Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78544Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 徐麗芬 | zh_TW |
| dc.contributor.advisor | Lie-Fen Shyur | en |
| dc.contributor.author | 黃瀚嶸 | zh_TW |
| dc.contributor.author | Han-Jung Huang | en |
| dc.date.accessioned | 2021-07-11T15:03:05Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Rapiti, E., K. Pinaud, P.O. Chappuis, V. Viassolo, A. Ayme, et al., Opportunities for improving triple-negative breast cancer outcomes: results of a population-based study. Cancer Med, 2017. 6(3): p. 526-536. 3. Lee, A. and M.B.A. Djamgoz, Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev, 2018. 62: p. 110-122. 4. Coates, A.S., E.P. Winer, A. Goldhirsch, R.D. Gelber, M. Gnant, et al., Tailoring therapiesimproving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol, 2015. 26(8): p. 1533-1546. 5. Berry, D.A., C. Cirrincione, I.C. Henderson, M.L. Citron, D.R. Budman, et al., Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA, 2006. 295(14): p. 1658-1667. 6. Carey, L.A., E.C. Dees, L. Sawyer, L. Gatti, D.T. Moore, et al., The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res, 2007. 13(8): p. 2329-2334. 7. Patel, N., D. Weekes, K. Drosopoulos, P. Gazinska, E. Noel, et al., Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer. Nat Commun, 2018. 9(1): p. 1044. 8. Mustacchi, G. and M. De Laurentiis, The role of taxanes in triple-negative breast cancer: literature review. Drug Des Devel Ther, 2015. 9: p. 4303-4318. 9. Tutt, A., H. Tovey, M.C.U. Cheang, S. Kernaghan, L. Kilburn, et al., Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med, 2018. 24(5): p. 628-637. 10. Chuang, H.C., N. Kapuriya, S.K. Kulp, C.S. Chen, and C.L. Shapiro, Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res Treat, 2012. 134(2): p. 649-659. 11. Nowsheen, S., T. Cooper, J.A. Stanley, and E.S. Yang, Synthetic lethal interactions between EGFR and PARP inhibition in human triple negative breast cancer cells. PLoS One, 2012. 7(10): p. e46614. 12. Kono, M., T. Fujii, B. Lim, M.S. Karuturi, D. Tripathy, et al., Androgen receptor function and androgen receptor-targeted therapies in breast cancer: A review. JAMA Oncol, 2017. 3(9): p. 1266-1273. 13. Yunokawa, M., F. Koizumi, Y. Kitamura, Y. Katanasaka, N. Okamoto, et al., Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Sci, 2012. 103(9): p. 1665-1671. 14. Caldas-Lopes, E., L. Cerchietti, J.H. Ahn, C.C. Clement, A.I. Robles, et al., Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A, 2009. 106(20): p. 8368-8373. 15. Hjort, K., A.V. Goldberg, A.D. Tsaousis, R.P. Hirt, and T.M. Embley, Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1541): p. 713-727. 16. Wiemerslage, L. and D. Lee, Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J Neurosci Methods, 2016. 262: p. 56-65. 17. Kluge, M.A., J.L. Fetterman, and J.A. Vita, Mitochondria and endothelial function. Circ Res, 2013. 112(8): p. 1171-1188. 18. McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: more than just a powerhouse. Curr Biol, 2006. 16(14): p. R551-560. 19. Wallace, D.C. and W. Fan, Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 2010. 10(1): p. 12-31. 20. Murphy, M.P., A. Holmgren, N.G. Larsson, B. Halliwell, C.J. Chang, et al., Unraveling the biological roles of reactive oxygen species. Cell Metab, 2011. 13(4): p. 361-366. 21. Sakellariou, G.K., M.J. Jackson, and A. Vasilaki, Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic Res, 2014. 48(1): p. 12-29. 22. Birben, E., U.M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, Oxidative stress and antioxidant defense. World Allergy Organ J, 2012. 5(1): p. 9-19. 23. Christen, Y., Oxidative stress and Alzheimer disease. Am J Clin Nutr, 2000. 71(2): p. 621S-629S. 24. Jenner, P., Oxidative stress in Parkinson's disease. Ann Neurol, 2003. 53 Suppl 3: p. S26-36; discussion S36-38. 25. Madamanchi, N.R., A. Vendrov, and M.S. Runge, Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol, 2005. 25(1): p. 29-38. 26. Klaunig, J.E., L.M. Kamendulis, and B.A. Hocevar, Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol, 2010. 38(1): p. 96-109. 27. Trachootham, D., H. Zhang, W. Zhang, L. Feng, M. Du, et al., Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood, 2008. 112(5): p. 1912-1922. 28. Siedlakowski, P., A. McLachlan-Burgess, C. Griffin, S.S. Tirumalai, J. McNulty, et al., Synergy of pancratistatin and tamoxifen on breast cancer cells in inducing apoptosis by targeting mitochondria. Cancer Biology & Therapy, 2014. 7(3): p. 376-384. 29. Gorini, S., A. De Angelis, L. Berrino, N. Malara, G. Rosano, et al., Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev, 2018. 2018: p. 7582730. 30. Yates, J.R., C.I. Ruse, and A. Nakorchevsky, Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng, 2009. 11: p. 49-79. 31. Xie, F., T. Liu, W.J. Qian, V.A. Petyuk, and R.D. Smith, Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem, 2011. 286(29): p. 25443-25449. 32. Palmfeldt, J. and P. Bross, Proteomics of human mitochondria. Mitochondrion, 2017. 33: p. 2-14. 33. Fliss, M.S., Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science, 2000. 287(5460): p. 2017-2019. 34. Scharfe, C., MITOP, the mitochondrial proteome database: 2000 update. Nucleic Acids Research, 2000. 28(1): p. 155-158. 35. Chen, M., H. Huang, H. He, W. Ying, X. Liu, et al., Quantitative proteomic analysis of mitochondria from human ovarian cancer cells and their paclitaxel-resistant sublines. Cancer Sci, 2015. 106(8): p. 1075-1083. 36. Gao, W., J. Xua, F. Wang, L. Zhang, R. Peng, et al., Mitochondrial proteomics approach reveals voltage-dependent anion channel 1 (VDAC1) as a potential biomarker of gastric cancer. Cell Physiol Biochem, 2015. 37(6): p. 2339-2354. 37. Wang, J., J. Zhang, C.J. Zhang, Y.K. Wong, T.K. Lim, et al., In situ proteomic profiling of curcumin targets in HCT116 colon cancer cell line. Sci Rep, 2016. 6: p. 22146. 38. Ho, W.Y., H. Ky, S.K. Yeap, R.A. Rahim, A.R. Omar, et al., Traditional practice, bioactivities and commercialization potential of Elephantopus scaber Linn. Journal of Medicinal Plants Research, 2009. 3(13): p. 1212-1221. 39. Hiradeve, S.M. and V.D. Rangari, Elephantopus scaber Linn.: a review on its ethnomedical, phytochemical and pharmacological profile. Journal of Applied Biomedicine, 2014. 12(2): p. 49-61. 40. Zhang, S., Y.-K. Won, C.-N. Ong, and H.-M. Shen, Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Current Medicinal Chemistry-Anti-Cancer Agents, 2005. 5(3): p. 239-249. 41. Rodriguez, E., G.H.N. Towers, and J.C. Mitchell, Biological activities of sesquiterpene lactones. Phytochemistry, 1976. 15(11): p. 1573-1580. 42. Su, M., H.Y. Chung, and Y. Li, Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells. Biochem Biophys Res Commun, 2011. 411(2): p. 342-347. 43. Zou, J., Y. Zhang, J. Sun, X. Wang, H. Tu, et al., Deoxyelephantopin induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells. Cell Physiol Biochem, 2017. 42(5): p. 1812-1821. 44. Chao, W.W., Y.W. Cheng, Y.R. Chen, S.H. Lee, C.Y. Chiou, et al., Phyto-sesquiterpene lactone deoxyelephantopin and cisplatin synergistically suppress lung metastasis of B16 melanoma in mice with reduced nephrotoxicity. Phytomedicine, 2018. 56: p. 194-206. 45. Huang, C.C., C.P. Lo, C.Y. Chiu, and L.F. Shyur, Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Br J Pharmacol, 2010. 159(4): p. 856-871. 46. Lee, W.L. and L.F. Shyur, Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation. Free Radic Biol Med, 2012. 52(8): p. 1423-1436. 47. Nakagawa-Goto, K., J.Y. Chen, Y.T. Cheng, W.L. Lee, M. Takeya, et al., Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol Oncol, 2016. 10(6): p. 921-937. 48. Feng, J.H., K. Nakagawa-Goto, K.H. Lee, and L.F. Shyur, A novel plant sesquiterpene lactone derivative, DETD-35, suppresses BRAFV600E mutant melanoma growth and overcomes acquired vemurafenib resistance in mice. Mol Cancer Ther, 2016. 15(6): p. 1163-1176. 49. Shiau, J.Y., K. Nakagawa-Goto, K.H. Lee, and L.F. Shyur, Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget, 2017. 8(34): p. 56942-56958. 50. Shiau, J.Y., Y.Q. Chang, K. Nakagawa-Goto, K.H. Lee, and L.F. Shyur, Phytoagent deoxyelephantopin and its derivative inhibit triple negative breast cancer cell activity through ROS-mediated exosomal activity and protein functions. Front Pharmacol, 2017. 8: p. 398. 51. Frezza, C., S. Cipolat, and L. Scorrano, Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc, 2007. 2(2): p. 287-295. 52. Berard, A.R., J.P. Cortens, O. Krokhin, J.A. Wilkins, A. Severini, et al., Quantification of the host response proteome after mammalian reovirus T1L infection. PLoS One, 2012. 7(12): p. e51939. 53. Brand, M.D., Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med, 2016. 100: p. 14-31. 54. Rao, V.K., E.A. Carlson, and S.S. Yan, Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta, 2014. 1842(8): p. 1267-1272. 55. Szymanski, J., J. Janikiewicz, B. Michalska, P. Patalas-Krawczyk, M. Perrone, et al., Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int J Mol Sci, 2017. 18(7): p.1576. 56. Jiang, L., M. Li, Z. Wen, K. Wang, and Y. Diao, Prediction of mitochondrial proteins using discrete wavelet transform. Protein J, 2006. 25(4): p. 241-249. 57. Fukasawa, Y., J. Tsuji, S.C. Fu, K. Tomii, P. Horton, et al., MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics, 2015. 14(4): p. 1113-1126. 58. Tang, D., R. Kang, K.M. Livesey, G. Kroemer, T.R. Billiar, et al., High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab, 2011. 13(6): p. 701-711. 59. Szelechowski, M., N. Amoedo, E. Obre, C. Leger, L. Allard, et al., Metabolic reprogramming in amyotrophic lateral sclerosis. Sci Rep, 2018. 8(1): p. 3953. 60. Focusing on mitochondrial form and function. Nat Cell Biol, 2018. 20(7): p. 735. 61. Pieczenik, S.R. and J. Neustadt, Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol, 2007. 83(1): p. 84-92. 62. Modica-Napolitano, J.S. and V. Weissig, Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci, 2015. 16(8): p. 17394-17421. 63. Warburg, O., F. Wind, and E. Negelein, The metabolism of tumors in the body. J Gen Physiol, 1927. 8(6): p. 519-530. 64. Arimura, Y., T. Yano, M. Hirano, Y. Sakamoto, N. Egashira, et al., Mitochondrial superoxide production contributes to vancomycin-induced renal tubular cell apoptosis. Free Radic Biol Med, 2012. 52(9): p. 1865-1873. 65. Redza-Dutordoir, M. and D.A. Averill-Bates, Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta, 2016. 1863(12): p. 2977-2992. 66. Martinez-Reyes, I. and J.M. Cuezva, The H+-ATP synthase: a gate to ROS-mediated cell death or cell survival. Biochim Biophys Acta, 2014. 1837(7): p. 1099-1112. 67. Kwong, J.Q. and J.D. Molkentin, Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab, 2015. 21(2): p. 206-214. 68. Elustondo, P.A., M. Nichols, A. Negoda, A. Thirumaran, E. Zakharian, et al., Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov, 2016. 2: p. 16070. 