Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7856
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃千芬
dc.contributor.authorYun-Wen Lien
dc.contributor.author李允文zh_TW
dc.date.accessioned2021-05-19T17:56:10Z-
dc.date.available2021-08-26
dc.date.available2021-05-19T17:56:10Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation[1] D. Behringer, T. Birdsall, M. Brown, B. Cornuelle, R. Heinmiller, R. Knox, K. Metzger, W. Munk, J. Spiesberger, R. Spindel, D. Webb, P. Worcester, and C. Wunsch. A demonstration of ocean acoustic tomography. Nature, 299:121– 125, 1982.
[2] Y.-H. Chen, N. Taniguchi, C.-T. Liu, and C.-F. Huang. Acoustic current mea- surement using travel-time method in Bachimen Harbor, Taiwan. In OCEANS 2014 - TAIPEI, pages 1–5, 2014.
[3] B. Cornuelle, W. Munk, and P. Worcester. Ocean acoustic tomography from ships. J. Geophys. Res.: Oceans, 94(C5):6232–6250, 1989.
[4] Cypress Semiconductor. PSoC⃝R 5LP: CY8C58LP family datasheet: Pro- grammable system-on-chip (PSoC⃝R ).
[5] V. A. Del Grosso. New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am., 56(4):1084–1091, 1974.
[6] Y. Doisy, L. Deruaz, S. Beerens, and R. Been. Target Doppler estimation using wideband frequency modulated signals. IEEE Trans. Signal Process., 48(5):1213 –1224, may 2000.
[7] S. Haykin. Communication systems. John Wiley & Sons, 2008.
[8] C.-F. Huang. Moving vehicle tomography using distributed networked under- water sensors. Report for the research program supported by Ministry of Sci- ence and Technology, R. O. C., Institute of Oceanography, National Taiwan University, 2016.
[9] C.-F. Huang, N. Taniguchi, Y.-H. Chen, and J.-Y. Liu. Estimating temperature and current using a pair of transceivers in a harbor environment. J. Acoust. Soc. Am., 140(1):EL137–EL142, 2016.
[10] C.-F. Huang, T. C. Yang, J.-Y. Liu, and J. Schindall. Acoustic mapping of ocean currents using networked distributed sensors. J. Acoust. Soc. Am., 134(3):2090– 2105, 2013.
[11] G. Jourdain and J. P. Henrioux. Use of large bandwidth-duration binary phase shift keying signals in target delay Doppler measurements. J. Acoust. Soc. Am., 90(1):299–309, 1991.
[12] D. S. Ko, H. A. DeFerrari, and P. Malanotte-Rizzoli. Acoustic tomography in the Florida Strait: Temperature, current, and vorticity measurements. J. Geophys. Res.: Oceans, 94(C5):6197–6211, 1989.
[13] T. J. McDougall and P. M. Barker. Getting started with TEOS—10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 2011.
[14] T. J. McDougall, D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker. A global algorithm for estimating Absolute Salinity. Ocean Sci., 8(6):1123– 1134, 2012.
[15] W. Munk, P. Worcester, and C. Wunsch. Ocean acoustic tomography. Cam- bridge University Press, 1995.
[16] W. Munk and C. Wunsch. Ocean acoustic tomography: A scheme for large scale monitoring. Deep-Sea Res., Part A, 26(2):123 – 161, 1979.
[17] W. H. Munk, R. C. Spindel, A. Baggeroer, and T. G. Birdsall. The Heard Island feasibility test. J. Acoust. Soc. Am., 96(4):2330–2342, 1994.
[18] Neptune Sonar Limited. The datasheet of model T235 transducer.
[19] Nortek AS. Aquadopp Profiler brochure.
[20] S. J. Norton. Tomographic reconstruction of 2-D vector fields: Application to flow imaging. Geophys. J. Int., 97(1):161–168, 1989.
[21] Ocean Data Bank of the Ministry of Science and Technology, Republic of China. Bathymetric data around Taiwan. http://www.odb.ntu.edu.tw/.
