請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78561
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡丰喬(Feng-Chiao Tsai) | |
dc.contributor.author | Jia-Ming Zhang | en |
dc.contributor.author | 張家銘 | zh_TW |
dc.date.accessioned | 2021-07-11T15:04:06Z | - |
dc.date.available | 2024-08-29 | |
dc.date.copyright | 2019-08-29 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y., and Kaibuchi, K. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308-1311.
Burakov, A.V., Zhapparova, O.N., Kovalenko, O.V., Zinovkina, L.A., Potekhina, E.S., Shanina, N.A., Weiss, D.G., Kuznetsov, S.A., and Nadezhdina, E.S. (2008). Ste20-related protein kinase LOSK (SLK) controls microtubule radial array in interphase. Molecular biology of the cell 19, 1952-1961. Cybulsky, A.V., Takano, T., Guillemette, J., Papillon, J., Volpini, R.A., and Di Battista, J.A. (2009). The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Am J Physiol Renal Physiol 297, F971-980. Dogterom, M., and Koenderink, G.H. (2019). Actin–microtubule crosstalk in cell biology. Nature Reviews Molecular Cell Biology 20, 38-54. Ezratty, E.J., Partridge, M.A., and Gundersen, G.G. (2005). Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature cell biology 7, 581-590. Guilluy, C., Rolli-Derkinderen, M., Loufrani, L., Bourge, A., Henrion, D., Sabourin, L., Loirand, G., and Pacaud, P. (2008). Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II Type 2 receptor activation. Circulation research 102, 1265-1274. Julian, L., and Olson, M.F. (2014). Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5, e29846. Katoh, K., Kano, Y., and Noda, Y. (2011). Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J R Soc Interface 8, 305-311. Kaverina, I., Krylyshkina, O., and Small, J.V. (1999). Microtubule targeting of substrate contacts promotes their relaxation and dissociation. The Journal of cell biology 146, 1033-1044. Kaverina, I., and Straube, A. (2011). Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 22, 968-974. Lawson, C.D., and Ridley, A.J. (2018). Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol 217, 447-457. Machicoane, M., de Frutos, C.A., Fink, J., Rocancourt, M., Lombardi, Y., Garel, S., Piel, M., and Echard, A. (2014). SLK-dependent activation of ERMs controls LGN-NuMA localization and spindle orientation. The Journal of cell biology 205, 791-799. Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K., and Narumiya, S. (1999). Signaling from Rho to the Actin Cytoskeleton Through Protein Kinases ROCK and LIM-kinase. Science 285, 895-898. Mills, J.C., Stone, N.L., Erhardt, J., and Pittman, R.N. (1998). Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. The Journal of cell biology 140, 627-636. O'Reilly, P.G., Wagner, S., Franks, D.J., Cailliau, K., Browaeys, E., Dissous, C., and Sabourin, L.A. (2005). The Ste20-like kinase SLK is required for cell cycle progression through G2. The Journal of biological chemistry 280, 42383-42390. Parsons, J.T., Horwitz, A.R., and Schwartz, M.A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature reviews Molecular cell biology 11, 633-643. Quizi, J.L., Baron, K., Al-Zahrani, K.N., O'Reilly, P., Sriram, R.K., Conway, J., Laurin, A.A., and Sabourin, L.A. (2012). SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration. Oncogene 32, 4656. Ridley, A.J. (2015). Rho GTPase signalling in cell migration. Current Opinion in Cell Biology 36, 103-112. Sabourin, L.A., Tamai, K., Seale, P., Wagner, J., and Rudnicki, M.A. (2000). Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol Cell Biol 20, 684-696. Sebbagh, M., Hamelin, J., Bertoglio, J., Solary, E., and Breard, J. (2005). Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. The Journal of experimental medicine 201, 465-471. Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J. (2001). Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature cell biology 3, 346-352. Simpson, K.J., Selfors, L.M., Bui, J., Reynolds, A., Leake, D., Khvorova, A., and Brugge, J.S. (2008). Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature cell biology 10, 1027-1038. Sun, Y., Liu, W.Z., Liu, T., Feng, X., Yang, N., and Zhou, H.F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of receptor and signal transduction research 35, 600-604. Vitorino, P., and Meyer, T. (2008). Modular control of endothelial sheet migration. Genes Dev 22, 3268-3281. Wagner, S., Flood, T.A., O'Reilly, P., Hume, K., and Sabourin, L.A. (2002). Association of the Ste20-like kinase (SLK) with the microtubule. Role in Rac1-mediated regulation of actin dynamics during cell adhesion and spreading. The Journal of biological chemistry 277, 37685-37692. Wagner, S., Storbeck, C.J., Roovers, K., Chaar, Z.Y., Kolodziej, P., McKay, M., and Sabourin, L.A. (2008). FAK/src-Family Dependent Activation of the Ste20-Like Kinase SLK Is Required for Microtubule-Dependent Focal Adhesion Turnover and Cell Migration. PLOS ONE 3, e1868. Wehrle-Haller, B., and Imhof, B.A. (2003). Actin, microtubules and focal adhesion dynamics during cell migration. The international journal of biochemistry & cell biology 35, 39-50. Wickman, G.R., Julian, L., Mardilovich, K., Schumacher, S., Munro, J., Rath, N., Zander, S.A., Mleczak, A., Sumpton, D., Morrice, N., et al. (2013). Blebs produced by actin–myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death And Differentiation 20, 1293. Xie, J., Pan, H., Yao, J., Zhou, Y., and Han, W. (2016). SOCE and cancer: Recent progress and new perspectives. International journal of cancer 138, 2067-2077. Yue, J., Xie, M., Gou, X., Lee, P., Schneider, M.D., and Wu, X. (2014). Microtubules regulate focal adhesion dynamics through MAP4K4. Dev Cell 31, 572-585. Zhapparova, O.N., Fokin, A.I., Vorobyeva, N.E., Bryantseva, S.A., and Nadezhdina, E.S. (2013). Ste20-like protein kinase SLK (LOSK) regulates microtubule organization by targeting dynactin to the centrosome. Molecular biology of the cell 24, 3205-3214. Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y., and Kaibuchi, K. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308-1311. Simpson, K.J., Selfors, L.M., Bui, J., Reynolds, A., Leake, D., Khvorova, A., and Brugge, J.S. (2008). Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature cell biology 10, 1027-1038. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78561 | - |
dc.description.abstract | 細胞遷移在生理和疾病上是很重要的,但下游訊息傳遞分子之間的交互作用尚不明瞭。為回答分子之間的交互作用,因此,我們進行”雙擊”集體細胞遷移篩檢。由篩檢結果發現,當細胞同時敲減SLK和抑制ROCK時,集體細胞遷移會有協同增強的表徵。這些結果表示,SLK和ROCK在細胞遷移的過程中有複雜的交互作用。
因此,我們企圖解釋SLK和ROCK之間訊息傳遞的關係。之前的研究暗示,SLK會壓制RhoA活化進而抑制ROCK。然而,我們雙重敲減SLK和RhoA顯示SLK可能不會透過RhoA調控ROCK去改變細胞與細胞之間的協調性。使用HUVEC進行免疫沉澱實驗發現SLK可能與ROCK共同沉澱也更進一步去支持此推測。我們目前正在驗證上述的結果並將會繼續探索SLK和ROCK的交互作用在細胞遷移時的重要功能意義。 | zh_TW |
dc.description.abstract | Cell migration is important in physiology and diseases, but how signalling molecules interact with each other to control cell migration has remained elusive. We therefore conducted a “two-hit” collective migration screen to answer this question. The screen revealed a synergistic enhancement of collective cell migration when cells were simultaneously treated with SLK knockdown and ROCK inhibition. These results indicate complex interactions between SLK and ROCK during cell migration.
We thus aimed at elucidating the signalling relationship between SLK and ROCK. Previous studies suggested that SLK suppressed RhoA activates resulting in ROCK inhibition. However, our RhoA-SLK double knockdown experiment suggested that SLK might regulate ROCK in RhoA-independent manners to alter cell-cell coordination. Thus speculation was further supported by the finding that SLK could be co-immunoprecipitated with ROCK in pulldown assay using HUVEC cells. We are currently verifying the above results and will continue exploring the functional significance of SLK-ROCK interaction during cell migration. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:04:06Z (GMT). No. of bitstreams: 1 ntu-108-R06443011-1.pdf: 1871915 bytes, checksum: 664788bcf20d9830c88a5af53ff3dc49 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 圖目錄 3 表目錄 4 第一章 介紹 5 1.1 雙擊細胞遷移篩選 (Two-hit migration screening) 5 1.2 STE20-like serine/threonine-protein kinase (SLK) 5 1.3 Rho associated coiled-coil containing protein kinase (ROCK) 7 1.4 SLK和ROCK之間可能的交互作用 7 1.5 尚未解決的問題 8 第二章 材料與方法 9 2.1 細胞培養和藥物試劑 9 2.2 任意遷移試驗 (Random migration assay) 9 2.3 西方墨點法 (Western blot) 10 2.4 即時定量聚合酶鏈鎖反應 (qPCR) 10 2.5 ROCK活性試驗 (ROCK activity assay) 11 2.6 免疫沉澱法 (Immunoprecipitation) 11 2.7 質體建構 (Plasmids) 12 2.8 統計分析方法 (Statistical Analysis) 13 第三章 結果 14 3.1 敲減SLK使細胞協調性上升的影響會被Y27632反轉 14 3.2 SLK透過RhoA-independent的方式調控細胞協調性 14 3.3 SLK—ROCK交互作用去調控細胞協調性可能的路徑 15 3.4 在SAS敲減SLK不一致使ROCK的下游傳遞路徑活化 15 3.5 在HUVEC敲減SLK不會一致使ROCK的下游傳遞路徑活化 16 3.6 敲減SLK可能會使MLC2、MYPT1的總蛋白量下降 16 3.7 SLK可能在HUVEC而不是SAS上會與ROCK結合 17 第四章 討論 18 第五章 參考資料 21 第六章 圖 26 第七章 表格 40 第八章 附錄 43 8.1 附圖 43 8.2 過度表現的質體圖譜和序列 47 8.3 分析細胞遷移和免疫螢光訊號的MatLab scripts 52 8.3.1 Calcnuclei: 計數代表細胞數目的細胞核 (DAPI)的量 52 8.3.2 Tracenuclei: 追蹤細胞每一張移動的軌跡 54 8.3.3 Getcellparameters: 分析細胞遷移的各項參數 (版本:06291745) 55 8.3.4 Calc_shRNA_speed_new: 將各項分析參數繪製成條狀圖 59 8.3.5 Save_fluoref_cor_img: 儲存螢光版校正後的圖檔 62 8.3.6 Phalloidin_idetification_01_Lin: 辨認螢光校正後的圖檔訊號 63 8.2.7 Phalloidin_idetification_02_Lin: 圈選細胞的螢光訊號 64 | |
dc.language.iso | zh-TW | |
dc.title | 探討SLK和ROCK在癌細胞和內皮細胞內的交互作用 | zh_TW |
dc.title | Exploring SLK-ROCK interaction in cancer cells and endothelial cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賈景山(Jean-San Chia),林耿慧(Keng-hui Lin),曾炳輝(Ping-Hui Tseng) | |
dc.subject.keyword | 細胞遷移,細胞協調性,SLK,ROCK,RhoA, | zh_TW |
dc.subject.keyword | Cell migration,Cell coordination,SLK,ROCK,RhoA, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU201903332 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-29 | - |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06443011-1.pdf 目前未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。