.1 g、1800.1 g和1841.3 g,但是水分利用效率未顯著提升,僅節水省肥4.3%~11.3%。春夏作生育階段節水省肥試驗共施以八種肥灌方法,對照組為全期分別以VWC 40% (CK40)及VWC 30% (CK30)為肥灌起始點;另六種處理包括:分別於營養生長期、開花與果實肥大期、果實成熟期以VWC 20%或10%為肥灌起始點,其餘生育期皆以VWC 30%;結果顯示,分別僅於營養生長期、開花果實肥大期或果實成熟期以VWC 20%為肥灌閾值,其他生育期皆以VWC 30%為肥灌閾值,可維持與對照組無顯著差異之良好單株產量,分別為1167.2 g、1231.8 g和1195.8 g,減產率僅2.95%~8.04%,並分別顯著提高水分利用效率至16.69 g∙L-1、19.38 g∙L-1及18.85 g∙L-1,比對照組分別節省58.2%、61.9%及62.1%肥灌量,皆達節水省肥目標;而春夏作營養生長期或果實成熟期皆能耐受較低之肥灌閾值VWC 10%,其餘生育期以VWC 30%為肥灌閾值,分別可節省63.9%及65.1%肥灌量,單株產量(1073.7 g及985.9 g)與對照組無顯著差異,但減產率較高(15.41%和22.32%)。綜之,甜椒‘和生-101’在臺北地區溫室以90%泥炭土與10%珍珠石之介質栽培,建議2~7月之春夏作於營養生長期、開花果實肥大期或果實成熟期選擇任一時期,以介質體積含水量20%為肥灌起始點,其餘時期皆以體積含水量30%為肥灌閾值;而8月~翌年1月之秋冬作於栽培全期以介質體積含水量20%為肥灌閾值;兩種模式皆不影響產量與果實品質,並達到節水省肥目標。zh_TW
dc.description.abstractSweet pepper (Capsicum annuum L.) is one of the important economic fruit vegetable crops in Taiwan. Sufficient irrigation is required to obtain good fruit quality and yield. In recent years, lacking of agricultural irrigation water has become more and more serious. It is necessary to improve the irrigation model and enhance water use efficiency. In this study, sweet pepper ‘SPR-101’ was cultivated with 90% peat and 10% perlite substrate in the greenhouse of National Taiwan University. The WatchDog mini weather station was equipped with the soil moisture sensor to automatically control the drip fertigation system by setting substrate volumetric water content as starting threshold. Plant growth, fruit quality, yield and water use efficiency were investigated. Four drip fertigation methods were utilized in whole cultivation phase substrate volumetric water content experiment. In control (CK), drip fertigation was started from substrate volumetric water content (VWC) below 40%. In other 3 treatments, drip fertigation was started from VWC below 30%, 20% and 10%, respectively. For thresholds of VWC 30% during spring-summer cultivation and VWC 20% during autumn-winter cultivation, good fruit quality and yield per plant (1797.9 g and 1254.1 g) were not significantly different from the control, and 17.44% and 68.89% of water and fertilizer were reduced, respectively; water use efficiency was also significantly increased to 21.67 g∙L-1 during autumn-winter cultivation. In experiment for fertigation saving in different growth stages in autumn-winter cultivation, control started fertigation at VWC below 40% during whole growth period; VWC 30% was set as threshold in vegetative growth stage, flowering and fruit enlargement stage and fruit ripening stage, respectively, and VWC 40% in non-treated period. Fertigation saving in each growth stage, vegetative growth, fruit quality and yield per plant (1966.1 g, 1800.1 g and 1841.3 g) were not lower comparing to the control (VWC 40%). But water use efficiency did not significantly increase, and only 4.3%~11.3% of fertigation amount were reduced. In experiment for fertigation saving in different growth stages in spring-summer cultivation, eight drip fertigation methods were applied. CK40 and CK30 started fertigation at VWC below 40% and 30% during whole growth period, respectively. VWC 20% or VWC 10% were set as fertigation thresholds in the vegetative growth stage, flowering and fruit enlargement stage, fruit ripening stage, respectively, and VWC 30% in the rest of the growth stage. The results showed fertigation above VWC 20% only in vegetative growth, flowering and fruit enlargement stage or fruit ripening stage, and VWC 30% in the non-treatment stage, both could have as good yield per plant (1167.2 g, 1231.8 g and 1195.8 g) as the control; the yield reduction rate were only 2.95%~8.04%. Water use efficiency were enhanced to 16.69 g∙L-1, 19.38 g∙L-1 and 18.85 g∙L-1 and water and fertilizer consumption were reduced for 58.2%, 61.9% and 62.1%, respectively. In vegetative growth or fruit ripening stage, fertigation threshold could be lowered to VWC 10%, with VWC 30% in the non-treatment stage, resulting 63.9% and 65.1% of water and fertilizer reduced, and the yield per plant (1073.7 g and 985.9 g) not significantly different from the control. However, the yield reduction rate were higher (15.41% and 22.32%). In conclusion, for sweet pepper ‘SPR-101’ cultivated with substrate in the greenhouse in Taipei area, in spring-summer (February to July), VWC 20% set as threshold of drip fertigation only in one of vegetative growth stage, flowering and fruit enlargement stage or fruit ripening stage, and VWC 30% in other stages; while in autumn-winter (August to next January), substrate VWC 20% as threshold in the whole cultivation phase, not only could obtain good yield and fruit quality, but also save water and fertilizer.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:05:09Z (GMT). No. of bitstreams: 1
ntu-108-R06628128-1.pdf: 2819378 bytes, checksum: cfcb4991e1297ffa5f004bb8c15f94c9 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstarct v
目錄 vii
圖目錄 x
表目錄 xii
第一章、前言 1
第二章、前人研究 2
一、 甜椒概述 2
(一) 甜椒生長發育 2
(二) 臺灣甜椒產業現況 3
二、 節水灌溉之重要性與方法 3
(一) 全球與臺灣之缺水現況 3
(二) 節水灌溉方法 4
(三) 水分利用效率(water use efficiency, WUE) 5
(四) 土壤水分測定 6
三、 節水灌溉對番椒之影響 7
(一) 節水灌溉對番椒生理之影響 7
(二) 節水灌溉對番椒營養生長之影響 8
(三) 節水灌溉對番椒果實品質、產量與水分利用效率之影響 8
(四) 不同生育階段節水對番椒之影響 9
四、 缺水逆境對葉片光生理之影響 9
(一) 葉綠素相對含量(relative chlorophyll content) 9
(二) 葉綠素螢光(maximum quantum efficiency, Fv/Fm) 10
(三) 標準化植被指數(normalized difference vegetation index, NDVI) 10
第三章、材料與方法 11
一、 試驗材料 11
二、 栽培管理 11
(一) 育苗 11
(二) 定植 11
(三) 整枝留果 11
(四) 果實採收 11
(五) 灌溉與施肥 12
(六) 病蟲害管理 12
三、 試驗與處理 13
試驗一:春夏作甜椒栽培全期介質體積含水量試驗 13
試驗二:秋冬作甜椒栽培全期介質體積含水量試驗 13
試驗三:秋冬作甜椒生育階段節水省肥試驗 13
試驗四:春夏作甜椒生育階段節水省肥試驗 14
四、 調查項目及分析方法 15
(一) 植株生育性狀 15
(二) 葉片光反應生理指標 15
(三) 果實品質與產量 16
(四) 介質含水量、耗水量與水分利用效率 17
五、 統計分析 18
第四章、結果 19
一、 春夏作甜椒栽培全期介質體積含水量試驗 19
二、 秋冬作甜椒栽培全期介質體積含水量試驗 20
三、 秋冬作甜椒生育階段節水省肥試驗 22
四、 春夏作甜椒生育階段節水省肥試驗 24
第五章、討論 26
一、 介質體積含水量對甜椒葉片光反應生理之影響 26
二、 栽培全期介質體積含水量對甜椒營養生長之影響 26
三、 栽培全期介質體積含水量對甜椒果實之影響 27
四、 栽培全期介質體積含水量對甜椒產量與水分利用效率之影響 27
五、 不同生育階段節水省肥對甜椒生產之影響 28
六、 栽培季節對甜椒節水省肥效益之影響 29
第六章、結論 31
參考文獻 32
附錄 93
-
dc.language.isozh_TW-
dc.subject肥灌zh_TW
dc.subject水分利用效率zh_TW
dc.subject果實品質zh_TW
dc.subject產量zh_TW
dc.subject體積含水量zh_TW
dc.subjectyielden
dc.subjectfruit qualityen
dc.subjectwater use efficiencyen
dc.subjectfertigationen
dc.subjectvolumetric water contenten
dc.title溫室介質栽培甜椒之節水省肥滴灌研究zh_TW
dc.titleStudy on water- and fertilizer-saving fertigation of substrate cultivated sweet pepper in the greenhouseen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張育森;林淑怡zh_TW
dc.contributor.oralexamcommitteeYu-Sen Chang;Shu-I Linen
dc.subject.keyword體積含水量,肥灌,水分利用效率,果實品質,產量,zh_TW
dc.subject.keywordvolumetric water content,fertigation,water use efficiency,fruit quality,yield,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU201903580-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2024-08-01-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved