Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡偉博zh_TW
dc.contributor.advisorWei-Bor Tsaien
dc.contributor.author劉彥欣zh_TW
dc.contributor.authorYen-Hsin Liuen
dc.date.accessioned2021-07-11T15:02:57Z-
dc.date.available2024-08-26-
dc.date.copyright2019-08-27-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Fergal J., O. B., Biomaterials & scaffolds for tissue engineering. Materials Today 2011, 14 (3), 88-95.
2. Ma, P. X., Biomimetic materials for tissue engineering. Advanced Drug Delivery Review 2008, 60 (2), 184-98.
3. Vikas V. Gaikwad, A. B. P., Madhuri V. Gaikwad, Scaffolds for drug drlivery in tissue engineering. International Journal of Pharmaceutical Sciences and Nanotechnology 2008, 1 (2).
4. Zadegan, S.; Hosainalipour, M.; Rezaie, H. R.; Ghassai, H.; Shokrgozar, M. A., Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Materials Science and Engineering: C 2011, 31 (5), 954-961.
5. Liu, L.; Li, X.; Shi, X.; Wang, Y., Injectable alendronate-functionalized GelMA hydrogels for mineralization and osteogenesis. RSC Advances 2018, 8 (40), 22764-22776.
6. Kateri A. Moore, H. E., Ihor R. Lemischka, In Vitro Maintenance of Highly Purified, Transplantable Hematopoietic Stem Cells. Blood 2017, 89 (12), 11.
7. Tannishtha Reya, S. J. M., Michael F. Clarke, Irving L. Weissman, Stem cells, cancer, and cancer stem cells. Nature 2001, 414 (1), 7.
8. A. J. Friedenstein, I. I. P.-S., K. V. Petrakova, Osteogenesis in transplants of bone marrow cells. The Journal of Embryological Experimental Morphology 1966, 16 (3), 16.
9. Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., P., D. J., Propagation and senescence of human marrow stromal cells in culture: a simple colonyforming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology 1999, 107, 7.
10. Murphy, J. M.; Dixon, K.; Beck, S.; Fabian, D.; Feldman, A.; Barry, F., Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 2002, 46 (3), 704-13.
11. D’Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A., Howard,; A., G., Agerelated osteogenic potential of mesenchymal. w. Journal of Bone and Mineral Research 1999, 14, 8.
12. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K.,; Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W.,; Craig, S., Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 5.
13. Catherine M Kolf, E. C., Rocky S Tuan, Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy 2007, 9 (1), 10.
14. Barry, F. P.; Murphy, J. M., Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004, 36 (4), 568-84.
15. Fakhry, M.; Hamade, E.; Badran, B.; Buchet, R.; Magne, D., Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013, 5 (4), 136-48.
16. M.A. ARONOW, L. C. G., T.A. OWEN, M.S. TASSINARI, C.S. STEIN, J.B. LIAN, Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. JOURNAL OF CELLULAR PHYSIOLOGY 1990, 143 (2), 9.
17. A .Lomri, P. J. M., P.V.Tran, M.Hott, Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone 1988, 9 (3), 11.
18. Bruce Alberts AJ, J. L., Martin Raff, Keith Roberts, and Peter Walter, Molecular biology of the cell. ;New York:Garland Science 2002, 4.
19. McCabe LR, B. C., Kundu R, Harrison RJ, Dobner PR, Stein JL, Lian JB, Stein GS., Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 1996, 137 (10), 11.
20. Iu, M. F.; Kaji, H.; Sowa, H.; Naito, J.; Sugimoto, T.; Chihara, K., Dexamethasone suppresses Smad3 pathway in osteoblastic cells. J Endocrinol 2005, 185 (1), 131-8.
21. Ducy P, Z. R., Geoffroy V, Ridall AL, Karsenty G., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997, 89 (5), 8.
22. Liu, W.; Toyosawa, S.; Furuichi, T.; Kanatani, N.; Yoshida, C.; Liu, Y.; Himeno, M.; Narai, S.; Yamaguchi, A.; Komori, T., Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 2001, 155 (1), 157-66.
23. Kanatani, N.; Fujita, T.; Fukuyama, R.; Liu, W.; Yoshida, C. A.; Moriishi, T.; Yamana, K.; Miyazaki, T.; Toyosawa, S.; Komori, T., Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev Biol 2006, 296 (1), 48-61.
24. Nakashima K, Z. X., Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108 (1), 13.
25. Nishio, Y.; Dong, Y.; Paris, M.; O'Keefe, R. J.; Schwarz, E. M.; Drissi, H., Runx2- mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 2006, 372, 62-70.
26. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015, 6 (2), 105-21.
27. Amini, A. A.; Nair, L. S., Injectable hydrogels for bone and cartilage repair. Biomed Mater 2012, 7 (2), 024105.
28. Heck, T.; Faccio, G.; Richter, M.; Thony-Meyer, L., Enzyme-catalyzed protein crosslinking. Appl Microbiol Biotechnol 2013, 97 (2), 461-75.
29. Gohil, S. V.; Brittain, S. B.; Kan, H.-M.; Drissi, H.; Rowe, D. W.; Nair, L. S., Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. Journal of Materials Chemistry B 2015, 3 (27), 5511-5522.
30. Teixeira, L. S.; Feijen, J.; van Blitterswijk, C. A.; Dijkstra, P. J.; Karperien, M., Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 2012, 33 (5), 1281-90.
31. Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E., Chitosan—A versatile semisynthetic polymer in biomedical applications. Progress in Polymer Science 2011, 36 (8), 981-1014.
32. Manjusha Rani , A. A., Yuvraj Singh Negi, Review: Chitosan based hydrogel polymeric beads - As drug delivery system. Bioresources 2010, 5 (4), 43.
33. Jin, R.; Moreira Teixeira, L. S.; Dijkstra, P. J.; Karperien, M.; van Blitterswijk, C. A.; Zhong, Z. Y.; Feijen, J., Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30 (13), 2544-51.
34. Riccardo A. A. Muzzarelli, P. I., Solubility and structure of Ncarboxymethylchitosan. International Journal of Biological Macromolecules 1994, 16 (4), 4.
35. Weng, L.; Romanov, A.; Rooney, J.; Chen, W., Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials 2008, 29 (29), 3905-13.
36. Rocasalbas, G.; Francesko, A.; Tourino, S.; Fernandez-Francos, X.; Guebitz, G. M.; Tzanov, T., Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydr Polym 2013, 92 (2), 989-96.
37. Lu, M.; Liu, Y.; Huang, Y. C.; Huang, C. J.; Tsai, W. B., Fabrication of photocrosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym 2018, 181, 668-674.
38. Fu, X.; Kassim, S. Y.; Parks, W. C.; Heinecke, J. W., Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001, 276 (44), 41279-87.
39. Muzzarelli, R. A. A., Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers 2009, 77 (1), 1-9.
40. Kim, S.; Nimni, M. E.; Yang, Z.; Han, B., Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B Appl Biomater 2005, 75 (2), 442-50.
41. Mikolasch, A.; Schauer, F., Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 2009, 82 (4), 605-24.
42. Riccardo A.A.Muzzarelli, P. I., Wenshui Xia, Marcos Pinotti, Marco Tomasetti, Tyrosinase-mediated quinone tanning of chitinous materials. Carbohydrate Polymers 1994, 24 (4), 6.
43. Di Lullo, G. A.; Sweeney, S. M.; Korkko, J.; Ala-Kokko, L.; San Antonio, J. D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 2002, 277 (6), 4223-31.
44. Lee CH, S. A., Lee Y, Biomedical applications of collagen. International Journal of Pharmaceutics 2001, 221, 22.
45. Othmani, M.; Aissa, A.; Bac, C. G.; Rachdi, F.; Debbabi, M., Surface modification of calcium hydroxyapatite by grafting of etidronic acid. Applied Surface Science 2013, 274, 151-157.
46. Yang, Y.-H.; Liu, C.-H.; Liang, Y.-H.; Lin, F.-H.; Wu, K. C. W., Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pHresponsive release properties for intracellular drug delivery. Journal of Materials Chemistry B 2013, 1 (19), 2447.
47. Si, J.; Cui, Z.; Wang, Q.; Liu, Q.; Liu, C., Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(varepsiloncaprolactone)/ nanocellulose fibers. Carbohydr Polym 2016, 143, 270-8.
48. Singh, A., Hydroxyapatite, a biomaterial: Its chemical synthesis, characterization and study of biocompatibility prepared from shell of garden snail, Helix aspersa. Bulletin of Materials Science 2012, 35 (6), 8.
49. Fang B, W. Y., Tang TT, Gao C, Dai KR., Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. TISSUE ENGINEERING: Part A 2009, 15 (5), 8.
50. Liuyun, J.; Yubao, L.; Li, Z.; Jianguo, L., Preparation and properties of a novel bone repair composite: nano-hydroxyapatite/chitosan/carboxymethyl cellulose. J Mater Sci Mater Med 2008, 19 (3), 981-7.
51. Goonasekera, C. S.; Jack, K. S.; Cooper-White, J. J.; Grøndahl, L., Journal of Materials Chemistry Dispersion of hydroxyapatite nanoparticles in solution and in polycaprolactone composite scaffolds. B 2016, 4 (3), 409-421.
52. Gu, Y.; Huang, J., Ultrathin cellulose film coating of porous alumina membranes for adsorption of superoxide dismutase. Journal of Materials Chemistry B 2013, 1 (41), 5636.
53. Joshi, M. K.; Tiwari, A. P.; Maharjan, B.; Won, K. S.; Kim, H. J.; Park, C. H.; Kim, C. S., Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization. Carbohydr Polym 2016, 147, 104-113.
54. Zhou, C.; Wu, Q.; Yue, Y.; Zhang, Q., Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 2011, 353 (1), 116-23.
55. Fragal, E. H.; Cellet, T. S. P.; Fragal, V. H.; Companhoni, M. V. P.; Ueda-Nakamura, T.; Muniz, E. C.; Silva, R.; Rubira, A. F., Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohydr Polym 2016, 152, 734-746.
56. Chakrabarty, A.; Teramoto, Y., Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them. Polymers (Basel) 2018, 10 (5).
57. S.I. JINGA , G. V., A. STOICA-GUZUN, M. STROESCU , A.M. GRUMEZESCU ,C. BLEOTU, Biocellulose Nanowhiskers cement composites for endodontic use. Digest Journal of Nanomaterials and Biostructures 2014, 9 (2), 8.
58. Rodriguez, K.; Renneckar, S.; Gatenholm, P., Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 2011, 3 (3), 681-9.
59. Gong, Y.; Zhou, Q.; Gao, C.; Shen, J., In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomater 2007, 3 (4), 531-40.
60. Buxton, P. G.; Cobourne, M. T., Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro-facial repair . Oral Dis 2007, 13 (5), 452-60.
61. Hwal Suh, Y.-S. H., Jong-Eun Lee, Chang Dong Han, Jong-Chul Park, Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly L-lactic acid membrane. Biomaterials 2001, 22 (3), 12.
62. Neftaha Tazi, Z. Z., Younès Messaddeq, Luciana Almeida-Lopes, Lisinéia M Zanardi, Dennis Levinson, and Mahmoud Rouabhia, Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2012, 2 (61), 10.
63. Sun, S.-H.; Lee, I.-K.; Lee, J.-W.; Shim, I.-S.; Kim, S.-H.; Kim, K.-S., Simvastatin Induces Osteogenic Differentiation and Suppresses Adipogenic Differentiation in Primarily Cultured Human Adipose-Derived Stem Cells. Biomolecules and Therapeutics 2009, 17 (4), 353-361.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78542-
dc.description.abstract疾病、外傷、以及逐漸增加的平均壽命,使得骨頭移植與再生的重要性日以俱增。而在眾多的骨骼再生方式中,骨組織工程是一項嶄新且有潛力的領域。
在這項研究當中,主要是使用乙二醇幾丁聚醣接枝上3-(4-羥基苯基)丙酸所形成的水凝膠作為主體。並在其當中添加膠原蛋白、以及奈米纖維素塗布氫氧基磷灰石,期待這兩者的添加能改善水凝膠的機械強度、促進間質幹細胞的增生、並且誘導其進行硬骨分化。此外,辛伐他汀酸被添加於培養基中作使用,預期其能促進間質幹細胞的硬骨分化,而其分化效果則與將與傳統的分化培養基做比較。
實驗結果顯示,膠原蛋白以及奈米纖維素塗布氫氧基磷灰石的添加,有助於改善水凝膠的機械強度。但是加入了奈米纖維素塗布氫氧基磷灰石的水凝膠,其含水能力也會下降。
而在培養第七天後,可以發現各個水凝膠中的間質幹細胞皆還大量的存活,只有觀察到少數因為細胞凋亡而死亡的細胞。此外,膠原蛋白以及奈米纖維素塗布氫氧基磷灰石的添加,也使得細胞增生的數量大幅地上升。
從實驗中也可以得知,奈米纖維素塗布氫氧基磷灰石具有促進硬骨分化的能力,但是在鈣定量的測試中,添加了奈米纖維素塗布氫氧基磷灰石的組別並沒有比未添加的組別有更高的鈣含量。
而實驗結果也發現,辛伐他汀酸確實可以促進硬骨分化,但其分化效果並不如傳統分化培養基。此外,從鈣定量的結果中也發現,辛伐他汀酸對於鈣含量並沒有直接的影響。
zh_TW
dc.description.abstractDue to the disease, injury, and the increasing life expectancy, bone transplantation and regeneration become more and more important. Bone tissue engineering is the brandnew field for repairing damaged tissues.
In this study, 3-(4-hydroxyphenyl) propionic acid modified- glycol chitosan (HG)- based hydrogels were developed. Besides, collagen and cellulose nanocrystal- coated with hydroxyapatite (CNC-HAp) were added into the hydrogel, and were expected to improve the mechanical property of hydrogel, the proliferation of MSC, and the
osteoconductive effect. Moreover, simvastatin acid were dissolved in alpha-medium, expected to induce the osteogenic differentiation, and its osteogenic effect was compared with the traditional differential medium.
As the result, collagen and CNC-HAp enhanced the mechanical property of hydrogel.
However, the addition of CNC-HAp made the water uptake characterization of hydrogel became lower.
Besides, the live/ dead analysis showed that most of MSC lived well at 7 day, and there were only a little cells died which might due to the cell apoptosis. And the addition of collagen and CNC-HAp was also found to enhance the cell proliferation.
Moreover, CNC-HAp induce the osteogenic differentiation happened as shown in the results of ALP activity and mineralization. However, it was indicated that it did not
result in a higher calcium content compared with the group without CNC-HAp.
As for the simvastatin acid, it was found that it could induce the osteogenic differentiation happened, but its effect was lower than the traditional differential medium. Moreover, it seemed to have no directly impact on calcium content.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:02:57Z (GMT). No. of bitstreams: 1
ntu-108-R06524049-1.pdf: 2332072 bytes, checksum: 296b2c55448ba0d452fd859c5b27f867 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 ................................................................................................................................... I
摘要 ................................................................................................................................ IV
Abstract ........................................................................................................................... VI
Content ......................................................................................................................... VIII
List of figures ............................................................................................................... XIII
List of tables ............................................................................................................... XVII
Chapter 1 Introduction ................................................................................................... 1
1.1 Tissue engineering ........................................................................................ 1
1.1-1 Overview of tissue engineering ................................................................ 1
1.1-2 Application of bone tissue engineering .................................................... 3
1.2 Bone cells ..................................................................................................... 4
1.2-1 Overview of stem cell ..................................................................................... 4
1.2-2 Mesenchymal stem cells (MSC) ..................................................................... 5
1.2-3 Osteoblasts ...................................................................................................... 6
1.2-4 Osteoblast differentiation ................................................................................ 8
1.3 Hydrogel ..................................................................................................... 10
1.4 3-(4-hydroxyphenyl) propionic acid- modified glycol chitosan (HG)- based hydrogel .................................................................................................................. 12
1.4-1 3-(4-hydroxyphenyl) propionic acid- modified glycol chitosan (HG) .......... 12
1.4-2 Cross-linker: Laccase .................................................................................... 15
1.4-3 Collagen ........................................................................................................ 16
1.4-4 Cellulose nanocrystal- coated with hydroxyapatite (CNC-HAp) ................. 17
1.5 Research motivation and specific aim ........................................................ 19
1.6 Research framework ................................................................................... 21
Chapter 2 Materials and Methods ................................................................................ 22
2.1 Chemicals ...................................................................................................... 22
2.1.1 Synthesis of cellulose nanocrystal- coated with hydroxyapatite (CNCHAp)
............................................................................................................... 22
2.1.2 Synthesis of 3-(4-hydroxyphenyl) propionic acid- modified glycol
chitosan (HG) ................................................................................................. 23
2.1.3 Characterization of 3-(4-hydroxyphenyl) propionic acid-modified glycol
chitosan (HG) ................................................................................................. 23
2.1.4 Preparation of 3-(4-hydroxyphenyl) propionic acid-modified glycol
chitosan (HG) hydrogel combined with cellulose nanocrystal-coated with
hydroxyapatite (CNC-HAp) ........................................................................... 23
2.1.5 Water uptake and compressive analysis ................................................ 24
2.1.6 Cell culture ............................................................................................ 25
2.1.7 DNA quantification ............................................................................... 26
2.1.8 Alkaline phosphate (ALP) activity ........................................................ 26
2.1.9 Mineralization ........................................................................................ 26
2.1.10 Calcium Quantification ....................................................................... 27
2.2 Experimental instrument ............................................................................... 27
2.3 Experimental materials .................................................................................. 29
2.4 Solution formula ............................................................................................ 29
2.5 Methods ......................................................................................................... 34
2.5.1 Synthesis of cellulose nanocrystal- coated with hydroxyapatite (CNCHAp)
............................................................................................................... 34
2.5.2 Synthesis of 3-(4-hydroxyphenyl) propionic acid- modified glycol
chitosan (HG) ................................................................................................. 35
2.5.3 Characterization of 3-(4-hydroxyphenyl) propionic acid-modified glycol
chitosan (HG) ................................................................................................. 36
2.5.4 Preparation of 3-(4-hydroxyphenyl) propionic acid-modified glycol
chitosan (HG) hydrogel combined with cellulose nanocrystal-coated with hydroxyapatite (CNC-HAp) ........................................................................... 37
2.5.5 Water uptake and compressive analysis ................................................ 38
2.5.6 Cell culture ............................................................................................ 39
2.5.7 DNA quantification ............................................................................... 41
2.5.8 Alkaline phosphate (ALP) activity ........................................................ 42
2.5.9 Alizarin red staining (ARS) ................................................................... 42
2.5.10 Calcium quantification ........................................................................ 43
2.5.11 Statistic Analysis .................................................................................. 44
Chapter 3 Characterization of HG- based hydrogel ....................................................... 50
3.1 Synthesis and characterization of cellulose nanocrystal-coated with
hydroxyapatite (CNC-HAp) ................................................................................... 50
3.2 Synthesis and characterization of 3-(4-hydroxyphenyl) propionic acid- modified
glycol chitosan (HG) .............................................................................................. 51
3.3 Characterization of 3-(4-hydroxyphenyl) propionic acid-modified glycol
chitosan (HG)- based hydrogel ............................................................................... 52
3.4 Live/Dead assay ................................................................................................ 53
3.5 DNA Quantification .......................................................................................... 54
3.6 Alkaline phosphate (ALP) activity ................................................................... 54
3.7 Alizarin red staining (ARS) .............................................................................. 55
3.8 Calcium quantification ..................................................................................... 56
3.9 Discussion ......................................................................................................... 57
Chapter 4 Conclusions ................................................................................................. 84
Chapter 5 Future works ............................................................................................... 86
Reference ........................................................................................................................ 87
Supporting Information .................................................................................................. 92
Appendix ........................................................................................................................ 93
-
dc.language.isoen-
dc.subject辛伐他汀酸zh_TW
dc.subject乙二醇幾丁聚醣zh_TW
dc.subject奈米纖維素zh_TW
dc.subject骨組織工程zh_TW
dc.subject氫氧基磷灰石zh_TW
dc.subjecthydroxyapatiteen
dc.subjectbone tissue engineeringen
dc.subjectsimvastatin aciden
dc.subjectcellulose nanocrystalen
dc.subjectglycol chitosan hydrogelen
dc.title乙二醇幾丁聚醣水凝膠結合奈米纖維素塗布氫氧基磷灰石在骨組織工程的應用zh_TW
dc.titleGlycol chitosan hydrogel combined with hydroxyapatite- coated cellulose nanocrystal for bone tissue engineeringen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡曉雯;何明樺zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword乙二醇幾丁聚醣,奈米纖維素,氫氧基磷灰石,辛伐他汀酸,骨組織工程,zh_TW
dc.subject.keywordglycol chitosan hydrogel,cellulose nanocrystal,hydroxyapatite,simvastatin acid,bone tissue engineering,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU201903903-
dc.rights.note未授權-
dc.date.accepted2019-08-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2024-08-27-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
2.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved