Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉zh_TW
dc.contributor.advisorKen-Tsung Wongen
dc.contributor.author王俊凱zh_TW
dc.contributor.authorChun-Kai Wangen
dc.date.accessioned2021-07-11T15:04:35Z-
dc.date.available2024-08-18-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationChapter 1

(1) Smestad, G. P.; Krebs, F. C.; Lampert, C. M.;Granqvist, C. G.; Chopra, K. L.; Mathew,
X. and Takakura, H. Sol. Energy Mater. Sol. Cells, 2008,92, 371-373.
(2) Fitzner, R.; Reinold, E.; Mishra, A.; Mena-Osteritz, E.; Ziehlke, H.; Körner, C.; Leo, K.; Riede, M.; Weil, M.; Tsaryova, O.; Weiß, A.; Uhrich, C.; Pfeiffer, M. and Bäuerle, P. Adv. Funct. Mater., 2011, 21, 897-910.
(3) Chochos, C. L. and Choulis, S. A. Prog. Polym. Sci., 2011, 36, 1326-1414.
(4) Cheng, Y. J.; Yang, S. H. and Hsu, C. S. Chem. Rev., 2009, 109, 5868-5923.
(5) Demeter, D.; Jeux, V.; Leriche, P.; Blanchard, P.; Olivier, Y.; Cornil, J.; Po, R. and Roncali, J. Adv. Funct. Mater., 2013, 4854-4861.
(6) Clement, J. A. and Mohanakrishnan, A. K. Tetrahedron, 2010, 66, 2340-2350.
(7) Horie, M.; Majewski, L. A.; Fearn, M. J.; Yu, C.-Y.; Luo, Y.; Song, A.; Saunders, B. R. and Turner, M. L. J. Mater. Chem., 2010, 20, 4347.
(8) Hou, J.; Park, M.-H.; Zhang, S.; Yao, Y.; Chen, L.-M.; Li, J.-H. and Yang, Y. Macromolecules, 2008, 41, 6012-6018.
(9) Coffin, R. C.; Peet, J.; Rogers, J. and Bazan, G. C. Nat. Chem., 2009, 1, 657-661.
(10) Leliege, A.; Le Regent, C. H.; Allain, M.; Blanchard, P. and Roncali, J. Chem. Commun., 2012, 48, 8907-8909.
(11) Steinberger, S.; Mishra, A.; Reinold, E.; Levichkov, J.; Uhrich, C.; Pfeiffer, M. and Bauerle, P. Chem. Commun., 2011, 47, 1982-1984.
(12) Arjona-Esteban, A.; Krumrain, J.; Liess, A.; Stolte, M.; Huang, L.; Schmidt, D.; Stepanenko, V.; Gsanger, M.; Hertel, D.; Meerholz, K. and Wurthner, F. J. Am. Chem. Soc., 2015, 137, 13524-13534.
(13) Roncali, J. and Thobie-Gautier, C. Adv. Mater., 1994, 6, 846-848.
(14) Cheng, Y.-J.; Chen, C.-H.; Lin, Y.-S.; Chang, C.-Y. and Hsu, C.-S. Chem. Mater., 2011, 23, 5068-5075.
(15) Chen, C. H.; Cheng, Y. J.; Dubosc, M.; Hsieh, C. H.; Chu, C. C. and Hsu, C. S. Chem. Asian J., 2010, 5, 2483-2492.
(16) Yang, Q.; Hu, Z.; Zhu, S.; Ma, R.; Ma, H.; Ma, Z.; Wan, H.; Zhu, T.; Jiang, Z.; Liu, W.; Jiao, L.; Sun, H.; Liang, Y. and Dai, H. J. Am. Chem. Soc., 2018, 140, 1715-
1724.
(17) Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S. and Hwang, K. C. Adv. Mater., 2014, 26, 6689-6695.
(18) Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q. and Dong, X. ACS Nano, 2017, 11, 1054-1063.
(19) Wang, C.; Ren, X.; Xu, C.; Fu, B.; Wang, R.; Zhang, X.; Li, R.; Li, H.; Dong, H.; Zhen, Y.; Lei, S.; Jiang, L. and Hu, W. Adv. Mater., 2018, 30, e1706260.
(20) Strassel, K.; Kaiser, A.; Jenatsch, S.; Veron, A. C.; Anantharaman, S. B.; Hack, E.; Diethelm, M.; Nuesch, F.; Aderne, R.; Legnani, C.; Yakunin, S.; Cremona, M. and Hany, R. ACS Appl. Mater. Interfaces, 2018, 10, 11063-11069.
(21) Burlingame, Q.; Coburn, C.; Che, X.; Panda, A.; Qu, Y. and Forrest, S. R. Nature, 2018, 554, 77-80.
(22) Lin, L. Y.; Chen, Y. H.; Huang, Z. Y.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Liu, Y. H. and Wong, K. T. J. Am. Chem. Soc., 2011, 133, 15822-15825.
(23) Chen, Y. H.; Lin, L. Y.; Lu, C. W.; Lin, F.; Huang, Z. Y.; Lin, H. W.; Wang, P. H.; Liu, Y. H.; Wong, K. T.; Wen, J.; Miller, D. J. and Darling, S. B. J. Am. Chem. Soc., 2012, 134, 13616-13623.
(24) Lu, H.-I.; Lu, C.-W.; Lee, Y.-C.; Lin, H.-W.; Lin, L.-Y.; Lin, F.; Chang, J.-H.; Wu, C.-I. and Wong, K.-T. Chem. Mater., 2014, 26, 4361-4367.
(25) Zhang, T.; Han, H.; Zou, Y.; Lee, Y. C.; Oshima, H.; Wong, K. T. and Holmes, R. J. ACS Appl. Mater. Interfaces, 2017, 9, 25418-25425.
(26) Che, X.; Chung, C. L.; Liu, X.; Chou, S. H.; Liu, Y. H.; Wong, K. T. and Forrest, S. R. Adv. Mater., 2016, 28, 8248-8255.
(27) Che, X.; Chung, C.-L.; Hsu, C.-C.; Liu, F.; Wong, K.-T. and Forrest, S. R. Adv. Energy Mater., 2018, 8, 1703603.
(28) Chiu, S. W.; Lin, L. Y.; Lin, H. W.; Chen, Y. H.; Huang, Z. Y.; Lin, Y. T.; Lin, F.; Liu, Y. H. and Wong, K. T. Chem. Commun., 2012, 48, 1857-1859.
(29) Ting, H. C.; Chen, Y. H.; Lin, L. Y.; Chou, S. H.; Liu, Y. H.; Lin, H. W. and Wong, K. T. ChemSusChem, 2014, 7, 457-465.
(30) Chou, S.-H.; Chen, H.-C.; Wang, C.-K.; Chung, C.-L.; Hung, C.-M.; Hsu, J.-C. and Wong, K.-T. Org. Electron., 2019, 68, 159-167.
(31) Raimundo, J.; Blanchard, P.; Gallego-Planas, n.; Mercier, N.; Ledoux-Rak, I.; Hierle, R. and Roncali, J. J. Org. Chem., 2002, 67, 205-218.
(32) Chen, C. H.; Ting, H. C.; Li, Y. Z.; Lo, Y. C.; Sher, P. H.; Wang, J. K.; Chiu, T. L.; Lin, C. F.; Hsu, I. S.; Lee, J. H.; Liu, S. W. and Wong, K. T. ACS Appl. Mater. Interfaces, 2019, 11, 8337-8349.
(33) Ting, H. C.; Yang, Y. T.; Chen, C. H.; Lee, J. H.; Chang, J. H.; Wu, C. I.; Chiu, T. L.; Lin, C. F.; Chung, C. L. and Wong, K. T. ChemSusChem, 2016, 9, 1433-1441.
(34) Kim, M.; Lee, J.; Jo, S. B.; Sin, D. H.; Ko, H.; Lee, H.; Lee, S. G. and Cho, K. J. Mater. Chem. A, 2016, 4, 15522-15535.
(35) Wang, Z.; Zhu, L.; Shuai, Z. and Wei, Z. Macromol. Rapid Commun., 2017, 38, 170470.
(36) Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M. and Chen, Y. J. Am. Chem. Soc., 2013, 135, 8484-8487.
(37) Kan, B.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Yang, X.; Zhang, M.; Zhang, H.; Russell, T. P. and Chen, Y. Chem. Mater., 2015, 27, 8414-8423.
(38) Song, J.; Xue, X.; Fan, B.; Huo, L. and Sun, Y. Mater. Chem. Front., 2018, 2, 1626-1630.

Chapter 2

(1) Watanabe, M.; Chang, Y. J.; Liu, S. W.; Chao, T. H.; Goto, K.; Islam, M. M.; Yuan, C. H.; Tao, Y. T.; Shinmyozu, T. and Chow, T. J. Nat. Chem., 2012, 4, 574-578.
(2) Anthony, J. E.; Brooks, J. S.; Eaton, D. L. and Parkin, S. R. J. Am. Chem. Soc., 2001, 123, 9482-9483.
(3) Park, S. K.; Jackson, T. N.; Anthony, J. E. and Mourey, D. A. Appl. Phys. Lett., 2007, 91, 063514.
(4) Hasegawa, T. and Takeya, J. Sci. Technol. Adv. Mater., 2009, 10, 024314.
(5) Anthony, J. E. Angew. Chem. Int. Ed., 2008, 47, 452-483.
(6) Laquindanum, J. G.; Katz, H. E. and Lovinger, A. J. J. Am. Chem. Soc., 1998, 120, 664-672.
(7) Yamamoto, T. and Takimiya, K. J. Am. Chem. Soc., 2007, 129, 2224-2225.
(8) Takimiya, K.; Shinamura, S.; Osaka, I. and Miyazaki, E. Adv. Mater., 2011, 23, 4347-4370.
(9) Niimi, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. and Takimiya, K. J. Am. Chem. Soc., 2011, 133, 8732-8739.
(10) Wu, Y.; Li, Y.; Gardner, S. and Ong, B. S. J. Am. Chem. Soc., 2005, 127, 614-618.
(11) Mitsudo, K.; Shimohara, S.; Mizoguchi, J.; Mandai, H. and Suga, S. Org. Lett., 2012, 14, 2702-2705.
(12) Mishra, A.; Popovic, D.; Vogt, A.; Kast, H.; Leitner, T.; Walzer, K.; Pfeiffer, M.; Mena-Osteritz, E. and Bauerle, P. Adv. Mater., 2014, 26, 7217-7223.
(13) Wetzel, C.; Brier, E.; Vogt, A.; Mishra, A.; Mena-Osteritz, E. and Bauerle, P. Angew. Chem. Int. Ed., 2015, 54, 12334-12338.
(14) Wang, Z.; Liang, M.; Tan, Y.; Ouyang, L.; Sun, Z. and Xue, S. J. Mater. Chem. A, 2015, 3, 4865-4874.
(15) Bronstein, H.; Ashraf, R. S.; Kim, Y.; White, A. J.; Anthopoulos, T.; Song, K.; James, D.; Zhang, W. and McCulloch, I. Macromol. Rapid Commun., 2011, 32, 1664-1668.
(16) Ma, Y.; Zheng, Q.; Yin, Z.; Cai, D.; Chen, S.-C. and Tang, C. Macromolecules, 2013, 46, 4813-4821.
(17) Osaka, I.; Kakara, T.; Takemura, N.; Koganezawa, T. and Takimiya, K. J. Am. Chem. Soc., 2013, 135, 8834-8837.
(18) Son, H. J.; Lu, L.; Chen, W.; Xu, T.; Zheng, T.; Carsten, B.; Strzalka, J.; Darling, S. B.; Chen, L. X. and Yu, L. Adv. Mater., 2013, 25, 838-843.
(19) Cheng, Y. J.; Chen, C. H.; Lin, T. Y. and Hsu, C. S. Chem. Asian J., 2012, 7, 818-825.
(20) Cheng, Y. J.; Cheng, S. W.; Chang, C. Y.; Kao, W. S.; Liao, M. H. and Hsu, C. S. Chem. Commun., 2012, 48, 3203-3205.
(21) Jung, I. H.; Kim, J.-H.; Nam, S. Y.; Lee, C.; Hwang, D.-H. and Yoon, S. C. Macromolecules, 2015, 48, 5213-5221.
(22) Chung, C.-L.; Chen, C.-H.; Tsai, C.-H. and Wong, K.-T. Org. Electron., 2015, 18, 8-16.
(23) Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. and Dai, H. Nano Lett., 2003, 3, 193-198.
(24) Egginger, M.; Bauer, S.; Schwödiauer, R.; Neugebauer, H. and Sariciftci, N. S. Monatsh. Chem., 2009, 140, 735-750.
(25) Chang, W.-H.; Meng, L.; Dou, L.; You, J.; Chen, C.-C.; Yang, Y.; Young, E. P.; Li, G. and Yang, Y. Macromolecules, 2015, 48, 562-568.
(26) Dou, L.; Chang, W. H.; Gao, J.; Chen, C. C.; You, J. and Yang, Y. Adv. Mater., 2013, 25, 825-831.
(27) Dou, L.; Chen, C.-C.; Yoshimura, K.; Ohya, K.; Chang, W.-H.; Gao, J.; Liu, Y.; Richard, E. and Yang, Y. Macromolecules, 2013, 46, 3384-3390.
(28) He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P. and Cao, Y. Nat. Photonics, 2015, 9, 174-179.
(29) Hou, J.; Chen, H. Y.; Zhang, S.; Li, G. and Yang, Y. J. Am. Chem. Soc., 2008, 130, 16144-16145.
(30) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J. and Bazan, G. C. Nat. Mater., 2007, 6, 497-500.

Chapter 3

(1) Kim, D. Y.; Song, D. W.; Chopra, N.; De Somer, P. and So, F. Adv. Mater., 2010, 22, 2260-2263.
(2) Strassel, K.; Kaiser, A.; Jenatsch, S.; Veron, A. C.; Anantharaman, S. B.; Hack, E.; Diethelm, M.; Nuesch, F.; Aderne, R.; Legnani, C.; Yakunin, S.; Cremona, M. and Hany, R. ACS Appl. Mater. Interfaces, 2018, 10, 11063-11069.
(3) Williams, E. L.; Li, J. and Jabbour, G. E. Appl. Phys. Lett., 2006, 89, 083506.
(4) Tessler, N. M., V.; Kazes, M.; Kan, S.; Banin U. Science, 2002, 295, 1506.
(5) Suzuki, H. J. Photochem. Photobiol. A, 2004, 166, 155-161.
(6) Anzengruber, F.; Avci, P.; de Freitas, L. F. and Hamblin, M. R. Photochem. Photobiol. Sci., 2015, 14, 1492-1509.
(7) Ariyawiriyanan, W.; Nuinu, J.; Sae-heng, K. and Kawahara, S. Energy Procedia, 2013, 34, 728-733.
(8) Mroz, P.; Vatansever, F.; Muchowicz, A. and Hamblin, M. R. Cancer Res., 2013, 73, 6462-6470.
(9) Bwambok, D. K. E.-Z., B.; Challa, S. K.; Li, M.; Chandler, L.; Gary A. Baker, G. A.; Warner, I. M. ACS NANO, 2009, 3, 3854.
(10) Giepmans, B. N. G. A., S. R.; Ellisman, M. H.; Tsien, R. Y. Science, 2006, 312, 217.
(11) Weil, T.; Vosch, T.; Hofkens, J.; Peneva, K. and Mullen, K. Angew. Chem. Int. Ed., 2010, 49, 9068-9093.
(12) Liu, T.; Zhu, L.; Zhong, C.; Xie, G.; Gong, S.; Fang, J.; Ma, D. and Yang, C. Adv. Funct. Mater., 2017, 27, 1606384.
(13) Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H. and Adachi, C. Appl. Phys. Lett., 2011, 98, 083302.
(14) Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y. and Wang, Y. Angew. Chem. Int. Ed., 2017, 56, 11525-11529.
(15) Xue, J.; Liang, Q.; Wang, R.; Hou, J.; Li, W.; Peng, Q.; Shuai, Z. and Qiao, J. Adv. Mater., 2019, e1808242.
(16) Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang, G. and Wang, Y. ACS Appl. Mater. Interfaces, 2017, 9, 9892-9901.
(17) Hu, Y.; Yuan, Y.; Shi, Y.-L.; Li, D.; Jiang, Z.-Q. and Liao, L.-S. Adv. Funct. Mater., 2018, 28, 1802597.
(18) Data, P.; Pander, P.; Okazaki, M.; Takeda, Y.; Minakata, S. and Monkman, A. P. Angew. Chem. Int. Ed., 2016, 55, 5739-5744.
(19) Hung, W. Y.; Chiang, P. Y.; Lin, S. W.; Tang, W. C.; Chen, Y. T.; Liu, S. H.; Chou, P. T.; Hung, Y. T. and Wong, K. T. ACS Appl. Mater. Interfaces, 2016, 8, 4811-4818.
(20) Huang, M.; Jiang, B.; Xie, G. and Yang, C. J. Phys. Chem. Lett., 2017, 8, 4967-4973.
(21) Kim, H.-G.; Kim, K.-H.; Moon, C.-K. and Kim, J.-J. Adv. Opt. Mater., 2017, 5, 1600749.
(22) Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.; Cao, Y. and Chen, Y. Science, 2018, 361, 1094-1098.
(23) Arjona-Esteban, A.; Krumrain, J.; Liess, A.; Stolte, M.; Huang, L.; Schmidt, D.; Stepanenko, V.; Gsanger, M.; Hertel, D.; Meerholz, K. and Wurthner, F. J. Am. Chem.
Soc., 2015, 137, 13524-13534.
(24) Chen, Y. H.; Lin, L. Y.; Lu, C. W.; Lin, F.; Huang, Z. Y.; Lin, H. W.; Wang, P. H.; Liu, Y. H.; Wong, K. T.; Wen, J.; Miller, D. J. and Darling, S. B. J. Am. Chem. Soc., 2012, 134, 13616-13623.
(25) Chen, C. H.; Ting, H. C.; Li, Y. Z.; Lo, Y. C.; Sher, P. H.; Wang, J. K.; Chiu, T. L.; Lin, C. F.; Hsu, I. S.; Lee, J. H.; Liu, S. W. and Wong, K. T. ACS Appl. Mater. Interfaces, 2019, 11, 8337-8349.
(26) Chiu, S. W.; Lin, L. Y.; Lin, H. W.; Chen, Y. H.; Huang, Z. Y.; Lin, Y. T.; Lin, F.; Liu,
Y. H. and Wong, K. T. Chem. Commun., 2012, 48, 1857-1859.
(27) Ting, H. C.; Chen, Y. H.; Lin, L. Y.; Chou, S. H.; Liu, Y. H.; Lin, H. W. and Wong, K. T. ChemSusChem, 2014, 7, 457-465.
(28) Chou, S.-H.; Chen, H.-C.; Wang, C.-K.; Chung, C.-L.; Hung, C.-M.; Hsu, J.-C. and Wong, K.-T. Org. Electron., 2019, 68, 159-167.
(29) Osaka, I.; Shimawaki, M.; Mori, H.; Doi, I.; Miyazaki, E.; Koganezawa, T. and Takimiya, K. J. Am. Chem. Soc., 2012, 134, 3498-3507.
(30) Osaka, I.; Kakara, T.; Takemura, N.; Koganezawa, T. and Takimiya, K. J. Am. Chem. Soc., 2013, 135, 8834-8837.
(31) Saito, M.; Osaka, I.; Suzuki, Y.; Takimiya, K.; Okabe, T.; Ikeda, S. and Asano, T. Sci. Rep., 2015, 5, 14202.
(32) Ishi-i, T.; Hashimoto, R. and Ogawa, M. Asian J. Org. Chem., 2014, 3, 1074-1082.
(33) Sun, Y.; Qu, C.; Chen, H.; He, M.; Tang, C.; Shou, K.; Hong, S.; Yang, M.; Jiang, Y.; Ding, B.; Xiao, Y.; Xing, L.; Hong, X. and Cheng, Z. Chem. Sci., 2016, 7, 6203-6207.
(34) Zhang, X. D.; Wang, H.; Antaris, A. L.; Li, L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G.; Ma, Z.; Wang, J.; Zhu, S.; Castellano, J. M.; Wyss-Coray, T.; Liang, Y.; Luo, J. and Dai, H. Adv. Mater., 2016, 28, 6872-6879.
(35) Qian, G.; Zhong, Z.; Luo, M.; Yu, D.; Zhang, Z.; Wang, Z. Y. and Ma, D. Adv. Mater., 2009, 21, 111-116.
(36) Bartynski, A. N.; Trinh, C.; Panda, A.; Bergemann, K.; Lassiter, B. E.; Zimmerman, J. D.; Forrest, S. R. and Thompson, M. E. Nano Lett., 2013, 13, 3315-3320.
(37) Bergemann, K. J.; Amonoo, J. A.; Song, B.; Green, P. F. and Forrest, S. R. Nano Lett., 2015, 15, 3994-3999.
(38) Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y. and Su, S. J.

Chapter 4

(1) Cheng, P. and Zhan, X. Chem. Soc. Rev., 2016, 45, 2544-2582.
(2) Cheng, Y. J.; Yang, S. H. and Hsu, C. S. Chem. Rev., 2009, 109, 5868-5923.
(3) Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H. and Lee, K. Adv. Mater., 2016, 28, 7821-7861.
(4) Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D. and Yu, L. Chem. Rev., 2015, 115, 12666-12731.
(5) Wang, J.; Liu, K.; Ma, L. and Zhan, X. Chem. Rev., 2016, 116, 14675-14725.
(6) Carlé, J. E.; Helgesen, M.; Hagemann, O.; Hösel, M.; Heckler, I. M.; Bundgaard, E.; Gevorgyan, S. A.; Søndergaard, R. R.; Jørgensen, M.; García-Valverde, R.; Chaouki-Almagro, S.; Villarejo, J. A. and Krebs, F. C. Joule, 2017, 1, 274-289.
(7) Finn, M.; Martens, C. J.; Zaretski, A. V.; Roth, B.; Søndergaard, R. R.; Krebs, F. C. and Lipomi, D. J. Sol. Energy Mater. Sol. Cells, 2018, 174, 7-15.
(8) Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y. and Tang, J. X. Adv. Mater., 2015, 27, 1035-1041.
(9) Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W. and Wei, Z. Nat. Commun., 2016, 7, 13740.
(10) He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P. and Cao, Y. Nat. Photonics, 2015, 9, 174-179.
(11) Huang, J.; Carpenter, J. H.; Li, C. Z.; Yu, J. S.; Ade, H. and Jen, A. K. Adv. Mater., 2016, 28, 967-974.
(12) Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y. and Chen, Y. Nat. Photonics, 2016, 11, 85-90.
(13) Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H. and Yan, H. Nat. Commun., 2014, 5, 5293.
(14) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W. and Yan, H. Nat. Energy, 2016, 1, 15027.
(15) Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C. J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C. and Zhan, X. J. Am. Chem. Soc., 2016, 138, 2973-2976.
(16) Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D. and Zhan, X. Adv. Mater., 2015, 27, 1170-1174.
(17) Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R. and Zhan, X. J. Am. Chem. Soc., 2016, 138,
4955-4961.
(18) Lin, Y.; Zhang, Z.-G.; Bai, H.; Wang, J.; Yao, Y.; Li, Y.; Zhu, D. and Zhan, X. Energy Environ. Sci., 2015, 8, 610-616.
(19) Chen, C.-P.; Chan, S.-H.; Chao, T.-C.; Ting, C. and Ko, B.-T. J. Am. Chem. Soc., 2008, 130, 12828-12833.
(20) Wong, K.-T.; Chao, T.-C.; Chi, L.-C.; Chu, Y.-Y.; Balaiah, A.; Chiu, S.-F.; Liu, Y.-H. and Wang, Y. Org. Lett., 2006, 8, 5033-5036.
(21) Wang, Y.; Zhang, Y.; Qiu, N.; Feng, H.; Gao, H.; Kan, B.; Ma, Y.; Li, C.; Wan, X. and Chen, Y. Adv. Energy Mater., 2018, 8, 1702870.
(22) Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S. and Peng, J. Nat. Commun., 2019, 10, 2515.
(23) Gasparini, N.; Salleo, A.; McCulloch, I. and Baran, D. Nat. Rev. Mater., 2019, 1.
(24) Huang, H.; Yang, L. and Sharma, B. J. Mater. Chem. A, 2017, 5, 11501-11517.
(25) Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y. and Ge, Z. Adv. Mater., 2018, 30, 1703005.