[22] M. B. Porter. Acoustics toolbox. http://oalib.hlsresearch.com/.
[23] M. B. Porter and H. P. Bucker. Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am., 82(4):1349–1359, 1987.
[24] H. Preston-Thomas. The international temperature scale of 1990 (ITS-90). Metrologia, 27(1):3, 1990.
[25] Sea-Bird Electronics. SBE 9plus manual.
[26] N. Taniguchi, C.-F. Huang, A. Kaneko, C.-T. Liu, B. M. Howe, Y.-H. Wang, Y. Yang, J. Lin, X.-H. Zhu, and N. Gohda. Measuring the Kuroshio Current with ocean acoustic tomography. J. Acoust. Soc. Am., 134(4):3272–3281, 2013.
[27] Teledyne RD Instruments. Ocean Surveyor ADCP datasheet.
[28] The Acoustic Mid-Ocean Dynamics Experiment Group. Moving ship tomography in the North Atlantic. Eos Trans. AGU, 75(2):17–23, 1994.
[29] U-blox. NEO-6T / LEA-6T product summary.
[30] UNESCO. The practical salinity scale 1978 and the international equation of state of seawater 1980. Technical Report 36, UNESCO Technical Paper in Marine Science, 1981.
[31] J. Valladares, W. Fennel, and E. Morozov. Replacement of EOS-80 with the International Thermodynamic Equation of Seawater - 2010 (TEOS-10). Deep- Sea Res., Part I, 58(9):978, 2011.
[32] L. G. Weiss. Wavelets and wideband correlation processing. IEEE Signal Proc. Mag., 11(1):13–32, 1994.
[33] E. W. Weisstein. Cross-Correlation. MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Cross-Correlation.html.
[34] P. F. Worcester. Reciprocal acoustic transmission in a midocean environment. J. Acoust. Soc. Am., 62(4):895–905, 1977.
[35] M.-H. Xiao. A very shallow water acoustic propagation experiment in the Si-Tzi Marine Test Field. Master thesis, Institute of Undersea Technology, National Sun Yat-Sen University, 2009.
[36] K. Yamaguchi, J. Lin, A. Kaneko, T. Yayamoto, N. Gohda, H.-Q. Nguyen, and H. Zheng. A continuous mapping of tidal current structures in the Kanmon Strait. J. Oceanogr., 61(2):283–294, 2005.
[37] H. Yamoaka, A. Kaneko, J.-H. Park, H. Zheng, N. Gohda, T. Takano, X.- H. Zhu, and Y. Takasugi. Coastal acoustic tomography system and its field application. IEEE J. Oceanic Eng., 27(2):283–295, 2002.
[38] H. Zheng, N. Gohda, H. Noguchi, T. Ito, H. Yamaoka, T. Tamura, Y. Taka- sugi, and A. Kaneko. Reciprocal sound transmission experiment for current measurement in the Seto Inland Sea, Japan. J. Oceanogr., 53:117–127, 1997.
[39] X. H. Zhu, A. Kaneko, Q. Wu, C. Zhang, N. Taniguchi, and N. Gohda. Map- ping tidal current structures in Zhitouyang Bay, China, using coastal acoustic tomography. IEEE J. Oceanic Eng., 38(2):285–296, 2013.
[40] 劉金源,《水中聲學 − 水聲系統之基本原理操作》,國立編譯館,2001。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7856-
dc.description.abstractThis study uses four moored {acoustic transceivers (a device consisting of a source and a receiver)} along with one towed by a ship to demonstrate the acoustic mapping of ocean currents with the mobile station in a shallow-water environment.
The basic principle of the acoustic mapping for currents is that the difference in the travel times (DTT) of oppositely traveling acoustic signals is proportional to the integrated current velocity along the acoustic ray path. Thus the currents can be estimated with the DTT data.
When the towed transceiver is incorporated,
the acoustic signal is Doppler-distorted and the DTTs are affected due to the relative instrument motion.
Since the transmitted signal, $m$-sequence, is highly sensitive to Doppler,
the method based upon the delay-Doppler ambiguity function can determine the Doppler shift and the arrival patterns simultaneously.