69. Alavian, K.N., G. Beutner, E. Lazrove, S. Sacchetti, H.A. Park, et al., An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A, 2014. 111(29): p. 10580-10585. 70. Bonora, M., A. Bononi, E. De Marchi, C. Giorgi, M. Lebiedzinska, et al., Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle, 2013. 12(4): p. 674-683. 71. Price, M.J., D.G. Patterson, C.D. Scharer, and J.M. Boss, Progressive upregulation of oxidative metabolism facilitates plasmablast differentiation to a T-independent antigen. Cell Rep, 2018. 23(11): p. 3152-3159. 72. Hu, H., J. Nan, Y. Sun, D. Zhu, C. Xiao, et al., Electron leak from NDUFA13 within mitochondrial complex I attenuates ischemia-reperfusion injury via dimerized STAT3. Proc Natl Acad Sci U S A, 2017. 114(45): p. 11908-11913. 73. Tang, J., J. Hu, M. Xue, Z. Guo, M. Xie, et al., Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos. Nutr Metab (Lond), 2019. 16: p. 19. 74. Bogenhagen, D.F., Mitochondrial DNA nucleoid structure. Biochim Biophys Acta, 2012. 1819(9-10): p. 914-920. 75. Lee, W.L., T.N. Wen, J.Y. Shiau, and L.F. Shyur, Differential proteomic profiling identifies novel molecular targets of paclitaxel and phytoagent deoxyelephantopin against mammary adenocarcinoma cells. J Proteome Res, 2010. 9(1): p. 237-253. 76. Katsogiannou, M., C. Andrieu, V. Baylot, A. Baudot, N.J. Dusetti, et al., The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets. Mol Cell Proteomics, 2014. 13(12): p. 3585-3601. 77. Stewart, D.P., B. Koss, M. Bathina, R.M. Perciavalle, K. Bisanz, et al., Ubiquitin-independent degradation of antiapoptotic MCL-1. Mol Cell Biol, 2010. 30(12): p. 3099-3110. 78. Taniai, M., A. Grambihler, H. Higuchi, N. Werneburg, S.F. Bronk, et al., Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res, 2004. 64(10): p. 3517-3524. 79. Kang, R., K.M. Livesey, H.J. Zeh, 3rd, M.T. Lotze, and D. Tang, Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy, 2011. 7(10): p. 1256-1258. 80. Tang, H.Y., C.H. Wang, H.Y. Ho, P.T. Wu, C.L. Hung, et al., Lipidomics reveals accumulation of the oxidized cholesterol in erythrocytes of heart failure patients. Redox Biol, 2018. 14: p. 499-508. 81. Gramajo, A.L., L.C. Zacharias, A. Neekhra, S. Luthra, S.R. Atilano, et al., Mitochondrial DNA damage induced by 7-ketocholesterol in human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci, 2010. 51(2): p. 1164-1170. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78544 | - |
| dc.description.abstract | 乳癌是女性癌症死亡的主要原因之一。在所有乳癌亞型中,三陰性乳癌(ER− / PR−/ HER2−,TNBC)具有高度轉移性且沒有合適的標靶治療。我們先前的研究顯示,植物倍半萜類化合物deoxyelephantopin(DET)及其新穎的半有機合成衍生物(DETD-35)的處理對於人類TNBC細胞MDA-MB-231在體外和異種移植腫瘤小鼠中均具有抑制作用。值得注意的是,DET及DETD-35的處理都會顯著誘導活性氧化物(ROS)的產生,進而導致MDA-MB-231細胞中粒線體結構的損傷和功能障礙。我們假設DET和DETD-35在TNBC細胞中會誘導氧化壓力相關的粒線體功能障礙。因此,本研究旨在解密DET及DETD-35誘導的氧化壓力和粒線體功能障礙對TNBC細胞活性影響之機制。我們首先使用粒線體專一性超氧陰離子(O2−)指示劑—MitoSOX,觀察到DET及DETD-35在1小時內分別誘導增加1.52及1.35倍之粒線體超氧化物產生;以粒線體ETC複合物III(位點IIIQo)特異性超氧化物抑制劑S3QEL-2預先處理後,可部分降低DET誘導之超氧化物的產生,但對於DETD-35的處理並無影響。使用膜通透性染劑calcein AM與螢光淬滅劑CoCl2結合螢光顯微鏡分析顯示,DET及DETD-35在四小時處理下影響粒線體通透性轉換孔洞(mPTP)之開啟。此外,DET及DETD-35處理4小時之後,TNBC細胞內的ATP水平也分別降低0.53及0.66倍。這些結果支持這兩個化合物在TNBC細胞中均會導致粒線體功能障礙。我們進一步使用以iTRAQ為基礎的定量蛋白質體學技術,對控制組及兩種化合物處理1和4小時後之TNBC細胞內的粒線體進行比較性蛋白質體分析。根據三批次生物性重複之蛋白質體數據,我們發現DET及DETD-35處理後所共同誘導的粒線體蛋白質,其參與共同的粒線體相關生物過程/網絡,包括氧化磷酸化、粒線體功能障礙及ATP生合成等。粒線體內與轉譯延長和終止、減少粒線體去極化及活性氧化物生合成相關蛋白質是專一地在DET處理的組別發現,而與粒線體自噬及穀胱甘肽之結合有關的蛋白質則是專一地在DETD-35處理的組別發現。將DET及DETD-35處理而誘導表現量上升的粒線體跨膜電位及酮分解相關蛋白質HSP27及ACAT-2,被選擇來進一步驗證其表現量與化合物誘導的氧化壓力間之關聯。特別的是,預先處理活性氧化物清除劑(NAC)可以逆轉此兩個蛋白質因受到DET及DETD-35處理而誘導的表現。綜合言之,我們目前的實驗結果顯示,DET及DETD-35處理後對抗TNBC細胞的活性至少部分是透過粒線體功能和粒線體相關蛋白質表達的失調,而這些失調可能與化合物誘導之氧化壓力相關。針對DET及DETD-35處理具反應性的粒線體蛋白質的功能與機轉仍有待進一步研究。 | zh_TW |
| dc.description.abstract | Breast cancer is one of the major causes of cancer death in women. Among all breast cancer subtypes, triple negative breast cancer (ER−/PR−/HER2−, TNBC) is highly metastatic and currently there is no suitable targeted therapy available. Our previous study showed that phyto-sesquiterpene lactone deoxyelephantopin (DET) and its derivative (DETD-35), a novel semi-organically synthesized compound, have potent effects against human TNBC cell MDA-MB-231 activities in vitro and in xenograft tumor mouse model. Of note, treatment of either compound can significantly induce reactive oxygen species (ROS) production that subsequently caused structural damage and dysfunction of mitochondria in MDA-MB-231 cells. We hypothesized that DET and DETD-35 induce oxidative stress-associated mitochondria dysfunction in the TNBC cells. This study thus aimed to decipher the mechanistic insight of DET– and DETD-35–induced oxidative stress and mitochondria dysfunction against TNBC cell activity. We first observed that DET and DETD-35 induced 1.52- and 1.35-fold increase of mitochondrial superoxide production, respectively, within 1 h treatment examined using mitochondrial specific superoxide anion (O2−) indicator MitoSOX, while pretreatment with a mitochondrial ETC complex III (site IIIQo) specific superoxide inhibitor S3QEL-2 that can partially decrease DET–induced superoxide production, but had no effect on DETD-35 treatment. Fluorescence microscopy in couple with the staining of membrane-permeable dye calcein AM and fluorescence quencher CoCl2 showed that DET and DETD-35 affected mitochondrial permeability transition pore (mPTP) opening at 4 h treatment. Further, the intracellular ATP level in DET– and DETD-35–treated TNBC cells also decreased 0.53- and 0.66-fold, respectively, within 4 h treatment. These results support in part that both compounds cause mitochondrial dysfunction in TNBC cells. We further carried out comparative mitochondria proteome analysis of TNBC cells treated with vehicle and either compound for 1 and 4 h using iTRAQ-based quantitative proteomics approach. On the basis of the proteomics data from three biological replicates, we observed that DET– and DETD-35–responsive mitochondrial proteins were commonly involved in mitochondria-related biological processes/networks, including oxidative phosphorylation, mitochondrial dysfunction, synthesis of ATP, among others. Meanwhile, mitochondrial translational elongation and termination, decrease depolarization of mitochondria, and synthesis of ROS were unique in DET treatment, and autophagy of mitochondria, conjugation of glutathione were specifically observed in DETD-35 treatment. The observed up-regulated mitochondrial transmembrane potential-related protein HSP27 and ketolysis-related protein ACAT-2, upon DET and DETD-35 treatment were selected for further validation of their expression and correlation with compound-induced oxidative stress in MDA-MB-231 cells. Notably, pretreatment with ROS scavenger N-acetylcysteine (NAC) can reverse DET– and DETD-35–induced both protein expression levels in the TNBC cells. Together, our current results indicate that the anti-TNBC cell activity of DET and DETD-35 are at least in part through deregulation of mitochondrial functions and mitochondria-associated protein expression that are likely associated with compound induced oxidative stress. More in-depth molecular functions and mechanisms of DET– and DETD-35–responsive mitochondrial protein are warranted for further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:03:05Z (GMT). No. of bitstreams: 1 ntu-108-R06B22015-1.pdf: 4113160 bytes, checksum: 2fe5d3dbc357fcfadb340170c81ed47f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌 謝 II 摘 要 III Abstract V List of Figures X List of Tables XII Abbreviations XIV Chapter 1 Introduction 1 1.1 Current therapy for triple negative breast cancer (TNBC) 1 1.2 Mitochondria and oxidative stress 2 1.3 Highlights of current proteomics research on mitochondria 4 1.4 Anti-cancer sesquiterpene lactone deoxyelephantopin (DET) from medicinal plant Elephantopus scaber L. 7 1.5 The novel deoxyelephantopin derivatives (DETDs) 9 1.6 Study goals of the thesis 10 Chapter 2 Materials and methods 13 2.1 Chemicals and antibodies 13 2.2 Cell line and cell culture 13 2.3 Cell viability assay 14 2.4 Measurement of intracellular reactive oxygen species and superoxide levels 14 2.5 Isolation of mitochondria from TNBC cells 15 2.6 Western blot analysis 17 2.7 Measurement of mitochondrial superoxide levels 17 2.8 Mitochondrial permeability transition pore (mPTP) opening assay 18 2.9 Determination of intracellular ATP levels 19 2.10 Mitochondrial protein preparation, iTRAQ labeling, and LC-MS/MS analysis 20 2.11 Protein identification and bioinformatic analysis 21 2.12 Statistical analysis 22 Chapter 3 Results 23 3.1 DET and DETD-35 effects on ROS production and mitochondrial activities in MDA-MB-231 cells 23 3.1.1 DET and DETD-35 induced total ROS and mitochondrial superoxide production in MDA-MB-231 cells 23 3.1.2 DET and DETD-35 treatment induced mitochondrial permeability transition pore (mPTP) opening in MDA-MB-231 cells 25 3.1.3 DET and DETD-35 treatment decreased the intracellular ATP level in MDA-MB-231 cells 27 3.2 To investigate mitochondrial proteome of MDA-MB-231 cells responsive to DET and DETD-35 treatment 28 3.2.1 Comparative proteome analysis of significantly expressed compound-responsive proteins 28 3.2.2 Comparative proteome analysis of significantly expressed compound-responsive mitochondrial proteins 33 3.2.3 ROS scavenger N-acetylcysteine (NAC) pretreatment reverses the DET and DETD-35 effects on mitochondria-associated protein expression in TNBC cells 36 Chapter 4 Discussion 39 Chapter 5 Conclusions and future prospects 46 References 84 | - |
| dc.language.iso | en | - |
| dc.subject | 倍半?類化合物 | zh_TW |
| dc.subject | 三陰性乳癌 | zh_TW |
| dc.subject | 粒線體蛋白質體 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | DETD-35 | zh_TW |
| dc.subject | DET | zh_TW |
| dc.subject | mitochondrial proteome | en |
| dc.subject | Triple negative breast cancer | en |
| dc.subject | sesquiterpene lactone | en |
| dc.subject | DET | en |
| dc.subject | DETD-35 | en |
| dc.subject | oxidative stress | en |
| dc.title | Deoxyelephantopin及其衍生物DETD-35影響三陰性乳癌細胞中粒線體之蛋白質體並誘導氧化壓力介導的粒線體功能障礙 | zh_TW |
| dc.title | Deoxyelephantopin and its derivative DETD-35 affect mitochondrial proteome and induce oxidative stress-mediated mitochondrial dysfunction in triple negative breast cancer cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃啟彰;孫德芬;蕭培文;廖憶純 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Chang Huang;Der-Fen Suen;Pei-Wen Hsiao;Yi-Chun Liao | en |
| dc.subject.keyword | 三陰性乳癌,倍半?類化合物,DET,DETD-35,氧化壓力,粒線體蛋白質體, | zh_TW |
| dc.subject.keyword | Triple negative breast cancer,sesquiterpene lactone,DET,DETD-35,oxidative stress,mitochondrial proteome, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU201903837 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-17 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| Appears in Collections: | 生化科技學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-2.pdf Restricted Access | 4.02 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
