請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78540完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧述諄(Shu-Chun Teng) | |
| dc.contributor.author | Ting-Yu Liu | en |
| dc.contributor.author | 劉亭妤 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:02:51Z | - |
| dc.date.available | 2024-01-08 | |
| dc.date.copyright | 2021-02-25 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-12 | |
| dc.identifier.citation | Bracher, A., and Verghese, J. (2015). The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2, 10. Cabrera, Y., Dublang, L., Fernandez-Higuero, J.A., Albesa-Jove, D., Lucas, M., Viguera, A.R., Guerin, M.E., Vilar, J.M.G., Muga, A., and Moro, F. (2019). Regulation of Human Hsc70 ATPase and Chaperone Activities by Apg2: Role of the Acidic Subdomain. Journal of Molecular Biology 431, 444-461. Chen, Y.C., Jiang, P.H., Chen, H.M., Chen, C.H., Wang, Y.T., Chen, Y.J., Yu, C.J., and Teng, S.C. (2018). Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife. Chiang, H.L., Terlecky, S.R., Plant, C.P., and Dice, J.F. (1989). A ROLE FOR A 70-KILODATON HEAT-SHOCK PROTEIN IN LYSOSOMAL DEGRADATION OF INTRACELLULAR PROTEINS. Science 246, 382-385. Chiaw, P.K., Hantouche, C., Wong, M.J.H., Matthes, E., Robert, R., Hanrahan, J.W., Shrier, A., and Young, J.C. (2019). Hsp70 and DNAJA2 limit CFTR levels through degradation. PLoS One 14. Choi, Y.J., Li, X.Y., Hydbring, P., Sanda, T., Stefano, J., Christie, A.L., Signoretti, S., Look, A.T., Kung, A.L., von Boehmer, H., et al. (2012). The Requirement for Cyclin D Function in Tumor Maintenance. Cancer Cell 22, 438-451. Corcoles-Saez, I., Dong, K.Z., Johnson, A.L., Waskiewicz, E., Costanzo, M., Boone, C., and Cha, R.S. (2018). Essential Function of Mec1, the Budding Yeast ATM/ATR Checkpoint-Response Kinase, in Protein Homeostasis. Developmental Cell 46, 495. Cuervo, A.M. (2010). Chaperone-mediated autophagy: selectivity pays off. Trends in Endocrinology and Metabolism 21, 142-150. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T., and Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292-1295. Dhamad, A.E., Zhou, Z., Zhou, J., and Du, Y. (2016a). Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction. PLoS One 11. Dhamad, A.E., Zhou, Z.Q., Zhou, J.H., and Du, Y.C. (2016b). Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER alpha) and Biochemical Characterization of the ER alpha-Hsp70 Interaction. PLoS One 11. Dice, J.F. (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends in Biochemical Sciences 15, 305-309. Diehl, J.A., Yang, W.S., Rimerman, R.A., Xiao, H., and Emili, A. (2003). Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Molecular and Cellular Biology 23, 1764-1774. Gao, X., Carroni, M., Nussbaum-Krammer, C., Mogk, A., Nillegoda, N.B., Szlachcic, A., Guilbride, D.L., Saibil, H.R., Mayer, M.P., and Bukau, B. (2015). Human Hsp70 Disaggregase Reverses Parkinson's-Linked α-Synuclein Amyloid Fibrils. Mol Cell 59, 781-793. Gross, J.M., and Yee, D. (2002). How does the estrogen receptor work? Breast Cancer Res 4, 62-64. Hande, K.R. (1998). Etoposide: Four decades of development of a topoisomerase II inhibitor. European Journal of Cancer 34, 1514-1521. Hou, Y.J., Dan, X.L., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., and Bohr, V.A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology 15, 565-581. Kao, C.H., Ryu, S.W., Kim, M.J., Wen, X.M., Wimalarathne, O., and Paull, T. (2020). Growth-Regulated Hsp70 Phosphorylation Regulates Stress Responses and Prion Maintenance. Molecular and Cellular Biology 40. Kim, S.T., Lim, D.S., Canman, C.E., and Kastan, M.B. (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. Journal of Biological Chemistry 274, 37538-37543. Kumada, K., Fuse, N., Tamura, T., Okamori, C., and Kurata, S. (2019). HSP70/DNAJA3 chaperone/cochaperone regulates NF-kappa B activity in immune responses. Biochemical and Biophysical Research Communications 513, 947-951. Lane, C.A., Hardy, J., and Schott, J.M. (2018). Alzheimer's disease. European Journal of Neurology 25, 59-70. Lee, J.H., Mand, M.R., Kao, C.H., Zhou, Y., Ryu, S.W., Richards, A.L., Coon, J.J., and Paull, T.T. (2018). ATM directs DNA damage responses and proteostasis via genetically separable pathways. Science Signaling 11. Lempiainen, H., and Halazonetis, T.D. (2009). Emerging common themes in regulation of PIKKs and PI3Ks. Embo Journal 28, 3067-3073. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The Hallmarks of Aging. Cell 153, 1194-1217. Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., III, Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166. Meacham, G.C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D.M. (1999). The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. Embo Journal 18, 1492-1505. Moran, O. (2017). The gating of the CFTR channel. Cellular and Molecular Life Sciences 74, 85-92. Pemberton, S., Madiona, K., Pieri, L., Kabani, M., Bousset, L., and Melki, R. (2011). Hsc70 Protein Interaction with Soluble and Fibrillar alpha-Synuclein. Journal of Biological Chemistry 286, 34690-34699. Pemberton, S., and Melki, R. (2012). The interaction of Hsc70 protein with fibrillar α-Synuclein and its therapeutic potential in Parkinson's disease. Communicative Integrative Biology 5, 94-95. Reich, S.G., and Savitt, J.M. (2019). Parkinson's Disease. Medical Clinics of North America 103. Ronco, C., Martin, A.R., Demange, L., and Benhida, R. (2017). ATM, ATR, CHK1, CHK2, and WEE1 inhibitors in cancer and cancer stem cells. Medchemcomm 8, 295-319. Soto, C., and Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nature Neuroscience 21, 1332-1340. Stricher, F., Macri, C., Ruff, M., and Muller, S. (2013). HSPA8/HSC70 chaperone protein Structure, function, and chemical targeting. Autophagy 9, 1937-1954. Sun, L.P., Lian, Y.L., Ding, J.Y., Meng, Y.L., Li, C., Chen, L., and Qiu, P.M. (2019). The role of chaperone-mediated autophagy in neurotoxicity induced by alpha-synuclein after methamphetamine exposure. Brain and Behavior 9. Vogiatzi, T., Xilouri, M., Vekrellis, K., and Stefanis, L. (2008). Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. Journal of Biological Chemistry 283, 23542-23556. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78540 | - |
| dc.description.abstract | 神經性退化性疾病例如阿茲海默症、帕金森氏症以及亨丁頓舞蹈症的共同特徵為大腦中不正常的蛋白堆積。近期有越來越多研究指出老化在神經性退化疾病中扮演著至關重要的角色。另外,先前已被報導過會造成老化的許多壓力也會同時引起DNA受損。當DNA受損時,ATM與ATR這兩個關鍵的激酶會被活化並磷酸化下游傳遞蛋白以促進DNA修復路徑。而根據先前實驗室的研究發現伴侶蛋白 (chaperone/co-chaperone)的磷酸化會影響彼此之間的結合,進而導致蛋白堆疊。因此,我們推測受到壓力活化的ATM/ATR會磷酸化下游的伴侶蛋白並且導致神經性退化性疾病的發生。為了找出ATM/ATR的受質,我們參考先前的蛋白質體分析並選出11個伴侶蛋白受質,並發現HSPA4以及HSPA8的磷酸化可能參與調控蛋白質堆疊。HSPA8可以幫助穩定細胞週期蛋白D1,並減少病理蛋白-syn的堆積。HSPA8 S153A及S329D突變大幅降低細胞週期蛋白D1的穩定性。除此之外,HSPA4同HSPA8可以幫助細胞週期蛋白D1的穩定,S552D突變則會降低此效果。過表現HSPA4一樣可以減少-syn的聚集,而S552A突變更進一步降低了-syn堆疊程度。 | zh_TW |
| dc.description.abstract | Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), are characterized by distinct protein aggregates in the brain. Recently, increasing researches had pointed out that aging plays a vital role in neurodegenerative diseases. Additionally, numerous stresses which were previously identified to precipitate aging would also lead to DNA damage. In response to DNA damage, ATM and ATR, two crucial kinases would be activated and phosphorylate downstream transducer proteins to mediate DNA damage response. Based on our previous study, we found that the phosphorylation of a co-chaperone would impede its association with a chaperone, thus leads to protein aggregation. As a result, we speculated that the phosphorylation of chaperones/co-chaperones by ATM/ATR under stress may contribute to neurodegenerative diseases. Thus, to find out ATM/ATR substrates, we screened a proteomic analysis and selected 11 chaperones/co-chaperones for further evaluation. In my screen, I found that the phosphorylation of HSPA4 and HSPA8 might participate in the regulation of protein aggregation. HSPA8 enhances the stability of cyclin D1 and downregulates the aggregation of the pathological protein, -syn. HSPA8 S153A and S329D mutations greatly reduce the stability of cyclin D1. As for HSPA4, it also promotes the stability of cyclin D1, yet S552D mutation fails to promote cyclin D1’s stability. Overexpression of HSPA4 reduces the aggregation of -syn, and S552A further lowers the levels of aggregates. Together, my study reveals that double-strand break may boost protein folding through phosphorylations of the ATM and ATR substrates in the protein folding system. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:02:51Z (GMT). No. of bitstreams: 1 U0001-0701202121534300.pdf: 2869409 bytes, checksum: b991f17e806ca966077b659b80ca7f8c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 中文摘要 ii ABSTRACT iii CONTENTS v INTRODUCTION 1 MATERIALS AND METHODS 5 Cell culture and transfection 5 Plasmids 5 Reagents and antibodies 6 Western blot analysis 6 Immunoprecipitation 7 Dot blot analysis 8 RESULTS 9 Identification of chaperones/co-chaperones among ATM/ATR substrates 9 The increased interaction between HSPA8 and ERa may be mediated by the allosteric effect or other proteins 9 HSPA8 S153A significantly decreases the stability of cyclin D1 in NIH3T3 cells, and S329A also reduces the levels of cyclin D1 in SH-SY5Y cells 10 HSPA8 S153 mutations do not alter its association with DNAJA3 11 HSPA8 reduces the rotenone-induced a-synuclein aggregation 12 HSPA8 S329A mutation hampers the degradation of CFTR 13 The phosphorylation of HSPA4 decreases cyclin D1 levels 14 HSPA4 S552A mutation decreases rotenone-induced a-syn aggregation 15 HSPA4 S552 mutations have few effects on CFTR levels 15 The interaction between HSPA4L and ERa is not affected by its T761 mutation 16 DISCUSSION 17 FIGURES AND FIGURE LEGENDS 21 Figure 1. The interactions of HSPA8 WT and S153A with ERa were enhanced under stress conditions. 21 Figure 2. The phosphorylations of HSPA8 S153 and S329 are crucial for the stability of cyclin D1. 23 Figure 3. The association between HSPA8 and DNAJA3 was not affected by the phosphorylation of S153. 25 Figure 4. HSPA8 downregulated the accumulation of a-syn but not the phosphorylation of it. 26 Figure 5. HSPA8 S329A mutation interrupted the degradation of CFTR. 27 Figure 6. HSPA8 structure and chaperone cycle. 28 Figure 7. Etoposide treatment, as well as the phospho-mimicking S552D mutant of HSPA4, reduced the levels of cyclin D1. 30 Figure 8. HSPA4 S552A mutation caused a lower level of a-syn aggregation compared with S552D. 32 Figure 9. HSPA4 S552 mutations do not change the CFTR protein levels. 34 Figure 10. The phosphorylation of HSPA4L T761 does not disturb the binding of ERa with HSPA4L. 35 TABLES 36 Table 1. ATM/ATR-mediated chaperone/ co-chaperone candidates 36 Table 2. Oligo sequences for plasmid construction and mutagenesis. 38 REFERENCES 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 神經性退化性疾病 | zh_TW |
| dc.subject | 伴侶蛋白 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | neurodegenerative diseases | en |
| dc.subject | ATM/ATR | en |
| dc.subject | aging | en |
| dc.subject | phosphorylation | en |
| dc.subject | chaperone | en |
| dc.subject | co-chaperone | en |
| dc.title | 探討伴侶蛋白在神經性退化性疾病中的調控 | zh_TW |
| dc.title | To Investigate the Regulation of Chaperones and Co-chaperones in Neurodegenerative Diseases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳青錫(Ching-Shyi Wu),林敬哲(Jing-Jer Lin),林靜嫻(Chin-Hsien Lin) | |
| dc.subject.keyword | 神經性退化性疾病,伴侶蛋白,老化,磷酸化, | zh_TW |
| dc.subject.keyword | neurodegenerative diseases,chaperone,co-chaperone,phosphorylation,ATM/ATR,aging, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU202100029 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-01-08 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0701202121534300.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