For the estimation of DTT, the conventional approach using the peak-picking method is subject to the uncertainties in identifying and resolving acoustic rays in the shallow-water environment. Hence, this study proposed a method based on the cross-correlation function (CCF) of the reciprocal arrival patterns. Ideally, the DTT could be obtained by the lag time corresponding to the maximum correlation. However, due to the multiple acoustic arrivals the CCF exhibits multiple peaks with similar heights. To address this issue, we utilize the time-evolving CCFs to select appropriate peaks for the determination of DTT. Using the data collected at Sizhiwan Marine Test Field, Kaohsiung, in September of 2015, the current field was estimated. The towed transceiver in the experiment provided additional reciprocal travel-time data for sensing the water volume at many angles and increased the coverage of the mapping area. Besides augmenting the number of DTT data for the current estimate, some of the data from the towed transceiver are used to validate the estimated field. The experiment site is dominated by the semi-diurnal tidal currents with the principal current direction flowing {along the isobaths}. The time evolution of the estimated current agrees well with the shipboard-ADCP measurements, and the spatial variations are observed when the currents change the direction.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:56:10Z (GMT). No. of bitstreams: 1
ntu-105-R02241102-1.pdf: 12056191 bytes, checksum: 4a1b83cf51053984325696418e78a472 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
1 Introduction 1
1.1 BackgroundandMotivation ....................... 1
1.2 AConciseSurveyofLiterature ..................... 3
1.3 Objectives................................. 7
1.4 ScopesoftheThesis ........................... 7
2 Theory 8
2.1 Path-Averaged Current Velocity and Differential Travel Time . . . . . 8
2.1.1 Limitation on Sensing the Divergence of the Currents . . . . . 11
2.2 MethodsforCurrentEstimation..................... 12
2.2.1 TemporalEvolution........................ 12
2.2.2 SpatialDistribution........................ 13
2.3 BasicSignal-ProcessingTechniques ................... 14
2.3.1 PulseCompression ........................ 14
2.3.2 Maximum-lengthSequence.................... 16
2.3.3 BinaryPhaseShiftKeyingModulation . . . . . . . . . . . . . 17
2.3.4 Cross-correlationFunction.................... 17
2.4 DopplerSignalProcessing ........................ 18
2.5 Summary ................................. 22
3 Field Experiment 23
3.1 DescriptionoftheExperiment...................... 23
3.2 InstrumentsforAcousticTranmission.................. 26
3.3 HydrographicSurvey........................... 31
3.3.1 CTD................................ 31
3.3.2 ShipboardADCP......................... 34
3.4 Summary ................................. 35
4 Data Analysis 36
4.1 RawData................................. 37
4.2 DopplerProcessing ............................ 37
4.3 SNRCalculation ............................. 40
4.4 Time-evolving Cross-Correlation Function for Reciprocal Arrival Patterns.................................... 41
4.5 DTTEstimation ............................. 45
4.6 Summary ................................. 46
5 Results and Discussion 48
5.1 EigenraySimulations........................... 48
5.2 Description of the Measured Data and Estimated Currents . . . . . . 49
5.3 ValidationoftheEstimatedCurrentField . . . . . . . . . . . . . . . 57
5.4 ErrorAnalysis............................... 58
5.5 Summary ................................. 60
6 Conclusions 61
6.1 Conclusions ................................ 61
6.2 SuggestionsofFurtherDevelopment................... 62
Appendix A 64
Bibliography 70
dc.language.isoen
dc.title利用拖曳式發收器於淺海環境聲測流研究zh_TW
dc.titleShallow-Water Acoustic Mapping of Ocean Currents Using Towed Transceiversen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉金源,郭振華,黃清哲,谷口直和
dc.subject.keyword水聲層析法,聲學監測,都普勒效應,來回走時差,zh_TW
dc.subject.keywordOcean acoustic tomography,acoustic monitoring,Doppler effect,differential travel time,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201603287
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf11.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved