Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶
dc.contributor.authorHuan-Cheng Linen
dc.contributor.author林渙承zh_TW
dc.date.accessioned2021-07-11T15:03:44Z-
dc.date.available2021-08-26
dc.date.copyright2019-08-26
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citation[1] https://en.wikipedia.org/wiki/Samsung_Galaxy_Note_7
[2] Samsung Newsroom ,Galaxy Note7: What We Discovered, (2017)
[3] Zhe Li, Jun Huang, Bor Yann Liaw, Viktor Metzler, Jianbo Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, J. Power Sources 254 (2014) 168-182
[4] Michel Rosso, Claire Brissot, Anna Teyssot, Mickaël Dollé, Lucas Sannier, Jean-Marie Tarascon, Renaud Bouchet, Stéphane Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells, Electrochimica Acta 51 (2006) 5334–5340
[5] John Cannarella, Craig B. Arnold, The Effects of Defects on Localized Plating in Lithium-Ion Batteries, J. The Electrochemical Society, 162 (7) A1365-A1373 (2015)
[6] Maureen Tanga, Paul Albertusa, John Newmana, Two-Dimensional Modeling of Lithium Deposition during Cell Charging, J. The Electrochemical Society, 156 (5) A390-A399 (2009)
[7] Tobias C.Bach, Simon F.Schuster, Elena Fleder, Jana Müller, Martin J.Brand, Henning Lorrmann, Andreas Jossen, Gerhard Sextl, Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression, J. Energy Storage 5 (2016) 212-223
[8] Chao Zhang, Shriram Santhanagopalan, Michael A.Sprague, Ahmad A.Pesaranb, Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse, J. Power Sources 290 (2015) 102-113
[9] Elham Sahraei, Rich Hill, Tomasz Wierzbicki, Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity, J. Power Sources 201 (2012) 307– 321
[10] John Cannarella, Xinyi Liua, Collen Z. Lenga, Patrick D. Sinkoa, Gennady Y. Gorb and Craig B. Arnold, Mechanical Properties of a Battery Separator under Compression and Tension, J. The Electrochemical Society, 161 (11) F3117-F3122 (2014)
[11] Elham Sahraei, Emanuela Bosco, Brandy Dixon, Benjamin Lai, Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios, J. Power Sources 319 (2016) 56-65
[12] Juner Zhu1, Wei Li, Yong Xia, Elham Sahraei, Testing and Modeling the Mechanical Properties of the Granular Materials of Graphite Anode, J. The Electrochemical Society, 165 (5) A1160-A1168 (2018)
[13] Juner Zhu, Tomasz Wierzbicki, Wei Li, A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources 378 (2018) 153–168
[14] Ratnakumar V. Bugga, Marshall C. Smart, Lithium Plating Behavior in Lithium-Ion Cells, ECS Transactions, 25 (36) 241-252 (2010)
[15] Matilda Klett, Rickard Eriksson, Jens Grootc, Pontus Svens, Katarzyna Ciosek Högström, Rakel WrelandLindström, Helena Berg, Torbjörn Gustafson, Göran Lindbergh, Kristina Edström, Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis, J. Power Sources 257 (2014) 126-137
[16] Veronika Zinth, Christian von Lüders, Michael Hofmann, Johannes Hattendorff, Irmgard Buchberger, Simon Erhard, Joana Rebelo-Kornmeier, Andreas Jossen, Ralph Gilles, Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction, J. Power Sources 271 (2014) 152-159
[17] Xiao-Guang Yang, Shanhai Ge, Teng Liu, Yongjun Leng, Chao-Yang Wang, A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells, J. Power Sources 395 (2018) 251–261
[18] Hui Wu, Denys Zhuo, Desheng Kong , Yi Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator, Nature Communicatuon 5 5193 (2014)
[19] Roger D.Perkins, Alfred V.Randall, Xiangchun Zhang, Gregory L.Plett, Controls oriented reduced order modeling of lithium deposition on overcharge, J. Power Sources 209 (2012) 318–325
[20] Mark W.Verbrugge, Brian J.Koch, Microelectrode investigation of ultrahigh-rate lithium deposition and stripping, J. Electroanalytical Chemistry, 367 (1994) 123-129
[21] Xiao-Guang Yang, Yongjun Leng, Guangsheng Zhang, ShanhaiGe, Chao-Yang Wang, Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging, J. Power Sources 360 (2017) 28-40
[22] Nikita Khlystov, Daniel Lizardo, Keisuke Matsushita, Jennie Zheng, Uniaxial Tension and Compression Testing of Materials, M.I.T. 3.032 Lab Report(2013)
[23] Yong Tian, Bizhong Xia, Mingwang Wang, Wei Sun, Zhihui Xu , Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles, Energies, 7(2014), 8446-8464
[24]John Newman, William Tiedemann, Porous‐electrode theory with battery applications, AlChE Journal (1975),Vol.21, No.1, p.25
[25] Lithium-Ion Battery Market Analysis By Product, Grand View Research
[26] Find the right battery for your application, Panasonic
[27] K.Mizushima, P.C.Jones, P.J.Wiseman, J.B.Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin V.15 (1980) ,783-789
[28] Juner Zhu, Tomasz Wierzbicki, Wei Li, A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources 378 (2018) 153–168
[29]SAMSUNG SDI Confidential Proprietary, ICR18650-26J Version No. 1.0 Datasheet
[30]贾铮, 戴长松, 陈玲, 電化學測量方法
[31] Allen J. Bard, Larry R. Faulkner, ELECTROCHEMICAL METHODS
[32] S.S.Zhang, K.XuT.R.Jow, The low temperature performance of Li-ion batteries, Journal of Power Sources,Volume 115, Issue 1, 27 March 2003, Pages 137-140
[33] Min Chen, G.A. Rincon-Mora, Accurate electrical battery model capable of predicting runtime and I-V performance, IEEE Transactions on Energy Conversion ,Volume: 21 , Issue: 2 , (June 2006)
[34] Kazuo Onda, Takamasa Ohshima, Masato Nakayama, Kenichi Fukuda, Takuto Araki, Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles, Journal of Power Sources, Volume 158, Issue 1 (14 July 2006), Pages 535-542
[35] BT-Lab software Techniques and Applications manual
[36] Evgenij Barsoukov , Jong Hyun Kim, Jong Hun Kim, Chul Oh Yoon, Hosull Lee
, Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence, Solid State Ionics 116 (1999) 249–261
[37] Ralph E. White, J. O'M. Bockris, B. E.Conway, MODERN ASPECTS OF ELECTROCHEMISTRY
[38] John Newman, Karen E. Thomas-Alyea, ELECTROCHEMICAL SYSTEMS
[39] Jeong Hun Seo, Jonghyun Park, Gregory Plett, Ann Marie Sastry, Gas-Evolution Induced Volume Fraction Changes and Their Effect on the Performance Degradation of Li-Ion Batteries, Electrochemical and Solid-State Letters, 13 (9) A135-A137 (2010)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78555-
dc.description.abstract鋰離子的研究至目前為止,均顯示電池在循環過程中會因為電池的的狀態導致同樣的電池有不同的老化行為,甚至引發電池內短路。而在實際的產品中也發現鋰離子電池因為工業製造上有些許的小變形缺陷,進而導致了鋰金屬沉積,但是目前的研究對於其中的機制還並不了解,也沒有物理上的模型可以描述這種行為。電池的機械性質已經有非常多的團隊使用不同的力學模型進行研究,也有非常多關於電池材料的應力應變關係文獻已經發表。但是目前仍然缺少對於工業製程上的缺陷影響電池循環壽命以及性能的文獻,也沒有文獻建立此種描述小缺陷導致的電池老化、損壞行為的物理模型。因此我們蒐集了電池內部各種材料的應力應變關係,再以孔隙率與體積應變關係的連結將力學模型與電化學模型結合,結果顯示鋰離子電池隔離膜機械性質弱於其他電池內部的材料。而最後力學與電化學模型的模擬的結果也能發現電池內部受到的微小變形受產生的局部過度充電的行為以及受到壓縮的負極與隔離膜交界處產生了鋰金屬沉積,而且此種鋰金屬沉積的現象也可以透過降低充電電流來降低小變形缺陷所造成的影響。我們也調整了電池的幾何形狀,發現增加隔離膜厚度也能增強鋰離子電池忍受變形的能力。因此在鋰離子電池的製造、組裝上我們的模型提供了一個方法,能描述電池機械性質與電性之間的關係,也能配合電池材料的機械性質參數、化學參數、導電度參數等等設計出適合其工作環境的電池。此外,我們也利用孔隙率的變化模擬了氣體生成的情況,發現氣體生成會使電解液的濃度梯度增大,出現了劇烈的電解液濃度變化。過高的電解液濃度與過低的電解液濃度則有可能會造成電解液分解,加速鋰離子電池的衰亡。zh_TW
dc.description.abstractLithium ion research has so far found that the same battery has different aging behaviors due to the state of the battery during the cycle of the battery, and even causes a short circuit inside the battery. In actual products, lithium-ion batteries may also be found to have some small deformation defects in industrial manufacturing, which leads to lithium metal deposition. However, the current research does not understand the mechanism, and there is no physical model to describe this behavior. The mechanical properties of batteries have been studied by many teams using different mechanical models, and there are many literatures on the stress-strain relationship of battery materials that have been published. However, there is still a lack of literature on the effects of defects in industrial processes on battery cycle life and performance, and there is no literature to establish such a physical model for describing battery aging and damage behavior caused by small defects. Therefore, we collected the stress-strain relationship of various materials inside the battery, and then combined the mechanical model with the electrochemical model by the relationship between porosity and volumetric strain. The results show that the mechanical properties of the lithium ion battery separator are weaker than those of other materials. Finally, the simulation results of the mechanical and electrochemical models can also find the local overcharge behavior caused by the small deformation inside the battery and the deposition of lithium metal at the junction of the compressed negative electrode and the separator. The phenomenon can also reduce the impact of small deformation defects by reducing the charging current. We also adjusted the geometry of the battery and found that increasing the thickness of the separator also enhances the ability of the lithium-ion battery to withstand deformation. Therefore, in the manufacture and assembly of lithium battery, our model provides a method to describe the relationship between the mechanical properties of the battery and the electrical properties. It can also be designed with the mechanical properties, chemical parameters, conductivity parameters, etc. of the battery materials. Then design a battery suitable for its working environment.In addition, we also used the change in porosity to simulate the gas generation. It was found that the gas generation increased the concentration gradient of the electrolyte and caused a drastic change in electrolyte concentration. Excessive electrolyte concentration and too low electrolyte concentration may cause decomposition of the electrolyte and accelerate the decline of the lithium ion battery.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:03:44Z (GMT). No. of bitstreams: 1
ntu-108-R06543072-1.pdf: 7576337 bytes, checksum: 404e175529f55686d85f0abfe449cfdf (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要…...………………………………………………….…………………………..I
Abstract........................................................................................................................II
圖目錄..........................................................................................................................V
表目錄........................................................................................................................VII
第一章 序章.............................................................................................................1
第二章 電池的基本概念.........................................................................................2
2-1 電池的種類..................................................................................................2
2-2 電池相關的名詞..........................................................................................3
2-3 鋰離子電池的種類......................................................................................5
2-4 鋰離子電池的結構......................................................................................7
2-5 鋰離子電池充放電行為..............................................................................9
2-6 鋰離子電池的應用與操作.........................................................................11
第三章 相關的事件與文獻回顧.............................................................................14
3-1 三星Note7電池門事件..............................................................................14
3-2 期刊文獻回顧..............................................................................................15
3-3 鋰離子電池的機械性質..............................................................................18
3-4 內短路原因的歸納......................................................................................20
第四章 電池的模型..................................................................................................22
4-1 等效電路模型...............................................................................................22
4-2 電化學模型...................................................................................................23
4-3 電化學的理論基礎.......................................................................................28
4-4 統御方程式與邊界條件的細節...................................................................36
4-5 總結...............................................................................................................41
4-6 材料參數…………………………………………………………………...44
第五章 力學的模型..................................................................................................46
5-1 力學計算方法..............................................................................................46
5-2 應變造成的孔隙率改變..............................................................................51
5-3 氣體生成造成的孔隙率改變……………………………………………...54
5-4 結論...............................................................................................................55
第六章 力學與電化學模型與結果..........................................................................56
6-1 不同幾何形狀與邊界條件對鍍鋰的影響...................................................56
6-2 其他物理量的變化.......................................................................................67
6-3 結果與討論...................................................................................................72
6-4 氣體生成的膨脹對電性的影響…………………………………………...75
6-5 結論………………………………………………………………………...77
dc.language.isozh-TW
dc.title鋰電池中小變形對鍍鋰的影響zh_TW
dc.titleThe effect of small deformation of lithium battery
on lithium plating
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭志禹,林揚善(Allen.Lin@imec-tw.tw),林祺皓,周鼎贏
dc.subject.keyword鋰離子電池,力學模型,電化學模型,電池缺陷,鋰金屬沉積,zh_TW
dc.subject.keywordlithium ion battery,mechanical model,electrochemical model,battery defect,lithium metal deposition,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201903767
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06543072-1.pdf
  目前未授權公開取用
7.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved