請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明汝 | zh_TW |
| dc.contributor.advisor | Ming-Ju Chen | en |
| dc.contributor.author | 洪英愷 | zh_TW |
| dc.contributor.author | Ying-Kai Hung | en |
| dc.date.accessioned | 2021-07-11T15:02:47Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 行政院農業委員會。2019。統計年報。
汪婷。2012。臺灣水鹿鹿茸於傷口癒及即呼吸道發炎小鼠之研究。國立台灣大學生物資源暨農學院動物科學技術學系。碩士論文。 李春義、趙世臻和王文英。1988。養鹿。中國農業科技出版社。北京市。 洪偉庭。2015。探討Lactobacillus mali改善腸炎疾病之功效。國立台灣大學生物資源暨農學院動物科學技術學系。碩士論文。 郭卿雲、王妙鈴、康獻仁和王治華。2009。台灣水鹿鹿茸四分切段成分分析。畜產研究。42:245-253 簡群育。2014。鑑定臺灣水鹿鹿茸冷水萃取物中免疫調節有效成分之研究。國立台灣大學生物資源暨農學院動物科學技術學系。碩士論文。 戴廷宇。2010。臺灣水鹿鹿茸於金黃色葡萄球菌感染即卵白蛋白致敏小鼠模式之免疫調節影響。國立台灣大學生物資源暨農學院動物科學技術學系。碩士論文。 Aroniadis, O. C., and L. J. Brandt. 2013. Fecal microbiota transplantation: past, present and future. Curr. Opin. Gastroenterol. 29:79-84. Ashraf, M. A., and S. Tadashi. 2014. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157: H7 and Shigella spp. from meat and dairy products in Egypt. Int. J. Food Microbiol. 168:57-62 Arrieta, M. C., K. Madsen, J. Doyle, and J. Meddings. 2009. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut. 58:41-48. Atreya, R., J. Mudter, S. Finotto, J. Müllberg, T. Jostock, S. Wirtz, M. Schütz, B. Bartsch, M. Holtmann, C. Becker, D. Strand, J. Czaja, J. F. Schlaak, H. A. Lehr, F. Autschbach, G. Schürmann, N. Nishimoto, K. Yoshizaki, H. Ito, T. Kishimoto, P. R. Galle, S. Rose-John, and M. F. Neurath. 2000. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nature Med. 6:583. Balamurugan, K. 2016. HIF‐1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer. 138:1058-1066. Beltzer, A., T. Kaulisch, T. Bluhmki, T. Schoenberger, B. Stierstorfer, and D. Stiller. 2016. Evaluation of quantitative imaging biomarker in the DSS colitis model. Mol. Imaging Biol. 54:2325-2340. Besten, G. D., K. V. Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54:2325-2340. Biancheri, P., A. Di Sabatino, F. Ammoscato, F. Facciotti, F. Caprioli, R. Curciarello, S. S. Hoque, A. Ghanbari, I. Joe‐Njoku, P. Giuffrida, L. Rovedatti, J. Geginat, G. R. Corazza, and T. T. Macdonald. 2014. Absence of a role for interleukin‐13 in inflammatory bowel disease. Eur. J. Immunol. 44:370-385. Biddle, A., L. Stewart, J. Blanchard, and S. Leschine. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 5:627-640. Bäcker, V., F.-Y. Cheung, J. T. Siveke, J. Fandrey, and S. Winning. 2017. Knockdown of myeloid cell hypoxia-inducible factor-1α ameliorates the acute pathology in DSS-induced colitis. PLoS One. 12:0190074. Brückner, M., P. Lenz, M. M. Mücke, F. Gohar, P. Willeke, D. Domagk, and D. Bettenworth. 2016. Diagnostic imaging advances in murine models of colitis. World J. Gastroenterol. 22:996. Breuer, R. I., K. H. Soergel, B. A. Lashner, M. L. Christ, S. B. Hanauer, A. Vanagunas, J. M. Harig, A. Keshavarzian, M. Robinson, J. H. Sellin, D. Weinberg D. E. Vidican, K. L. Flemal, and A. W. Rademaker. 1997. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut. 40:485-491. Cencič, A. and T. Langerholc. 2010. Functional cell models of the gut and their applications in food microbiology – a review. Int. J. Food Microbiol. 141:4-14. Chang, P. V., L. Hao, S. Offermanns, and R. Medzhitov. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U.S.A. 111:2247-2252. Chassaing, B., J. D. Aitken, M. Malleshappa, and M. Vijay‐Kumar. 2014. Dextran sulfate sodium (DSS)‐induced colitis in mice. Curr. Protoc. Immunol. 104:15-25. Chassaing, B., and A. Darfeuille–Michaud. 2011. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 140:1720-1728. Chassaing, B., N. Rolhion, A. D. Vallée, S. Y. Salim, M. Prorok-Hamon, C. Neut, B. J. Campbell, J. D. Söderholm, J. P. Hugot, J. F. Colombel, and A. Darfeuille-Michaud. 2011. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J. Clin. Invest. 121:966-975. Chelakkot, C., J. Ghim, N. Rajasekaran, J. S. Choi, J. H. Kim, M. H. Jang, Y. K. Shin, P.-G. Suh, and S. H. Ryu. 2017. Intestinal epithelial cell-specific deletion of PLD2 alleviates DSS-induced colitis by regulating occludin. Sci. Rep. 7:1573. Chen, Y. P., and M.J. Chen. 2013. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on germ-free mice. PLoS One. 8:e78789. Chen, Y. P., P. J. Hsiao, W. S. Hong, T. Y. Dai, and M. J. Chen. 2012. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 95:63-74. Cleary, T. G. 2004. The role of Shiga-toxin-producing Escherichia coli in hemorrhagic colitis and hemolytic uremic syndrome. Semin Pediatr Infect Dis. 15: 260-265 Coccia, M., O. J. Harrison, C. Schiering, M. J. Asquith, B. Becher, F. Powrie, and K. J. Maloy. 2012. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 209:1595-1609. Cresci, G., L. E. Nagy, and V. Ganapathy. 2013. Lactobacillus GG and tributyrin supplementation reduce antibiotic-induced intestinal injury. JPEN. J. Parenter Enteral Nutr. 37:763-774. 2011 Dai, T. Y., C. H. Wang, K. N. Chen, I. N. Huang, W. S. Hong, S. Y. Wang, Y. P. Chen, C. Y. Kuo, and M. J. Chen. 2011. The antiinfective effects of velvet antler of Formosan sambar deer (Cervus unicolor swinhoei) on Staphylococcus aureus-infected mice. Evid-Based Compl. Alt. 2011:534069. Danese, S., J. Rudziński, W. Brandt, J. L. Dupas, L. Peyrin-Biroulet, Y. Bouhnik, D. Kleczkowski, P. Uebel, M. Lukas, M. Knutson, F. Erlandsoon, M. B. Hansen, and S. Keshav. 2015. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 64:243-249. Danese, D. S. 2012. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 61:918-932. Daniel, A.W., L. Helen, T. Sue, and W. Shawn. 2007. IL-1β causes an increase in intestinal epithelial tight junction permeability. Cell Metab. 178:4641-4649. Das, P., P. Goswami, T. K. Das, T. Nag, V. Sreenivas, V. Ahuja, S. K. Panda, S. D. Gupta, and G. K. Makharia. 2012. Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch. 460:261-270. Den Besten. G., K. Lange, R. Havinga, T. Van Dijk, A. Gerding, K. Van Eunen, M. Muller, A. Groen, G. Hooiveld, B. Bakker and D. Rejjngoud. 2013. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipid. Am. J. Physiol. Gastrointest. Liver Physiol. 12:900-910. Di Sabatino, A., S. L. Pender, C. L. Jackson, J. D. Prothero, J. N. Gordon, L. Picariello, L. Rovedatti, G. Docena, G. Monteleone, and D. S. Rampton. 2007. Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 133:137-149. Donohoe, D. R., L. B. Collins, A. Wali, R. Bigler, W. Sun, and S. Bultman. 2012. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell. 48:612-626. Dos Reis, R. S., and F. Horn. 2010. Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut. Pathog. 2:8. Duan, L. X., X. Li, N. Y. Wang, J. Jin, L. J. Wang, and Q. l. Zhou. 2008. Promotion effect of velvet antler polypeptides on proliferation of hepatic cells and liver regeneration. J. Chin. Pharm. Sci. 43:27. Duncan, S. H., G. L. Hold, A. Barcenilla, C. S. Stewart, H. J. Flint. 2002. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 52:1615-1620. Eaton, K. A., C. Fontaine, D. Friedman, N. Conti, and C. J. Alteri. 2017. Pathogenesis of colitis in germ-free mice infected with EHEC O157: H7. Vet. Pathol. 54(4):710-719. Edelblum, K. L., and J. R. Turner. 2009. The tight junction in inflammatory disease: communication breakdown. Curr. Opin. Pharmacol. 9:715-720. Eeckhaut, V., K. Machiels, C. Perrier, C. Romero, S. Maes, B. Flahou, M. Steppe, F. Haesebrouck, B. Sas, R. Ducatelle, S. Vermeire, and F. V. Immerseel. 2013. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 62(12):1745-1752. Elayaraja, S., N. Annamalai, P. Mayavu, and T. Balasubramanian. 2014. Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pac. J. Trop. Biomed. 4:305-311. Elias, B. C., T. Suzuki, A. Seth, F. Giorgianni, G. Kale, L. Shen, J. R. Turner, A. Naren, D. M. Desiderio, and R. Rao. 2009. Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J. Biol. Chem. 284:1559-1569. Erickson, A. R., B. L. Cantarel, R. Lamendella, Y. Darzi, E. F. Mongodin, C. Pan, M. Shah, J. Halfvarson, C. Tysk, B. Henrissat, J. Raes, N. C. Verberkmoes, C. M. Fraser, R. L. Hettich and J. K. Henrissat. 2012. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS One. 7:e49138. Escaffit, F., F. Boudreau, and J. F. Beaulieu. 2005. Differential expression of claudin‐2 along the human intestine: Implication of GATA‐4 in the maintenance of claudin‐2 in differentiating cells. J. Cell. Physiol. 203:15-26. Fallon, P. G., S. J. Ballantyne, N. E. Mangan, J. L. Barlow, A. Dasvarma, D. R. Hewett, A. McIlgorm, H. E. Jolin, and A. N. J. McKenzie. 2006. Identification of an interleukin (IL)-25–dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203(4):1105-1116. Farhadi, A., A. Banan, J. Fields, and A. Keshavarzian. 2003. Intestinal barrier: an interface between health and disease. J. Gastroenterol. Hepatol. 18:479-497. Ferrier, L., L. Mazelin, N. Cenac, P. Desreumaux, A. Janin, D. Emilie, J. F. Colombel, R. G. Villar, J. Fioramonti, and L. Bueno. 2003. Stress-induced disruption of colonic epithelial barrier: role of interferon-γ and myosin light chain kinase in mice. Gastroenterology. 125:795-804. Fischer, A., M. Gluth, U-F. Pape, B. Wiedenmann, F. Theuring, and D. C. Baumgart. 2013. Adalimumab prevents barrier dysfunction and antagonizes distinct effects of TNF-α on tight junction proteins and signaling pathwats in intetinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 304:970-979. Fort, M. M., J. Cheung, D. Yen, J. Li, S. M. Zurawski, S. Lo, S. Menon, T. Clifford, B. Hunte, R. Lesley, T. Muchamuel, S. D. Hurst, G. Zurawski, M. W. Leach, D. M. Gorman, and D. M. Rennick. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 15:985-995. Francescone, R., V. Hou, and S. I. Grivennikov. 2015. Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis. 21:409-418. Franks, I. J. 2010. Hypoxia-inducible factor protects intestinal mucosa from Clostridium difficile induced injury. Nat. Rev. 7:476-477. Fuss, I. J., and W. Strober. 2008. The role of IL-13 and NK T cells in experimental and human ulcerative colitis. Mucosal. Immunol. 1:S31. Günther, C., E. Martini, N. Wittkopf, K. Amann, B. Weigmann, H. Neumann, M. Waldner, S. M. Hedrick, S. Tenzer, M. F. Neurath and C. Becker. 2011. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature. 477:335. Garrett, W. S., J. I. Gordon, and L. H. Glimcher. 2010. Homeostasis and inflammation in the intestine. Cell. 140:859-870. Gu, L. J., E. K. Mo, Z. H. Yang, Z. M. Fang, B. S. Sun, C. Y. Wang, X. M. Zhu, J. F. Bao, and C. K. Sung. 2008. Effects of red deer antlers on cutaneous wound healing in full-thickness rat models. Asian. australas. J. Anim. Sci. 21:277-290. Guan, S. W., L. X. Duan, Y. Y. Li, B. X. Wang, and Q. J. Zhou. 2006. A novel polypeptide from Cervus nippon Temminck proliferation of epidermal cells and NIH3T3 cell line. Acta Biochim. Pol. 53:395. Guarner, F. 2008. What is the role of the enteric commensal flora in IBD? Inflamm. Bowel Dis. 14:S83-S84. Gunzel, D., P. Florian, J. F. Richter, H. Troeger, J. D. Schulzke, M. Fromm, and A. H. Gitter, 2006. Restitution of single-cell defects in the mouse colon epithelium differs from that of cultured cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1496-R1507. Guven, S., M. Kucukevcilioglu, A. H. Durukan, S. Aykas, and M. Guney. 2018. Rare cause of acute postoperative endophthalmitis: Gemella morbillorum. J. Cataract. Refract. Sug. 6:40-42. Hall, G., S. Kurosawa, D. J. I. Stearns-Kurosawa, and immunity. 2018. Dextran sulfate sodium colitis facilitates colonization with shiga toxin-producing Escherichia coli: a novel murine model for the study of shiga toxicosis. Appl. Environ. Microbiol. 86:e00530-00518. Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. Troost, and R. J. Brummer. 2008. The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27:104-119. Hanson, M. L., J. A. Hixon, W. Li, B. K. Felber, M. R. Anver, C. A. Stewart, B. M. Janelsins, S. K. Datta, W. Shen, M. H. Mclean, and S, K, Durum. 2014. Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology. 146:210-221. e213. Heller, F., P. Florian, C. Bojarski, J. Richter, M. Christ, B. Hillenbrand, J. Mankertz, A. H. Gitter, N. Bürgel, M. Fromm, M. Zeitz, I. Fuss, W. Strober, and J. D. Schulzke. 2005. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 129:550-564. Heller, F., I. J. Fuss, E. E. Nieuwenhuis, R. S. Blumberg, and W. Strober. 2002. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 17:629-638. Holtmann, M. H., E. Douni, M. Schütz, G. Zeller, J. Mudter, H. A. Lehr, J. Gerspach, P. Scheurich, P. R. Galle, G. Kollias, and M. F. Neurath. 2002. Tumor necrosis factor‐receptor 2 is up‐regulated on lamina propria T cells in Crohn's disease and promotes experimental colitis in vivo. Eur. J. Immunol. 32:3142-3151. Hu, T. X., W. Guo, M. M. Xi, J. J. Yan, X. X. Wu, Y. H. Wang, Y. R. Zhu, C. Wang and A. D. Wen. 2016. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against mycocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway. Int. J. Mol. Med. 38(1) : 83-94. Hubatsch, I., E. G. Ragnarsson, and P. Artursson. 2007. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols 2:2111-2119. Hueber, W., B. E. Sands, S. Lewitzky, M. Vandemeulebroecke, W. Reinisch, P. D. Higgins, J. Wehkamp, B. G. Feagan, M. D. Yao, M. J. G. Karczewski, J. Karczewski, N. Pezous, S. Bek, G. Bruin, B. Mellgard, C. Berger, M. Londei, A. P. Bertolino, G. Tougas, and S. P. Travis. 2012. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 61:1693-1700. Ileva, L.V., M. Bernado, M. R. Young, L. A. Riffle, J. L. Tatum, J. D. Kalen and P. L. Choyke. 2014. In vivo MRI virtual colonography in a mouse model of colon cancer. Nat. Protoc. 9: 2682-2692. Irrazábal, T., A. Belcheva, S. E. Girardin, A. Martin and D. J. Philpott. 2014. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell. 54:309-320. Ishikawa, T., and B. Nanjo. 2009. Dietary cycloinulooligosaccharides enhance intestinal immunoglobulin A production in mice. Biosci. Biotechnol. Biochem. 73:677-682. Je, J. Y., P. J. Park, D. H. Lim, B. T. Jeon, K. H. Kho, and R. Ahn. 2011. Antioxidant, anti-acetylcholinesterase and composition of biochemical components of Russian deer velvet antler extracts. Korean J Food Sci Anim Resour. 31:349-355. Jeon, B., S. Kim, S. Lee, P. Park, S. Sung, J. Kim, and S. Moon. 2009. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mamm. Biol. 74:374-380. Jiang, Q., X. He, Y. Zou, Y. Ding, H. Li, and H. Chen. 2018. Altered gut microbiome promotes proteinuria in mice induced by Adriamycin. AEB Express. 8:31. Jin, S., D. Zhao, C. Cai, D. Song, J. Shen, A. Xu, Y. Qiao, Z. Ran, and Q. Zheng. 2017. Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification. Sci. Rep. 7:43662. Jin, W., and C. Dong. 2013. IL-17 cytokines in immunity and inflammation. Emerg. Microbes. Infect. 2:e60. Kamada, N., T. Hisamatsu, H. Honda, T. Kobayashi, H. Chinen, T. Takayama, M. T. Kitazume, S. Okamoto, K. Koganei, A. Sugita, T. Kanai, and T. Hibi. 2009. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn's disease. Inflamm. Bowel. Dis. 16:568-575. Kaplan, G. G. 2015. The global burden of IBD. From 2015 to 2025. Nature Reviews. Gastroenterology & Hepatology 12:720-727 Karczewski, J., F. J. Troost, I. Konings, J. Dekker, M. Kleerebezem, R. M. Brummer, and J. M. Wells. 2010. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. 298:G851-G859. Karhausen, J., G. T. Furuta, J. E. Tomaszewski, R. S. Johnson, S. P. Colgan, and V. H. Haase. 2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114:1098-1106. Katakura, K., J. Lee, D. Rachmilewitz, G. Li, L. Eckmann, and E. Raz. 2005. Toll-like receptor 9–induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115:695-702. Kelly, C. J., L. Zheng, E. L. Campbell, B. Saeedi, C. C. Scholz, A. J. Bayless, K. E. Wilson, L. E. Glover, D. J. Kominsky, A. Magnuson, T. L. Weir, S. F. Ehrentraut, C. Pickel, K. A. Kuhn, J. M. Lanis, V. Nguyen, C. T. Taylor, and S. P. Colgan. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 17:662-671. Kim, H. S., J. H. Cheon, E. S. Jung, J. Park, S. Aum, S. J. Park, S. Eun, J. Lee, U. Rüther, G. S. H. Yeo, M. Ma, K. S. Park, T. Naito, Y. Kakuta, J. H. Lee, W. H. Kim, and M. G. Lee. 2017. A coding variant in FTO confers susceptibility to thiopurine-induced leukopenia in East Asian patients with IBD. Inflamm. Bowel Dis. 66:1926-1935. Kim, K. H., K. S. Kim, B. J. Choi, K. H. Chung, Y. C. Chang, S. D. Lee, K. K. Park, H. M. Kim, and C. J. Kim. 2005. Anti-bone resorption activity of deer antler aqua-acupunture, the pilose antler of Cervus korean TEMMINCK var. mantchuricus Swinhoe (Nokyong) in adjuvant-induced arthritic rats. J. Ethnopharmacol. 96:497-506. Kim, K. H., E. J. Lee, K. Kim, S. Y. Han, and G. J. Jhon. 2004. Modification of concanavalin A–dependent proliferation by phosphatidylcholines isolated from deer antler, Cervus elaphus. Nutrition 20:394-401. Kitajima, S., S. Takuma, and M. Morimoto. 2000. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 49:9-15. Koh, A., F. D. Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 165:1332-1345. Koninkx, J. F., P. C. Tooten, and J. J. Malago. 2010. Probiotic bacteria induced improvement of the mucosal integrity of enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis 857. J. Funct. Foods. 2:225-234. Kotlarz, D., R. Beier, D. Murugan, J. Diestelhorst, O. Jensen, K. Boztug, D. Pfeifer, H. Kreipe, E. D. Pfister, and U. J. G. Baumann. 2012. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 143:347-355. Krug, S. M., J. D. Schulzke, and M. Fromm. 2014. Tight junction, selective permeability, and related diseases. In: Seminars in cell & developmental biology. p 166-176. Kuo, C. J., K. H. Yu, L. C. See, C. T. Chiu, M. Y. Su, C. M. Hsu, C. F. Kuo, M. J. Chiou, J. R. Liu and H. W. Wang. 2015. The trend of inflammatory bowel diseases in Taiwan: a population-based study. Dig. Dis. Sci. 60:2454-2462. Kuo, C. Y., Y. T. Cheng, S. T. Ho, C. C. Yu and M. J. Chen. 2018. Comparison of anti-inflammatory effect and protein profile between the water extracts from Formosan sambar deer and red deer. J. Food Drug Anal. 26:1275-1282. Kuo, C. Y., T. Wang, T. Y. Dai, C. H. Wang, K. N. Chen, Y. P. Chen and M. J. Chen. 2012. Effect of the velvet antler of Formosan sambar deer (Cervus unicolor swinhoei) on the prevention of an allergic airway response in mice. Evid. Based. Complement. Alternat. Med. 2012 : 481318. Kverka, M., Z. Zakostelska, K. Klimesova, D. Sokol, T. Hudcovic, T. Hrncir, P. Rossmann, J. Mrazek, J. Kopecny, E. F. Verdu and H. T.laskalova-Hogenova. 2011. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin. Exp. Immuno. 163:250-259. Lameris, A. L., S. Huybers, K. Kaukinen, T. H. Mäkelä, R. J. Bindels, and J. G. Hoenderop. 2013. Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scandinavian journal of gastroenterology 48:58-69. Landy, J., E. Ronde, N. English, S. K. Clark, A. L. Hart, S. C. Knight, P. J. Ciclitira, and H. O. Al-Hassi. 2016. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J. Gastroenterol. 22:3117. Laroui, H., S. A. Ingersoll, H. C. Liu, M. T. Baker, S. Ayyadurai, M. A. Charania, F. Laroui, Y. Yan, S. V. Sitaraman, and D. Merlin. 2012. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One. 7:e32084. Lee, S. H. 2015. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest. Res. 13:11. Lepage, P., R. Häsler, M. E. Spehlmann, A. Rehman, A. Zvirbliene, A. Begun, S. Ott, L. Kupcinskas, J. Doré, A. Raelder, and S. Schreiber. 2011. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 141:227-236. Li, Y., Y. Wang, Y. Liu, Y. Wang, X. Zuo, Y. Li, and X. Lu. 2014. The possible role of the novel cytokines IL-35 and IL-37 in inflammatory bowel disease. Mediators. Inflamm. 2014 Li, Y., Z. Y. Xie, T. Gao, L. Li, Y. Chen, D. Xiao, W. Liu, B. Zou, B. Lu, X. Tian, B. Han, Y. Guo, S. B. Zhang, L. Lin, M. Wang, P. Li and Q. Liao. 2019. A holistic view into gallic acid-induced attenuation in colitis based on the microbiome-metabolomics snalysis. Food Res. Int. Li, Y., Y. Zhao, R. Tang, and X. Qu. 2010. Preventive and therapeutic effects of antler collagen on osteoporosis in ovariectomized rats. Afr. J. Biotechnol. 9:6437-6441. Lin, H., Y. An, F. Hao, Y. Wang, and H. Tang. 2016. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Sci. Rep. 6:21618. Lin, M. Y., M. R. de Zoete, J. P. van Putten, and K. Strijbis. 2015. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases. Front. Immunol. 6:554. Louis, P., P. Young, G. Holtrop, and H. Flint. 2010. Diversity of human colonic butyrate‐producing bacteria revealed by analysis of the butyryl‐CoA: acetate CoA‐transferase gene. Environ. Microbiol. 12:304-314. Lutgendorff, F., R. M. Nijmeijer, P. A. Sandström, L. M. Trulsson, K.-E. Magnusson, H. M. Timmerman, L. P. van Minnen, G. T. Rijkers, H. G. Gooszen, and L. M. Akkermans. 2009. Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS One. 4:e4512. Machiels, K., M. Joossens, J. Sabino, V. De Preter, I. Arijs, V. Eeckhaut, V. Ballet, K. Claes, F. Van Immerseel, and K. Verbeke. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Inflamm. Bowel Dis. 63:1275-1283. Macia, L., J. Tan, A. T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. I. McKenzie, A. Hijikata, and C. Wong. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6:6734. Marafini, I., I. Monteleone, V. Dinallo, D. Di Fusco, V. De Simone, F. Laudisi, M. C. Fantini, A. Di Sabatino, F. Pallone, and G. Monteleone. 2016. CCL20 is negatively regulated by TGF-β1 in intestinal epithelial cells and reduced in Crohn’s disease patients with a successful response to Mongersen, a Smad7 antisense oligonucleotide. J. Crohns Colitis. 11:603-609. Mennigen, R., K. Nolte, E. Rijcken, M. Utech, B. Loeffler, N. Senninger, and M. Bruewer. 2009. Probiotic mixture VSL# 3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Exerc. Physiol. 296:G1140-G1149. Michael, C. A., T. M. Peter, and G. P. Eric. 2016. Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 14:609. Moayyedi, P., M. G. Surette, P. T. Kim, J. Libertucci, M. Wolfe, C. Onischi, D. Armstrong, J. K. Marshall, Z. Kassam, and W. Reinisch. 2015. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 149:102-109. e106. Mokhtari, Z., D. L. Gibson, and A. Hekmatdoost. 2017. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv. Nut. 8:240-252. Molodecky, N. A., S. Soon, D. M. Rabi, W. A. Ghali, M. Ferris, G. Chernoff, E. I. Benchimol, R. Panaccione, S. Ghosh, and H. W. Barkema. 2012. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 142:46-54. e42. Monteleone, G., M. C. Fantini, S. Onal, F. Zorzi, G. Sancesario, S. Bernardini, E. Calabrese, F. Viti, I. Monteleone, L. Biancone and F. Pallone. 2012. Phase l clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol. Ther. 20(4):870-876. Morgan, X. C., T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney, D. V. Ward, J. A. Reyes, S. A. Shah, N. LeLeiko, and S. B. Snapper. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Gastroenterology. 13:R79. Morita, K., M. Furuse, K. Fujimoto, and S. Tsukita. 1999. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. U.S.A. 96:511-516. Munyaka, P. M., M. F. Rabbi, E. Khafipour, and J. E. Ghia. 2016. Acute dextran sulfate sodium (DSS)‐induced colitis promotes gut microbial dysbiosis in mice. J. Basic Microbiol. 56:986-998. Nardi, R., M. Santoro, J. Oliveira, A. Pimenta, V. Ferraz, L. Benchetrit, and J. Nicoli. 2005. Purification and molecular characterization of antibacterial compounds produced by Lactobacillus murinus strain L1. J. Basic Microbiol. 99:649-656. Nastasi, C., M. Candela, C. M. Bonefeld, C. Geisler, M. Hansen, T. Krejsgaard, E. Biagi, M. H. Andersen, P. Brigidi, N. Ødum T. Litman and A. Woetmann. 2015. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5:16148. Nava, P., S. Koch, M. G. Laukoetter, W. Y. Lee, K. Kolegraff, C. T. Capaldo, N. Beeman, C. Addis, K. Gerner-Smidt, and I. Neumaier. 2010. Interferon-γ regulates intestinal epithelial homeostasis through converging β-catenin signaling pathways. Immunity. 32:392-402. Neurath, M. F., I. Fuss, B. L. Kelsall, E. Stüber, and W. Strober. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182:1281-1290. Neurath, M. F., and S. P. Travis. 2012. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut. 61:1619-1635. Neurath, M. F. J. N. R. I. 2014. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14:329. Ng, S., J. Benjamin, N. McCarthy, C. Hedin, A. Koutsoumpas, S. Plamondon, C. Price, A. Hart, M. Kamm, and A. J. Forbes. 2010. Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflamm. Bowel Dis. 17:2027-2037. Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science. 336:1262-1267. O’Connor Jr, W., M. Kamanaka, C. J. Booth, T. Town, S. Nakae, Y. Iwakura, J. K. Kolls, and R. A. Flavell. 2009. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Rev. Immunol. 10:603-609. Oshima, T., H. Miwa, T. Joh. hepatology. 2008. Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol. 23:S146-S150. Owyang, A. M., C. Zaph, E. H. Wilson, K. J. Guild, T. McClanahan, H. R. Miller, D. J. Cua, M. Goldschmidt, C. A. Hunter, and R. A. Kastelein. 2006. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203:843-849. Pan, F., Y. Zhao, S. Zhu, H. Li, Z. Fang, Y. Qin, H. Wu, H. Xing, Y. Pang, and M. Zhang. 2011. An effiecient way to extract pilose antler polypeptide and evaluation its role in the immune response. In: Proceedings 2011 International Conference on Human Health and Biomedical Engineering. p 434-437. Park, J., M. Kim, S. G. Kang, A. H. Jannasch, B. Cooper, J. Patterson, and C. H. Kim. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8:80. Partecke, I. L., A. Kaeding, M. Sendler, N. Albers, J. P. Kuhn, S. Sven, S. Roese, F. Seubert, S. Diedrich, S. Kuehn, U. F. Weiss, J. Materle, M. M. Lerch, H. Stefan, N. Hostem, C. D. Heidecke, R. Puls and W. V. Bernstoff. 2011. In vivo imaging of pancreatic tumours and lover metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer. 11 : 40. Peng, L., Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139:1619-1625 Perelmuter, K., M. Fraga, and P. Zunino. 2008. In vitro activity of potential probiotic Lactobacillus murinus isolated from the dog. J. Appl. Microbiol. 104:1718-1725. Perrier, C., G. De Hertogh, J. Cremer, S. Vermeire, P. Rutgeerts, G. Van Assche, D. E. Szymkowski, and J. L. Ceuppens. 2012. Neutralization of membrane TNF, but not soluble TNF, is crucial for the treatment of experimental colitis. Inflamm. Bowel Dis. 19:246-253. Peyrin-Biroulet, L. 2010. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol Dietol. 56:233-243. Pickert, G., C. Neufert, M. Leppkes, Y. Zheng, N. Wittkopf, M. Warntjen, H.-A. Lehr, S. Hirth, B. Weigmann, and S. Wirtz. 2009. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206:1465-1472. Poritz, L. S., L. R. Harris, A. A. Kelly, W. A. Koltun, and sciences. 2011. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig. Dis. Sci. 56:2802. Powrie, F., M. W. Leach, S. Mauze, S. Menon, L. B. Caddle, and R. L. Coffman. 1994. Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RB CD4+ T cells. Immunity. 1:553-562. Prasad, S., R. Mingrino, K. Kaukinen, K. L. Hayes, R. M. Powell, T. T. MacDonald, and J. E. Collins. 2005. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Sci. Rep 85:1139. Ramana, C. V., M. P. Gil, R. D. Schreiber, and G. R. Stark. 2002. Stat1-dependent and-independent pathways in IFN-γ-dependent signaling. Int. Trends Immun. 23:96-101. Rees, V. J. 1998. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 114:385-391. Reinisch, W., D. W. Hommes, G. Van Assche, J. F. Colombel, J.-P. Gendre, B. Oldenburg, A. Teml, K. Geboes, H. Ding, and L. Zhang. 2006. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon γ antibody, in patients with moderate to severe Crohn’s disease. Inflamm. Bowel Dis. 55:1138-1144. Ricaboni, D., M. Mailhe, S. Khelaifia, D. Raoult, M. Million. 2016. Romboutsia timonensis, a new species isolated from human gut. New Microbes New Infect. 12:6-7. Rooks, M. G., and W. S. Garrett. 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16:341. Rosenblatt, J., M. C. Raff, and L. P. J. C. B. Cramer. 2001. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin-and myosin-dependent mechanism. Curr. Biol. 11:1847-1857. Rosenthal, R., S. Milatz, S. M. Krug, B. Oelrich, J.-D. Schulzke, S. Amasheh, D. Günzel, and M. Fromm. 2010. Claudin-2, a component of the tight junction, forms a paracellular water channel. Int. J cell Biol. 123:1913-1921. Round, J. L., and S. K. Mazmanian. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U. S. A. 07:12204-12209. Ruan, Z., S. Mi, L. Zhou, Y. Zhou, J. Li, W. Liu, Z. Deng, and Y. Yin. 2016. Chlorogenic acid enhances intestinal barrier by decreasing MLCK expression and promoting dynamic distribution of tight junction proteins in colitic rats. J. Funct. Foods. 26:698-708. Saitou, M., M. Furuse, H. Sasaki, J.-D. Schulzke, M. Fromm, H. Takano, T. Noda, and S. Tsukita. 2000. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell. 11:4131-4142. Salim, S. A. Y., and J. D. Söderholm. 2010. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17:362-381. Sambuy, Y., I. De Angelis, G. Ranaldi, M. L. Scarino, A. Stammati, and F. Zucco. 2005. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21:1-26. Sakuraba, A., T. Sato, N. Kamada, M. Kitazume, A. Sugita and T. Hibi. 2009. Th1/ Th17 immune response is induced by mesednteric lymph node dendritic cells in Crohn’s disease. Gastroenterology. 137:1736-1745. Sartor, R. B. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology. 134:577-594. Scharl, M., G. Paul, K. E. Barrett, and D. F. McCole. 2009. AMP-activated protein kinase mediates the interferon-γ-induced decrease in intestinal epithelial barrier function. Agric. Biol. Chem. 284:27952-27963. Schmitz, H., C. Barmeyer, M. Fromm, N. Runkel, H. D. Foss, C. J. Bentzel, E. O. Riecken, and J. D. Schulzke. 1999. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology. 116:301-309. Schnabl, B., and D. A. Brenner. 2014. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 146:1513-1524. Schneeberger, E. E., and R. D. Lynch. 1992. Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. Lung Cell Mol. Physiol. 262:L647-L661. Schreiber, S., R. N. Fedorak, O. H. Nielsen, G. Wild, C. N. Williams, S. Nikolaus, M. Jacyna, B. A. Lashner, A. Gangl, and P. Rutgeerts. 2000. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Gastroenterology. 119:1461-1472. Schulzke, J., A. Gitter, J. Mankertz, S. Spiegel, U. Seidler, S. Amasheh, M. Saitou, S. Tsukita, and M. Fromm. 2005. Epithelial transport and barrier function in occludin-deficient mice. BBA-BIOMEMBRANES. 1669:34-42. Shang, Q., X. Shan, C. Cai, J. Hao, G. Li, G. Yu. 2016. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food. Funct. 7:3224-3232. Shappell, N. W. 2003. Ergovaline toxicity on Caco-2 cells as assessed by MTT, alamarBlue, and DNA assays. In Vitro Cell. Dev. Biol. Plant. 39:329-335. Shen, L., C. R. Weber, and J. R. Turner. 2008. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. Int. J. Cell Biol. 181:683-695. Shinde, T., A. P. Perera, R. Vemuri, S. V. Gondalia, A. V. Karpe, D. J. Beale, S. Shastri, B. Southam, R. Eri, and R. Stanley. 2019. Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD. Nutrients 11:818. Siegmund, B., G. Fantuzzi, F. Rieder, F. Gamboni-Robertson, H. A. Lehr, G. Hartmann, C. A. Dinarello, S. Endres, A. Eigler. 2001. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Integrative. and C. Physiology. 281:R1264-R1273. Singh, U. P., N. P. Singh, E. A. Murphy, R. L. Price, R. Fayad, M. Nagarkatti, and P. S. Nagarkatti. 2016. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine. 77:44-49. Smillie, C. S., J. Sauk, D. Gevers, J. Friedman, J. Sung, I. Youngster, E. L. Hohmann, C. Staley, A. Khoruts, M. J. Sadowsky. 2018. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 23:229-240. e225. Sokol, H., B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-Humarán, J. J. Gratadoux, S. Blugeon, C. Bridonneau, J. P. Furet, and G. J. Corthier. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U. S. A. 105:16731-16736. Sokol, H., P. Seksik, J. Furet, O. Firmesse, I. Nion‐Larmurier, L. Beaugerie, J. Cosnes, G. Corthier, P. Marteau, and J. J. I. B. D. Doré. 2009. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15:1183-1189. Solomon, L., S. Mansor, P. Mallon, E. Donnelly, M. Hoper, M. Loughrey, S. Kirk, and K. Gardiner. 2010. The dextran sulphate sodium (DSS) model of colitis: an overview. Comp. Clin. Path. 19:235-239. Sommer, F., and F. Bäckhed. 2013. The gut microbiota masters of host development and physiology. Nat. Rev. Microbiol. 11:227. Stepanenko, A., and V. Dmitrenko. 2015. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 574:193-203. Strober, W., and I. J. Fuss. 2011. Pro-Inflammatory Cytokines in the Pathogenesis of IBD. Gastroenterology. 140:1756-1767. Strober, W., I. J. Fuss, and R. S. Blumberg. 2002. The immunology of mucosal models of inflammation. Auuu. Rev. Immunol. 20:495-549. Su, L., S. C. Nalle, L. Shen, E. S. Turner, G. Singh, L. A. Breskin, E. A. Khramtsova, G. Khramtsova, P. Y. Tsai, and Y. X. Fu. 2013. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology. 145:407-415. Su, L., L. Shen, D. R. Clayburgh, S. C. Nalle, E. A. Sullivan, J. B. Meddings, C. Abraham, and J. R. Turner. 2009. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Ital. J. Gastroenterol Hepatol. 136:551-563. Sun, M., W. Wu, Z. Liu, and Y. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Ital. J. Gastroenterol Hepatol. 52:1-8. Sunwoo, H., T. Nakano, and J. S. Sim. 1997. Effect of water-soluble extract from antler of wapiti (Cervus elaphus) on the growth of fibroblasts. Can. J. Anim. Sci. 77:343-345. Suttie, J. M. and P. Harris. 2000. Clinical properties of deer velvet. Positive Health. 54:32-38. Takagi, R., K. Sasaki, D. Sasaki, I. Fukuda, K. Tanaka, K.I. Yoshida, A. Kondo, and R. Osawa. 2016. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One. 11:e0160533. Tanaka, H., M. Takechi, H. Kiyonari, G. Shioi, A. Tamura, and S. Tsukita. 2015. Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut. 64:1529-1538. Torres, J., S. Danese, and J. F. Colombel. 2013. New therapeutic avenues in ulcerative colitis: thinking out of the box. Gut. 62:1642-1652. Torri, T., K. Kanemitsu, T. Wada, S. Itoh, K. Kinugawa and A. Hagiwara. 2010. Measurement of short-chain fatty acids in human faeces using high performance liquid chromatography : specimen stability. Ann. Clin. Biochem. 47:447-52. Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, and N. L. Harris. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159. Troy, A. E., C. Zaph, Y. Du, B. C. Taylor, K. J. Guild, C. A. Hunter, C. J. Saris, and D. Artis. 2009. IL-27 regulates homeostasis of the intestinal CD4+ effector T cell pool and limits intestinal inflammation in a murine model of colitis. J. Immunol. 183:2037-2044. Tseng, S. H., C. H. Sung, L. G. Chen, Y. J. Lai, W. S. Chang, H. C. Sung, and C. C. Wang. 2014. Comparison of chemical compositions and osteoprotective effects of different sections of velvet antler. J. Ethnopharmacol. 151:352-360. Turksen, K., and T. C. Troy. 2004. Barriers built on claudins. J. Cell. Sci. 117:2435-2447. Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9:799. Turner, J. R. 2006. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am. J. Pathol. 169:1901-1909. Turner, M. D., B. Nedjai, T. Hurst, and D. J. Pennington. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. BBA-MPL. CELL. RES. 1843:2563-2582. Uhlig, H., B. McKenzie, S. Hue, C. Thompson, B. Joyce-Shaikh, N. Robinson, S. Buonocore, D. Cua, and F. Powrie. 2007. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 166 Van best, N., P. L. Jansen, and S. S. J. H. i. Rensen. 2015. The gut microbiota of nonalcoholic fatty liver disease: current methods and their interpretation. Hepatol. Int. 9:406-415. Van den Brande, J. M., T. C. Koehler, Z. Zelinkova, R. J. Bennink, A. A. te Velde, F. J. ten Cate, S. J. van Deventer, M. P. Peppelenbosch, and D. W. Hommes. 2007. Prediction of antitumour necrosis factor clinical efficacy by real-time visualisation of apoptosis in patients with Crohn’s disease. Gut. 56:509-517. Vernia, P., V. Annese, G. Bresci, G. d’Albasio, R. d’Incà, S. Giaccari, M. Ingrosso, C. Mansi, G. Riegler, and D. J. E. j. o. c. i. Valpiani. 2003. Topical butyrate improves efficacy of 5‐ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur. J. Clin. Invest. 33:244-248. Vetrano, S., M. Rescigno, M. R. Cera, C. Correale, C. Rumio, A. Doni, M. Fantini, A. Sturm, E. Borroni, and A. Repici. 2008. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 135:173-184. Vinolo, M. A., E. Hatanaka, R. H. Lambertucci, P. Newsholme, and R. Curi. 2009. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochem. Funct. 27:48-55. Vinolo, M. A., H. G. Rodrigues, E. Hatanaka, F. T. Sato, S. C. Sampaio, and R. Curi. 2011. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 22:849-855. Walmsley, S. R., K. A. Cadwallader, and E. R. Chilvers. 2005. The role of HIF-1α in myeloid cell inflammation. Trends Immunol. 26:434-439. Wang, B. X., A. J.. Liu, X. J. Cheng. Q. G. Wang, G. R. Wei and J. C. Cui. 1985. Anti-ulcer action of the polysaccharides isolated from pilose antler. Acta. Pharmaceu. Sin. 20:321-325. Wang, F., W. V. Graham, Y. Wang, E. D. Witkowski, B. T. Schwarz, and J. R.Turner. 2005. Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166:409-419. Wang, H.-B., P.-Y. Wang, X. Wang, Y.-L. Wan, Y. C. Liu. 2012. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57:3126-3135. Wang, H., P. Shi, L. Zuo, J. Dong, J. Zhao, Q. Liu, and W. Zhu. 2016. Dietary non-digestible polysaccharides ameliorate intestinal epithelial barrier dysfunction in IL-10 knockout mice. J. Crohns Colitis. 10:1076-1086. Wang, S. Y., Y. F. Ho, Y. P. Chen, and M. J. Chen. 2015. Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiol. 46:494-500. Wang, Y., Y. Liu, A. Sidhu, Z. Ma, C. McClain, and W. Feng. 2012. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G32-G41. Watson, A. J., S. Chu, L. Sieck, O. Gerasimenko, T. Bullen, F. Campbell, M. McKenna, T. Rose, and M. H. Montrose. 2005. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 129:902-912. Wei, S. C., M. J. Shieh, M. C. Chang, Y. T. Chang, C. Y. Wang, and J. M. Wong. 2012. Long-term follow-up of ulcerative colitis in Taiwan. J. Chin. Med. Assoc. 75:151-155. Willing, B. P., J. Dicksved, J. Halfvarson, A. F. Andersson, M. Lucio, Z. Zheng, G. Järnerot, C. Tysk, J. K. Jansson, and L. Engstrand. 2010. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastrpeterology. 139:1844-1854. e1841. Wills, E. S., D. M. Jonkers, P. H. Savelkoul, A. A. Masclee, M. J. Pierik, and J. Penders. 2014. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS One. 9:e90981. Wirtz, S., U. Billmeier, T. Mchedlidze, R. S. Blumberg, and M. F. Neurath. 2011. Interleukin-35 mediates mucosal immune responses that protect against T-cell–dependent colitis. Gastroenterology. 141:1875-1886. Wirtz, S., C. Neufert, B. Weigmann, and M. F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2:541-546. Wirtz, S., and M. F. Neurath. 2007. Mouse models of inflammatory bowel disease. Adv. Drug Deliv. Rev. 59:1073-1083. Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12:1295. Xu, L., C. Ma, X. Huang, W. Yang, L. Chen, A. J. Bilotta, S. Yao, and Y. Cong. 2018. Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. J. Imminol. 200:53 Yamamoto, M., K. Yoshizaki, T. Kishimoto, and H. Tito. 2000. IL-6 is required for the development of Th1 cell-mediated murine colitis. J. Imminol. 164:4878-4882. Yan, Y., V. Kolachala, G. Dalmasso, H. Nguyen, H. Laroui, S. V. Sitaraman, and D. J. Merlin. 2009. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One. 4:e6073. Yen, D., J. Cheung, H. Scheerens, F. Poulet, T. McClanahan, B. Mckenzie, M. A. Kleinschek, A. Owyang, J. Mattson, and W. Blumenschein. 2006. IL-23 is essential for T cell–mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116:1310-1316. Yeom, Y., B.-S. Kim, S.-J. Kim, Y. Kim. 2016. Sasa quelpaertensis leaf extract regulates microbial dysbiosis by modulating the composition and diversity of the microbiota in dextran sulfate sodium-induced colitis mice. BMC Complement. Altern. Med. 16:481. Ze, X., S. H. Duncan, P. Louis, and H. J. Flint. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME. J. 6:1535. Zeissig, S., N. Bürgel, D. Günzel, J. Richter, J. Mankertz, U. Wahnschaffe, A. J. Kroesen, M. Zeitz, M. Fromm, and J. D. Schulzke. 2007. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 56:61-72. Zeissig, S., C. Bojarski, N. Buergel, J. Mankertz, M. Zeitz, M. Fromm, and J. J. chulzke. 2004. Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor α antibody treatment. Gut. 53:1295-1302. Zenewicz, L. A., G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens, and R. A. Flavell. 2008. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 29:947-957. Zha, E., S. Gao, Y. Pi, X. Li, Y. Wang, and X. Yue. 2012. Wound healing by a 3.2 kDa recombinant polypeptide from velvet antler of Cervus nippon Temminck. Biotechnol. Lett. 34:789-793. Zha, E., X. Li, D. Li, X. Guo, S. Gao, and X. Yue. 2013. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int. J. Immunopharmacol. 16:210-213. Zhang, J., L. Zhu, J. Fang, Z. Ge, and X. Li, 2016. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J. Exp. Clin. Cancer Res. 35:29. Zhang, L.-Z., J.-L. Xin, X.-P. Zhang, Q. Fu, Y. Zhang, and Q. L Zhou. 2013. The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J. Ethnopharmacol. 150:181-186. Zhang, R., Y. Zhao, and Z. J. Wang. 2011. Anti-fatigue effects of antler velvet water extract in mice. J. Food Sci. Technol. 32:365-367. Zhao, L., B. P. Ji, B. Li, F. Zhou, J. H. Li, and Y. C. Luo. 2009. Immunomodulatory effects of aqueous extract of velvet antler (Cervus elaphus Linnaeus) and its simulated gastrointestinal digests on immune cells in vitro. J. Food Drug Anal. 17:282-292 Zhao, L., Y. C. Luo, C. T. Wang, and B. P. Ji. 2011. Antioxidant activity of protein hydrolysates from aqueous extract of velvet antler (Cervus elaphus) as influenced by molecular weight and enzymes. Nat. Prod. Commun. 6:1934578X1100601130. Zhao, L., R. S. Pei, B. P. Ji, Y. C. Luo, D. Zhang, Z.Y. Xu, X.N. Jia, and D. Analysis. 2010. Antioxidant activity of aqueous extract fractions of velvet antler (Cervus elaphus Linnaeus). J. Food Drug Anal. 18:319-327. Zhao, L., X. Wang, X. L. Zhang and Q. F. Xie. 2016. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J. Food Drug Anal. 24:376-384. Zhou, Y., and F. Zhi. 2016. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Bioemd. Res. Int. 2016 Zolotarevsky, Y., G. Hecht, A. Koutsouris, D. E. Gonzalez, C. Quan, J. Tom, R. J. Mrsny, and J. R. Turner. 2002. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology. 123:163-172. Zwiers, A., I. J. Fuss, S. Leijen, C. J. Mulder, G. Kraal, and G. Bouma. 2008. Increased expression of the tight junction molecule claudin-18 A1 in both experimental colitis and ulcerative colitis. Inflamm, Bowel Dis. 14:1652-1659. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78539 | - |
| dc.description.abstract | 發炎性腸道疾病 (Inflammatory bowel disease, IBD) 是一種小腸和結腸的發炎疾病,在過去數十年間罹病患者逐年增加。現階段的治療途徑為給予廣效性的抗生素和抑制免疫反應的類固醇。然而,有限的療效常伴隨腸炎反覆復發。本研究室先前之研究中已證實,鹿茸水萃物具有抗發炎和促進傷口癒合之生物活性,對於腸道受損的腸炎患者中或許具有改善之潛力。因此,本研究目的旨在評估不同的臺灣國產鹿種水萃物在改善腸道發炎疾病之效果,並進一步以發炎反應之程度、腸道上皮完整性和腸道菌相分群,分析減緩腸炎之可能生物途徑,並嘗試找尋萃取物中之有效成分。
首先,我們以人類結腸癌上皮細胞株之模式挑選潛力鹿種水萃物。試驗結果發現,臺灣水鹿和紅鹿鹿茸水萃物可減緩葡聚糖硫酸鈉損傷所造成的跨膜電阻值下降,兩種鹿茸水萃物皆可劑量回饋的增加趨化素CCL20分泌,顯示鹿茸萃取物對於細胞修復和完整性有正向作用。 接著我們以葡聚糖硫酸鈉的腸炎小鼠模型評估鹿茸萃取物的預防功效。試驗選自九至十週齡的C57BL/6母鼠,依據組別每日給予磷酸鹽緩衝生理食鹽水、不同劑量之臺灣水鹿和紅鹿鹿茸水萃液 (100 mg/kg、200 mg/kg) 並持續兩週,第三週給予含有2.5% 葡聚糖硫酸鈉之飲用水誘導急性腸炎。試驗發現兩種鹿茸萃取物皆可顯著減緩糞便潛血程度,在核磁共振影像和各階段腸道組織之組織切片圖中可觀察到較完整的上皮組織排列,其中十二指腸、迴腸和結腸段之病理切片評分和負控制組比較達顯著差異,然而兩種鹿茸水萃物的處理組別在結腸長度測定上和負控制組比較並無顯著差異。另外,我們以酵素結合免疫吸附分析法和流式細胞儀測定脾臟、血清和腸繫膜淋巴結和發炎反應相關之細胞激素,兩種鹿茸水萃物的組別皆有下降的趨勢,顯示全身性和局部性的發炎反應較趨緩,其中高劑量紅鹿鹿茸水萃物組在脾臟腫瘤壞死因子-α、白細胞介素-6、干擾素-γ之測定達顯著下降。腸道上皮細胞的完整性的評估,我們以西方墨點術測定迴腸和結腸段上皮細胞間的緊密連結蛋白。試驗結果發現,和負控制組相比,兩種鹿茸組別在封閉蛋白和水閘蛋白蛋白質表現量皆較高,其中高、低劑量的紅鹿處理組皆有達顯著差異,代表上皮細胞之間空隙較少、破損程度較輕微。 腸道菌相分析以盲腸內容物進行次世代基因定序,結果發現鹿茸水萃物並無法提升組內菌群豐富度,但在菌群歧異度上,紅鹿鹿茸水萃物有提高之趨勢,透過最小平方法判別分析法,鹿茸水萃物仍有部分序列群組操作單元和誘導腸炎組重疊。由於複雜之菌相組成和消長作用,以線性回歸判別分析分數為依據,進行線性判別分析效力鑑別分析,找出各組具有顯著差異之菌群物種,進一步和免疫反應和上皮細胞完整性之指標進行斯皮爾曼關聯性分析,釐清並驗證之間可能機轉和影響因子。 初步的試驗結果證實鹿茸萃取物有預防腸炎之潛力,另外我們以結腸癌細胞株模式找尋可能有效成分,試驗結果發現小於3kDa的萃取液分子可顯著誘使趨化素CCL20和血管內皮生長因子分泌,顯示水萃物中的有效成分應落在小於3kDa片段。接著,我們以液相和氣相串聯質譜儀之代謝體學,搭配蛋白質和資料庫比對,找尋其中的有效活性成分。 綜上所述,本研究於細胞和動物實驗證實臺灣水鹿和紅鹿鹿茸具有維持上皮細胞完整性、抗腸道發炎之潛力。未來我們將進一步鑑定其中的活性成分,期盼能率先發現具有潛力之鹿茸萃取物活性,為我國養鹿產業提供一新出路。 | zh_TW |
| dc.description.abstract | Inflammatory bowel disease (IBD) is a chronic debilitating inflammation of intestinal tract and colon. In the past decades, the prevalence of IBD are gradually increasing. The mainly current therapies are antibiotic and corticosteroids. However, the efficacy is limited. Our previous study has demonstrated that velvet antler extracts has the anti-inflammatory and the wound healing functionalities. These features have been reported to associate with alleviation of the injury in colitis. Hence, the aim of the study is to evaluate the effect of amelioration on different velvet antler water extracts in Taiwan. The possible pathways and potential components were also investigated.
Velvet antler water extracts were cultured with human colonic epithelial cell line (Caco-2) for a week to select the potential deer species by monitoring the trans-epithelial electrical resistance (TEER). In vitro study indicated that the velvet antler extract from Formosan sambar deer (SVAE) and red deer (RAVE) could reduce the decline of TEER value and elevate the CCL20 production, an intestinal epithelial restitution and migration chemokine, under dextran sulfate sodium (DSS) injury in a dose-dependent manner (p < 0.05), suggesting that both extracts could enhance the cell repair effect of epithelial cell. For the further animal study, specific-pathogen-free female C57BL/6 mice from 9 to 10-week old were studied in DSS induced colitis model. We found that both treatments (SVAE and RVAE) could significantly relieve the degree of bloody feces (p<0.05). Besides, The mice fed with SVAE and RVAE showed a better tightly arrayed epithelial cell structures in intestine and colon by H&E staining and magnetic resonance imaging. Compared to the injury group, the histological scores of the section of duodenum, ileum and the colon have the significant difference (p < 0.05). However, no significant improvement in colon length was observed in the treatment group. Since the degree of inflammation is crucial biomarker of colitis, the cytokines in spleen, serum and mesenteric lymph nodes were determined by ELISA to represent the systemic inflammatory response. Results showed that the level of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interferon-γ (IFN-γ) were reduced under extract treatments. Hence, compared to the colitis group, the high dosage of RVAE group show the significant difference. In addition, the expression of tight junction protein were analyzed via western blotting of colon tissue. Besides, the result of RVAE showed the statistical difference in the protein expression of occludin and claudin1, which represent more integrity of epithelial mucus. For the next generation sequencing study was analyzed with cecum content. There were no significant difference between all groups of Chao1 index. However, RAVE could enhance in Shannon index, which represent more diversity under RAVE effect. Results of partial least squares discrimination analysis (PLS-DA) showed that the OTU of the velvet antler extract treated groups could not be clearly separated from the colitis group. Further analyzing by linear discriminant analysis effect size analysis (LEfSe) with linear discriminant analysis (LDA) scores, several potential biomarkers in genus and species levels were identified. Those biomarkers were investigated by Spearman’s correlation coefficient with pro-inflammatory cytokine and tight junction related protein to clarify the possible mechanism and pathways. In the present study, we demonstrated that the velvet antler extracts from Formosan sambar deer (SVAE) and red deer (RAVE) could prevent the inflammatory bowel disease. To further identify which components probably involving the effect, we used in vitro model to separate the extracts with different molecular weight and found that extracts under 3 kDa have the similar effect in CCL20 and vascular endothelial growth factor (VEGF) production, showing that the potential compound in the water extracts fall below the 3 kDa fragment. Next, we used metabolomics with liquid and gas phase tandem mass spectrometer, matching the identified compound with online database to figure out the effective active components. In summary, our study proves that the velvet antler extracts from Formosan sambar deer and red deer have the potential on amelioration inflammatory bowel disease in various aspects in vitro and in vivo. Further identification of potential active compounds are necessary to confirm the anti-colitis effect in the future. We hope to develop new application in deer livestock industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:02:47Z (GMT). No. of bitstreams: 1 ntu-108-R06626024-1.pdf: 7869996 bytes, checksum: 89a398c23f6a3756798a52cea7b95007 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 序言 i
摘要 ii Abstract iv 壹、文獻探討 1 第一節:發炎性腸道疾病 1 一、發炎性腸道疾病致病原因 1 二、發炎性腸道疾病現行治療途徑和困境 1 三、發炎性腸道疾病生物指標研究 3 (一)、異常的免疫反應 3 (二)、腸道屏障完整性:緊密連結蛋白和細胞骨架 8 (三)、微生物效應:短鏈脂肪酸、缺氧誘導因子和腸道菌相分布 14 (四)、化學性腸炎之細胞和動物模型 20 第二節:鹿茸簡介和產業概況 21 一、台灣水鹿 21 二、紅鹿 21 三、鹿茸組成成分 22 四、鹿茸機能性 23 五、小結 24 貳、研究動機與目的 25 參、材料與方法 26 第一節、試驗設計 26 第二節、鹿茸水萃物製備 27 一、試驗材料 27 二、試驗方法 27 (一)、鹿茸水萃物製備 27 第三節、以Caco-2 細胞模型評估鹿茸水萃物之減緩腸炎功效 27 一、試驗材料 27 (一)、鹿茸水萃物製備 27 (二)、實驗細胞 27 二、試驗方法 28 (一)、Caco-2單層膜製備 28 (二)、鹿茸水萃物對細胞共培養試驗 29 (三)、鹿茸水萃物和細胞之存活試驗 29 (四)、鹿茸水萃物對細胞屏障功能影響 30 (五)、鹿茸水萃物對細胞之免疫調節試驗 30 (六)、統計分析 30 第四節、鹿茸水萃物預防化學性誘導腸炎動物模型之功效探討 31 一、試驗材料 31 (一)、鹿茸水萃物製備 31 (二)、實驗動物 31 二、試驗方法 31 (一)、糞便潛血評估試驗 32 (二)、活體結腸腸壁之核磁共振影像拍攝 32 (三)、組織切片分析和病理切片分析 33 (四)、酵素免疫分析 33 (五)、流式細胞儀之細胞激素分析 33 (六)、西方墨點術分析 34 (七)、短鏈脂肪酸測定 35 (八)、DNA萃取和聚合酶鏈鎖反應 36 (九)、次世代基因定序分析 36 (十)、統計分析 37 第五節、鹿茸水萃物之可能有效成分鑑定 45 一、試驗材料 45 (一)、鹿茸水萃物製備 45 (二)、實驗細胞 45 二、試驗方法 45 (一)、不同分子量片段之鹿茸萃取液製備 45 (二)、不同分子量鹿茸水萃物對細胞之免疫調節試驗 45 (三)、高效能串聯液相質譜儀和高效串聯氣相質譜儀 45 (四)、統計分析 47 肆、結果 50 第一節、鹿茸水萃物於腸炎細胞模型之影響 50 一、鹿茸水萃物減緩因DSS損傷而降低之跨膜電阻值 50 二、鹿茸水萃物促進腸道上皮細胞完整性 51 三、小結 51 第二節、鹿茸水萃物預防化學性誘導腸炎模型之功效探討 56 一、鹿茸水萃物可減緩腸炎病徵評估 56 二、鹿茸水萃物減緩DSS誘導腸炎之生物指標 69 (一)、鹿茸水萃物抑制脾臟和血清中促發炎細胞激素分泌 69 (二)、鹿茸水萃物維持大腸上皮細胞完整性 76 (三)、鹿茸水萃物於結腸組織缺氧誘導因子之影響 84 (四)、鹿茸水萃物於短鏈脂肪酸之效應 87 (五)、鹿茸水萃物於腸道菌相之探討 89 (六)、斯皮爾曼關聯性分析 91 三、小結 101 第三節、鹿茸水萃物可能有效成分測定 102 一、不同分子量之鹿茸水萃液之生物活性探討 102 二、潛力有效成分鑑定 102 伍、討論 112 第一節、鹿茸水萃物可減緩腸炎之病徵 112 第二節、鹿茸水萃物於宿主免疫反應中具抗發炎活性 113 第三節、鹿茸水萃物可促進腸道上皮組織完整性 115 第四節、鹿茸水萃物於腸道菌相之作用 118 第五節、鹿茸水萃物於腸炎模型中之潛力有效成分 123 第六節、未來潛力和研究方向 124 陸、結論 127 柒、參考文獻 128 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鹿茸 | zh_TW |
| dc.subject | 緊密連結蛋白 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 發炎性腸炎 | zh_TW |
| dc.subject | inflammatory bowel disease | en |
| dc.subject | Velvet antler | en |
| dc.subject | cytokine | en |
| dc.subject | tight junction protein | en |
| dc.subject | intestine microbiota | en |
| dc.title | 探討臺灣水鹿和紅鹿鹿茸水萃物在改善發炎性腸道疾病之潛力 | zh_TW |
| dc.title | The effect of Formosan sambar velvet and red velvet water extracts on ameliorating inflammatory bowel disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾浩洋;陳彥伯;劉?睿;郭卿雲;何尚哲 | zh_TW |
| dc.contributor.oralexamcommittee | Hau-Yang Tsen;Yen-Po Chen;Je-Ruei Liu;Ching-Yun Kuo;Shang-Tse Ho | en |
| dc.subject.keyword | 鹿茸,發炎性腸炎,細胞激素,緊密連結蛋白,腸道菌相, | zh_TW |
| dc.subject.keyword | Velvet antler,inflammatory bowel disease,cytokine,tight junction protein,intestine microbiota, | en |
| dc.relation.page | 158 | - |
| dc.identifier.doi | 10.6342/NTU201903977 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 7.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