(26) Zhou, Z.; Xu, S.; Song, J.; Jin, Y.; Yue, Q.; Qian, Y.; Liu, F.; Zhang, F. and Zhu, X. Nat. Energy, 2018, 3, 952.
(27) An, Q.; Wang, J. and Zhang, F. Nano Energy, 2019, 60, 768-774.
(28) Liu, T.; Luo, Z.; Chen, Y.; Yang, T.; Xiao, Y.; Zhang, G.; Ma, R.; Lu, X.; Zhan, C.; Zhang, M.; Yang, C.; Li, Y.; Yao, J. and Yan, H. Energy Environ. Sci., 2019,
(29) Ji, G.; Wang, Y.; Luo, Q.; Han, K.; Xie, M.; Zhang, L.; Wu, N.; Lin, J.; Xiao, S.; Li, Y. Q.; Luo, L. Q. and Ma, C. Q. ACS Appl. Mater. Interfaces, 2018, 10, 943-954.
(30) Shen, P.; Wang, G.; Kang, B.; Guo, W. and Shen, L. ACS Appl. Mater. Interfaces, 2018, 10, 6513-6520.
(31) Shi, H.; Xia, R.; Sun, C.; Xiao, J.; Wu, Z.; Huang, F.; Yip, H.-L. and Cao, Y. Adv. Energy Mater., 2017, 7, 1701121.
(32) Zheng, W.; Lin, Y.; Zhang, Y.; Yang, J.; Peng, Z.; Liu, A.; Zhang, F. and Hou, L. ACS Appl. Mater. Interfaces, 2017, 9, 44656-44666.
(33) Zhu, J.; Xiao, Y.; Wang, J.; Liu, K.; Jiang, H.; Lin, Y.; Lu, X. and Zhan, X. Chem. Mater., 2018, 30, 4150-4156.
(34) Lee, J.; Ko, S.-J.; Seifrid, M.; Lee, H.; Luginbuhl, B. R.; Karki, A.; Ford, M.; Rosenthal, K.; Cho, K.; Nguyen, T.-Q. and Bazan, G. C. Adv. Energy Mater., 2018,
8, 1801212.
(35) Yao, Z.; Liao, X.; Gao, K.; Lin, F.; Xu, X.; Shi, X.; Zuo, L.; Liu, F.; Chen, Y. and Jen, A. K. J. Am. Chem. Soc., 2018, 140, 2054-2057.
(36) Chen, J.; Li, G.; Zhu, Q.; Guo, X.; Fan, Q.; Ma, W. and Zhang, M. J. of Mater. Chem. A, 2019, 7, 3745-3751.
(37) Cui, Y.; Yang, C.; Yao, H.; Zhu, J.; Wang, Y.; Jia, G.; Gao, F. and Hou, J. Adv. Mater., 2017, 29, 1703080.
(38) Jia, B.; Dai, S.; Ke, Z.; Yan, C.; Ma, W. and Zhan, X. Chem. Mater., 2017, 30, 239-245.
(39) Li, T.; Dai, S.; Ke, Z.; Yang, L.; Wang, J.; Yan, C.; Ma, W. and Zhan, X. Adv. Mater., 2018, 30, 1705969.
(40) Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S. and Forrest, S. R. J. Am. Chem. Soc., 2017, 139, 17114-17119.
(41) Liu, F.; Zhou, Z.; Zhang, C.; Zhang, J.; Hu, Q.; Vergote, T.; Liu, F.; Russell, T. P. and Zhu, X. Adv. Mater., 2017, 29, 1606574.
(42) Upama, M. B.; Wright, M.; Elumalai, N. K.; Mahmud, M. A.; Wang, D.; Xu, C. and Uddin, A. ACS Photonics, 2017, 4, 2327-2334.
(43) Wang, W.; Yan, C.; Lau, T. K.; Wang, J.; Liu, K.; Fan, Y.; Lu, X. and Zhan, X. Adv. Mater., 2017, 29, 1701308.
(44) Kyaw, A. K. K. W., D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A. J. ACS Nano, 2013, 7, 4569-4577.
(45) Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C. and Heeger, A. J. Nat. Mater., 2011, 11, 44-48.
(46) Fang, Y.; Pandey, A. K.; Nardes, A. M.; Kopidakis, N.; Burn, P. L. and Meredith, P. Adv. Energy Mater., 2013, 3, 54-59.
(47) Wu, J.; Ma, Y.; Wu, N.; Lin, Y.; Lin, J.; Wang, L. and Ma, C.-Q. Org. Electron., 2015, 23, 28-38.
(48) Fang, Y.; Pandey, A. K.; Lyons, D. M.; Shaw, P. E.; Watkins, S. E.; Burn, P. L.; Lo, S. C. and Meredith, P. ChemPhysChem, 2015, 16, 1295-1304.
(49) Stoltzfus, D. M.; Clulow, A. J.; Jin, H.; Burn, P. L. and Gentle, I. R. Macromolecules, 2016, 49, 4404-4415.
(50) Zhang, Z. and Zhu, X. Chem. Mater., 2018, 30, 587-591.
(51) Zhang, Z.; Lin, F.; Chen, H.-C.; Wu, H.-C.; Chung, C.-L.; Lu, C.; Liu, S.-H.; Tung, S.-H.; Chen, W.-C.; Wong, K.-T. and Chou, P.-T. Energy Environ. Sci., 2015, 8, 552-557.
(52) Zhang, Z. and Zhu, X. J. Mater. Chem. A, 2018, 6, 4266-4270.
(53) Ogawa, K. and Rasmussen, S. C. J. Org. Chem., 2003, 68, 2921-2928.
(54) Rasmussen, S. C. and Evenson, S. J. Prog. Polym. Sci., 2013, 38, 1773-1804.
(55) Wetzel, C.; Mishra, A.; Mena-Osteritz, E.; Liess, A.; Stolte, M.; Wurthner, F. and Bauerle, P. Org. Lett., 2014, 16, 362-365.
(56) Chung, C.-L.; Chen, C.-Y.; Kang, H.-W.; Lin, H.-W.; Tsai, W.-L.; Hsu, C.-C. and Wong, K.-T. Org. Electron., 2016, 28, 229-238.
(57) Huang, Y. F.; Wang, C. K.; Lai, B. H.; Chung, C. L.; Chen, C. Y.; Ciou, G. T.; Wong, K. T. and Wang, C. L. ACS Appl. Mater. Interfaces, 2019,
(58) Chung, C.-L.; Chen, C.-H.; Tsai, C.-H. and Wong, K.-T. Org. Electron., 2015, 18, 8-16.
(59) Huang, C.; Liao, X.; Gao, K.; Zuo, L.; Lin, F.; Shi, X.; Li, C.-Z.; Liu, H.; Li, X.; Liu, F.; Chen, Y.; Chen, H. and Jen, A. K. Y. Chem. Mater., 2018, 30, 5429-5434.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78569-
dc.description.abstract近紅外光具有能夠穿透生物組織、在某些波段背景值低以及能應用於暗處等特性,因此可應用於生物顯影、光動力療法、人臉辨識和夜視鏡。有機光電元件由於其價格低廉、具可撓曲性以及重量輕等特性,充分顯示發展有機近紅外光電材料更能貼近各種領域的應用需求。
本論文的研究主軸,是利用設計不同構型以及引入不同芳香基團,以探討化學結構和物理性質甚至是相對應之元件表現之間的關係。其架構如下,第一章概略敘述有機芳香共軛系統之調控、近紅外光之應用以及有機太陽能電池之分子設計概述;第二章先說明多稠環共平面分子之策略及應用。接著,以兩種六稠環共平面核心 (PPTt and DTPTt) 為基底,探討核心以及其衍生物之光物理、電化學、熱性質和分子間排列情形,並比較兩種核心應用於有機場效電晶體之表現;第三章描述近紅外光吸收以及放光分子之設計及演進,並討論引入強缺電子基團 (NT 或 BBT) 對於分子光物理、電化學、熱性質和分子間排列情形之影響以及作為電子予體對於有機光伏打電池或者作為螢光材料應用於有機發光二極體之元件表現;第四章先敘述非富勒烯光伏打電池之優勢與分子設計策略,再探討四個能夠吸收近紅外光之電子受體的合成、光物理性質、電化學性質以及應用於有機非富勒烯光伏打電池之表現;第五章則對此論文之分子設計、性質以及元件結果作統整。
zh_TW
dc.description.abstractNear-Infrared (NIR) radiation has attracted attentions because of its potential applications in night-vision devices, sensors, communications, medical apparatus and optical imaging especially for bio-imaging in recent years. Moreover, organic optoelectronic devices possess advantages of low-cost, light weight and mechanical flexibility, which make them as promising candidates for developing NIR application.
This dissertation describes the structure-property relationship and the correlations to the corresponding optoelectronic devices. Chapter 1 gives a brief introduction of the band-gap engineering of aromatic π-conjugated systems, applications of NIR radiation and molecular design for organic photovoltaics (OPVs). Chapter 2 describes strategies and applications of ladder-type coplanar materials. Moreover, the synthesis, physical properties, molecular packings and the performance in OFETs of two S,N-hexaacenes (PPTt and DTPTt) and their derivatives are also discussed. Chapter 3 describes design strategies of NIR absorbing and emitting molecules at first. Then, the synthesis, properties, and the device performance when utilized as electron donors in OPVs and as emitters in OLEDs of NT-based or BBT-based molecules are discussed. Chapter 4 describes the synthesis, physical properties and photovoltaic performance of four A-D-A-configured non-fullerene acceptors (NFAs). Chapter 5 summarizes the results in this dissertation.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:04:35Z (GMT). No. of bitstreams: 1
ntu-108-F03223115-1.pdf: 18298738 bytes, checksum: 344292a35a1ec66b51e7f543b9530f38 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 i
Abstrct ii
Contents iii
List of Figures viii
List of Schemes xix
List of Tables xx
Chemical Structure Index xxiii
Chapter 1. Molecular Design and Near-Infrared Application of Aromatic Systems 1
1-1 Bandgap Engineering of π-Conjugated Aromatic Systems 1
1-2 Near-Infrared Application 10
1-3 Molecular Design for Organic Photovoltaics 15
1-4 References 23
Chapter 2. Ladder-Type Coplanar Optoelectronic Materials 28
2-1 Introduction and Motivation 28
2-2 PPTt and DTPTt Cores in Organic Field-Effect Transistors 36
2-2-1 Synthetic Methodology 36
2-2-2 Optical Properties 37
2-2-3 Electrochemical Properties 39
2-2-4 Thermal Properties 41
2-2-5 OFET Device Fabrication 43
2-3 PPTt- and DTPTt-based A-D-A Small-Molecule Donors 48
2-3-1 Synthetic Methodology 48
2-3-2 Optical Properties 49
2-3-3 Electrochemical Properties 51
2-3-4 Thermal Properties 53
2-3-5 Photovoltaic Characteristics 55
2-4 PPTt- and DTPTt-based D-A Copolymers 57
2-4-1 Synthetic Methodology 57
2-4-2 Optical Properties 57
2-4-3 Electrochemical Properties 59
2-4-4 Thermal Properties 60
2-4-5 Photovoltaic Characteristics 61
2-5 Conclusions 63
2-6 Experimental Details 66
2-7 References 86
Chapter 3. Near-Infrared Approach for Vacuum-Deposited Materials 89
3-1 Introduction and Motivation 89
3-2 Naphthobisthiadiazole-based D–A–A Donor Molecules 99
3-2-1 Synthetic Methodology 99
3-2-2 Optical Properties 101
3-2-3 Electrochemical Properties 102
3-2-4 Thermal Properties 104
3-2-5 Structural Analysis by X-ray Crystallography 104
3-2-6 Photovoltaic Characteristics 107
3-3 Naphthobisthiadiazole- and Benzobisthiadiazole-based D–A–D Emitters 114
3-3-1 Synthetic Methodology 114
3-3-2 Optical Properties 115
3-3-3 Electrochemical Properties 118
3-3-4 Thermal Properties 119
3-3-5 Device Characteristics 119
3-3-6 Transient Photoluminescence 135
3-4 Conclusions 137
3-5 Experimental Details 140
3-6 References 155
Chapter 4. Non-Fullerene Acceptors in Organic Photovoltaics 160
4-1 Introduction and Motivation 160
4-2 Si-bridged Small Molecules Acceptors for Organic Photovoltaics 172
4-2-1 Synthetic Methodology 172
4-2-2 Optical Properties 172
4-2-3 Electrochemical Properties 175
4-2-4 Thermal Properties 176
4-2-5 Photovoltaic Characteristics 178
4-2-6 Space Charge Limited Currents Measurement 181
4-2-7 Photoluminescence Quenching 183
4-2-8 Grazing Incidence Wide-Angle X-ray Scattering Measurement 184
4-3 PTTt-based Small-Molecule Acceptor for Organic Photovoltaics 189
4-3-1 Synthetic Methodology 189
4-3-2 Optical Properties 190
4-3-3 Electrochemical Properties 191
4-3-4 Photovoltaic Characteristics 192
4-3-5 Photoluminescence Quenching 197
4-3-6 Atomic Force Microscopy 199
4-3-7 Charge Recombination Behavior 202
4-3-8 Colorful Photovoltaics 203
4-4 Conclusions 207
4-5 Experimental Details 210
4-6 References 220
Chapter 5. Structure–Property–Device Relationship 226

Appendix A. 1H and 13C NMR spectra 242
Appendix B. X-ray Single Crystal Data 261
-
dc.language.isozh_TW-
dc.subject多稠環分子zh_TW
dc.subject有機場效電晶體zh_TW
dc.subject有機發光二極體zh_TW
dc.subject近紅外光zh_TW
dc.subject有機太陽能電池zh_TW
dc.subjectOrganic Solar Cellsen
dc.subjectNear-Infrareden
dc.subjectOrganic Light-Emitting Diodesen
dc.subjectOrganic Field-Effect Transistorsen
dc.subjectLadder-Type Semiconductoren
dc.title應用於有機光電元件之剛硬共平面以及近紅外光分子之設計與合成zh_TW
dc.titleDesign and Synthesis of Near-Infrared Active Molecules with Rigid Coplanar Cores and Their Exploitation for Optoelectronic Devicesen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee劉舜維;陳志平;王建隆;鄭彥如;洪文誼;闕居振zh_TW
dc.contributor.oralexamcommitteeShun-Wei Liu;Chih-Ping Chen;Chien-Lung Wang;Yen-Ju Cheng;Wen-Yi Hung;Chu-Chen Chuehen
dc.subject.keyword近紅外光,有機太陽能電池,有機發光二極體,有機場效電晶體,多稠環分子,zh_TW
dc.subject.keywordNear-Infrared,Organic Solar Cells,Organic Light-Emitting Diodes,Organic Field-Effect Transistors,Ladder-Type Semiconductor,en
dc.relation.page267-
dc.identifier.doi10.6342/NTU201903510-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2024-08-26-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
17.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved