Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78536
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林雅芬zh_TW
dc.contributor.author陳郁綾zh_TW
dc.contributor.authorYu-Ling Chenen
dc.date.accessioned2021-07-11T15:02:37Z-
dc.date.available2024-08-20-
dc.date.copyright2019-08-28-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAndreini, C., Banci, L., Bertini, I., and Rosato, A. (2006). Zinc through the three domains of life. Journal of Proteome Research, 5(11), 3173-3178.
Asadi, M., Saadatmand, S., Khavari-Nejad, R. A., Ghasem-Nejad, M., and Fotokian, M. H. (2015). Effect of Zinc (Zn) on some physiological characteristics of rice seedling. Biomedical and Pharmacology Journal, 5(2), 203-210.
Assunção, A. G., Herrero, E., Lin, Y.-F., Huettel, B., Talukdar, S., Smaczniak, C., Immink, R. G., Van Eldik, M., Fiers, M., and Schat, H. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 107(22), 10296-10301.
Assunção, A. G., Persson, D. P., Husted, S., Schjørring, J. K., Alexander, R. D., and Aarts, M. G. (2013). Model of how plants sense zinc deficiency. Metallomics, 5(9), 1110-1116.
Bücker-Neto, L., Paiva, A. L. S., Machado, R. D., Arenhart, R. A., Margis-Pinheiro, M. J. G., and biology, m. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 40(1), 373-386.
Bailey, T. L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology.
Balashouri, P., and Prameeladevi, Y. (1995). Effect of zinc on germination, growth and pigment content and phytomass of Vigna radiata and Sorghum bicolor. Journal of Ecobiology, 7, 109-114.
Bashir, K., Ishimaru, Y., and Nishizawa, N. K. (2012). Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361(1-2), 189-201.
Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., and Huala, E. (2015). The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis, 53(8), 474-485.
Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., De Onis, M., Ezzati, M., Mathers, C., Rivera, J., Maternal, and Group, C. U. S. (2008). Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet, 371(9608), 243-260.
Brown, B. C. (2017). Investigation of rice diterpenoid phytoalexin biosynthesis. Graduate Theses and Dissertations.
Castro, P. H., Lilay, G. H., Muñoz-Mérida, A., Schjoerring, J. K., Azevedo, H., and Assunção, A. G. (2017). Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Scientific Reports, 7(1), 3806.
Caulfield, L. E., de Onis, M., Blössner, M., and Black, R. E. (2004). Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. The American Journal of Clinical Nutrition, 80(1), 193-198.
Chaoui, A., Mazhoudi, S., Ghorbal, M. H., and El Ferjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 127(2), 139-147.
Cho, M.-H., and Lee, S.-W. J. I. j. o. m. s. (2015). Phenolic phytoalexins in rice: biological functions and biosynthesis. International Journal of Molecular Sciences, 16(12), 29120-29133.
Coleman, J. E. (1992). Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annual Review of Biochemistry, 61(1), 897-946.
Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881-10890.
Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38(suppl_2), W64-W70.
Evens, N. P., Buchner, P., Williams, L. E., and Hawkesford, M. J. (2017). The role of ZIP transporters and group F bZIP transcription factors in the Zn‐deficiency response of wheat (Triticum aestivum). The Plant Journal, 92(2), 291-304.
Farooq, M., Nawaz, A., and Ahmad, R. (2014). Influence of boron nutrition on the rice productivity, kernel quality and biofortification in different production systems. Field Crops Research, 169, 123-131.
Foster, J. G., and Hess, J. L. (1980). Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology, 66(3), 482-487.
Frei, M., Wang, Y., Ismail, A. M., and Wissuwa, M. (2010). Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil. Functional Plant Biology, 37(1), 74-84.
Fryzova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J., and Kynicky, J. (2017). Oxidative stress and heavy metals in plants Reviews of Environmental Contamination and Toxicology Volume 245 (pp. 129-156): Springer.
Fukao, Y., Ferjani, A., Tomioka, R., Nagasaki, N., Kurata, R., Nishimori, Y., Fujiwara, M., and Maeshima, M. (2011). iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiology, 155(4), 1893-1907.
Graham, R. D., Welch, R. M., and Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy, 70, 77-142.
Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., and Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7220-7224. doi:DOI 10.1073/pnas.95.12.7220
Heringa, J. (1999). Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Computers & Chemistry, 23(3-4), 341-364.
Heringa, J. (2000). Computational methods for protein secondary structure prediction using multiple sequence alignments. Current Protein and Peptide Science, 1(3), 273-301.
Heringa, J. (2002). Local weighting schemes for protein multiple sequence alignment. Computers & Chemistry, 26(5), 459-477.
Ho, E., Courtemanche, C., and Ames, B. N. (2003). Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. The Journal of Nutrition, 133(8), 2543-2548.
Hong, W., and Jin, J.-Y. (2007). Effects of zinc deficiency and drought on plant growth and metabolism of reactive oxygen species in maize (Zea mays L). Agricultural Sciences in China, 6(8), 988-995.
Hope, B. (2007). Improving Lives, Strategic Plan, 2007–2015. International Rice Research Institute, Manila, Philippines.
Hotz, C., and Brown, K. H. (2004). Assessment of the risk of zinc deficiency in populations and options for its control. The Food and Nutrition Bulletin.
Impa, S., and Johnson-Beebout, S. E. (2012). Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant and Soil, 361(1-2), 3-41.
International, R. G. S. P. J. N. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793.
Ishimaru, Y., Bashir, K., and Nishizawa, N. K. (2011). Zn uptake and translocation in rice plants. Rice, 4(1), 21-27.
Ishimaru, Y., Masuda, H., Suzuki, M., Bashir, K., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N. K. (2007). Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Journal of Experimental Botany, 58(11), 2909-2915.
Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N. K. J. J. o. E. B. (2005). OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56(422), 3207-3214.
Jain, A., Sinilal, B., Dhandapani, G., Meagher, R. B., Sahi, S. V. J. E. s., and technology. (2013). Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro-and macronutrients. Environmental Science & Technology, 47(10), 5327-5335.
Johnson, A. A., Kyriacou, B., Callahan, D. L., Carruthers, L., Stangoulis, J., Lombi, E., and Tester, M. (2011). Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One, 6(9), e24476.
Juliano, B. O. (1993). Rice in human nutrition: Int. Rice Res. Inst.
Kato, M., and Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729-735.
Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., and Zhou, S. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 6(1), 4.
Keen, C. L., and Gershwin, M. E. (1990). Zinc deficiency and immune function. Annual Review of Nutrition, 10(1), 415-431.
Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., and Pakrasi, H. B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40(1), 37-44.
Lee, S., Jeong, H. J., Kim, S. A., Lee, J., Guerinot, M. L., and An, G. (2010). OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 73(4-5), 507-517.
Lee, S., Kim, S. A., Lee, J., Guerinot, M. L., and An, G. (2010). Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Molecules and Cells, 29(6), 551-558.
Li, G., Jain, R., Chern, M., Pham, N. T., Martin, J. A., Wei, T., Schackwitz, W. S., Lipzen, A. M., Duong, P. Q., and Jones, K. C. J. T. P. C. (2017). The sequences of 1504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. The Plant Cell, 29(6), 1218-1231.
Lilay, G. H., Castro, P. H., Campilho, A., and Assunção, A. G. (2018). The Arabidopsis bZIP19 and bZIP23 activity requires zinc deficiency–insight on regulation from complementation lines. Frontiers in Plant Science, 9, 1955.
Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C. C., Wu, J. F., Huang, J. L., and Yeh, K. C. (2009). Arabidopsis IRT3 is a zinc‐regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182(2), 392-404.
Marschner, H. (2011). Marschner's mineral nutrition of higher plants: Academic press.
Milner, M. J., Seamon, J., Craft, E., and Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64(1), 369-381.
Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., Carlisle, E., Dietterich, L. H., Fitzgerald, G., and Hasegawa, T. (2014). Increasing CO 2 threatens human nutrition. Nature, 510(7503), 139.
Nakandalage, N., Nicolas, M., Norton, R. M., Hirotsu, N., Milham, P. J., and Seneweera, S. (2016). Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Frontiers in Plant Science, 7, 764.
Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
Navarro-León, E., Albacete, A., de la Torre-González, A., Ruiz, J. M., and Blasco, B. J. P. (2016). Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry, 130, 85-89.
Nazri, A. Z., Griffin, J. H., Peaston, K. A., Alexander‐Webber, D. G., and Williams, L. E. (2017). F‐group bZIPs in barley—a role in Zn deficiency. Plant, Cell & Environment, 40(11), 2754-2770.
Nestel, P., Bouis, H. E., Meenakshi, J., and Pfeiffer, W. (2006). Biofortification of staple food crops. The Journal of Nutrition, 136(4), 1064-1067.
Nijhawan, A., Jain, M., Tyagi, A. K., and Khurana, J. P. (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 146(2), 333-350.
Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., and Sanders, D. (2008). Zinc biofortification of cereals: problems and solutions. Trends in Plant Science, 13(9), 464-473.
Pineau, C., Loubet, S., Lefoulon, C., Chalies, C., Fizames, C., Lacombe, B., Ferrand, M., Loudet, O., Berthomieu, P., and Richard, O. (2012). Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genetics, 8(12), e1003120.
Ramesh, S. A., Shin, R., Eide, D. J., and Schachtman, D. P. J. P. P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133(1), 126-134.
Ricachenevsky, F. K., Punshon, T., Lee, S., De Oliveira, B. H. N., Trenz, T. S., Maraschin, F., Hindt, M. N., Danku, J., Salt, D. E., and Fett, J. P. (2018). Elemental profiling of rice FOX lines leads to characterization of a new plasma membrane Zn transporter, OsZIP7. Frontiers in Plant Science, 9, 865.
Salunke, R., Neelam, K., Rawat, N., Tiwari, V. K., Dhaliwal, H. S., and Roy, P. (2011). Bioavailability of iron from wheat Aegilops derivatives selected for high grain iron and protein contents. Journal of Agricultural and Food Chemistry, 59(13), 7465-7473.
Sasaki, A., Yamaji, N., and Ma, J. F. (2014). Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 65(20), 6013-6021.
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B. J. M. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452.
Sheu, J.-J., Yu, T.-S., Tong, W.-F., and Yu, S.-M. (1996). Carbohydrate starvation stimulates differential expression of rice α-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. Journal of Biological Chemistry, 271(43), 26998-27004.
Sillanpaa, M. (1990). Micronutrient assessment at the country level: an international study.
Song, A., Li, P., Li, Z., Fan, F., Nikolic, M., and Liang, Y. (2011). The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil, 344(1-2), 319-333.
Suzuki, M., Bashir, K., Inoue, H., Takahashi, M., Nakanishi, H., and Nishizawa, N. K. J. R. (2012). Accumulation of starch in Zn-deficient rice. Rice, 5(1), 9.
Thounaojam, T. C., Panda, P., Choudhury, S., Patra, H. K., and Panda, S. K. (2014). Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings. Protoplasma, 251(1), 61-69.
Tiong, J., McDonald, G., Genc, Y., Shirley, N., Langridge, P., and Huang, C. Y. J. N. P. (2015). Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root‐to‐shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist, 207(4), 1097-1109.
Vallee, B. L., and Auld, D. S. (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry, 29(24), 5647-5659.
van de Mortel, J. E., Villanueva, L. A., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P. D., van Themaat, E. V. L., Koornneef, M., and Aarts, M. G. J. P. p. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology, 142(3), 1127-1147.
Wang, H., and Jin, J. (2005). Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. Photosynthetica, 43(4), 591-596.
Welch, R. M. (1993). Zinc concentrations and forms in plants for humans and animals Zinc in Soils and Plants (pp. 183-195): Springer.
Welch, R. M., and Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55(396), 353-364.
Wintz, H., Fox, T., Wu, Y.-Y., Feng, V., Chen, W., Chang, H.-S., Zhu, T., and Vulpe, C. J. J. o. B. C. (2003). Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry, 278(48), 47644-47653.
Yang, O., Popova, O. V., Süthoff, U., Lüking, I., Dietz, K.-J., and Golldack, D. J. G. (2009). The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 436(1-2), 45-55.
Yang, X., Huang, J., Jiang, Y., and Zhang, H.-S. J. M. b. r. (2009). Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Molecular Biology Reports, 36(2), 281-287.
Yoshida, S. (1976). Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice, 61-66.
Zhao, F.-J., and McGrath, S. P. (2009). Biofortification and phytoremediation. Current Opinion in Plant Biology, 12(3), 373-380.
Zheng, X., Chen, L., and Li, X. (2018). Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Botanical Studies, 59(1), 22.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78536-
dc.description.abstract膳食中的鋅攝取不足已經成為在全世界廣泛發生的問題。瞭解植物尤其是水稻如何調控鋅元素的吸收運輸將有助於我們提高作物中的鋅含量。阿拉伯芥轉錄因子bZIPs (the basic Leucine Zipper Proteins),AtbZIP19及AtbZIP23透過與 AtZIP4 基因啟動子區域 的Zinc Deficiency Response Element (ZDRE) 之結合,來調控 AtZIP4 轉運子基因的表達,進而調控阿拉伯芥鋅的吸收和運輸;然而,其水稻同源基因(F-OsbZIPs:OsbZIP07, 44, 53) 對鋅元素調控機制目前仍不清楚。為瞭解F-OsbZIPs是否參與水稻鋅之調控機制,本研究以水稻(Oryza sativa L. cv. kitaake) 為材料,以水耕試驗進行不同鋅濃度的處理 (0.002, 0.2, 300 µM),並分析生理性狀以及基因表現。實驗結果顯示處理後第21天,不論是缺鋅(0.002μM)或過量鋅(300μM)處理,其株高、根長、葉綠素含量、鮮重、乾重等相關生理數值均顯著低於對照組(0.2μM)。基因表現分析結果發現水稻F-OsbZIPs基因幾乎不受鋅處理改變其表現,而具ZDRE基因(OsZIP5, OsZIP7, OsZIP9 )在處理後第三天開始受缺鋅誘導表現,過量鋅則會抑制其表現。而為了對水稻在不同鋅處理下的轉錄體變化有全面的了解,我們同時也進行RNA sequencing (RNA-seq),發現在216個具ZDRE基因之中,共有20個為差異性表現基因,且表現出受缺鋅誘導及過量鋅抑制的表現模式,結果暗示這些具ZDRE基因可能參與水稻的鋅調控之機制。綜上所述,水稻的F-OsbZIPs轉錄因子可能具有與AtbZIP19、AtbZIP23相似的鋅調控機制,這項發現對於瞭解水稻調控鋅元素吸收運輸的機制以及未來進行水稻的鋅生物營養強化十分重要。zh_TW
dc.description.abstractInsufficient Zinc (Zn) intake in the diet has become a series problem, especially for children. To increase the concentration of Zn in crops e.g. rice, it is necessary to understand the Zn‐homeostatic mechanisms in plants. It is still not clear how bZIP transcription factors (F-OsbZIPs: OsbZIP07, 44, 53) are involve in the regulatory mechanism of Zn in rice. To verify the role of F-OsbZIPs and their downstream genes in Zn homeostsis in rice (Oryza Sativa L. Kitaake), this study compared the differential physiologicl and molecular responses undedr different Zn concentration (0.002, 0.2, 300μM). The physiologicl results showed that plant height, root length, fresh weight and dry weight, chlorophyll contents in Zn deficient (0.002) and excess Zn (300μM) treatments were significantly lower than in the control condition (0.2 μM). The molecular analysis indicated that F-OsbZIPs were expressed constitutively while their downstream candidate genes, twenty ZDRE-containing genes (inclusive of OsZIP5, OsZIP7, OsZIP9), are induced under zinc deficiency, but repressed by excess Zn. Overall speaking, our findings imply that the rice F-OsbZIPs exist a similar Zn regulatory mechanism to Arabidopsis AtbZIP transcription factors AtbZIP19 and AtbZIP23. This finding is important to understand the mechanisms of Zn uptake and transport for future biofortification pupose in rice.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:02:37Z (GMT). No. of bitstreams: 1
ntu-108-R06621105-1.pdf: 12751493 bytes, checksum: 616bb6bc63c0267ce57b57cf4b934c33 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 ix
表目錄 xi
附圖及附表目錄 xii
縮寫表 1
前言 2
1. 鋅元素的重要性 2
2. 鋅元素吸收及運輸之分子機制 4
3. 鋅元素調控機制之研究 5
4. 本論文研究目的 6
材料方法 8
1. 實驗材料種植與鋅處理 8
1.1 植物材料與品種 8
1.2 水稻種子消毒與催芽 8
1.3 水耕系統設置 8
1.4 水耕液配方 9
1.5 人工照明室環境設置 9
1.6 鋅濃度試驗處理 9
1.7 樣品之均質化 9
2. 葉綠素含量測定 10
2.1 以葉綠素計(SPAD) 測量相對葉綠素含量 10
2.2 萃取葉片之葉綠素含量測定 10
3. ROS (reactive oxygen species)染色分析 11
3.1 DAB (3, 3 -diaminobenzidine)染色法 11
3.2 NBT (Nitro Blue Tetrazolium)染色法 11
4. 抗氧化酵素活性分析 12
4.1 樣品準備與萃取 12
4.2 蛋白質定量 12
4.3 Ascorbate peroxidase (APX) 活性測定 12
4.4 Catalase (CAT)活性測定 13
4.5 Glutathione reductase (GR) 13
5. OsbZIPs與AtbZIP19、AtbZIP23親緣關係分析 14
5.1 AtbZIP19、AtbZIP23以及OsbZIPs序列的獲取 14
5.2 以MEGA進行親緣關係分析 14
6. 水稻F-OsbZIPs序列之獲取 14
6.1 從網站上取得水稻F-bZIPs序列 14
6.2 驗證水稻F-bZIPs序列 15
7. F-OsbZIPs序列比對及motif分析 20
7.1 序列比對、保守性分析以及二級結構預測 20
7.2 Motif分析 21
8. 水稻ZDRE基因分析 21
8.1 水稻全基因組ZDRE之分析 21
8.2 ZDRE基因 之Gene Ontology (GO)分析 22
9. RNA萃取與cDNA合成 22
10. RNA定序 (RNA Sequencing,RNA-seq) 22
11. Real-time PCR (qPCR) 24
12. 統計分析 25
結果 26
1. 水稻對鋅處理之生理反應 26
2. 水稻對鋅元素之分子調控 28
3. OsbZIPs與AtbZIP19, 23之親緣關係 30
4. 水稻F-OsbZIPs之序列 30
4.1 數據庫F-OsbZIPs序列 31
4.2 F-OsbZIPs基因序列 32
4.3 F-OsbZIPs蛋白質序列分析 32
5. 水稻啟動子ZDRE分析 33
6. 水稻鋅元素調控相關基因之表現量 34
討論 36
1. 水稻幼苗缺鋅及過量鋅之生理反應 36
2. 水稻幼苗調控鋅元素之分子機制 38
3. 水稻F-OsbZIPs序列之品種差異性 41
4. F-OsbZIPs蛋白質序列具有保守性 42
5. F-OsbZIPs調控水稻ZDRE基因 43
6. F-OsbZIPs 及ZDRE基因之表現量 44
7. 結論與未來展望 45
圖 46
表 82
附錄圖 88
附錄表 121
參考文獻 133
-
dc.language.isozh_TW-
dc.subjectbZIP轉錄因子zh_TW
dc.subject生物營養強化zh_TW
dc.subject鋅zh_TW
dc.subjectZIP轉運蛋白zh_TW
dc.subject水稻zh_TW
dc.subjectbZIPsen
dc.subjectbiofortificationen
dc.subjectzincen
dc.subjectZIP transporteren
dc.subjectrice (Oryza sativa)en
dc.title鋅元素對水稻生理及分子機制調控之研究zh_TW
dc.titlePhysiological and Molecular Regulation of Rice in Response to Znen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊淑怡;陳賢明;蔡皇龍zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword水稻,bZIP轉錄因子,ZIP轉運蛋白,鋅,生物營養強化,zh_TW
dc.subject.keywordrice (Oryza sativa),bZIPs,ZIP transporter,zinc,biofortification,en
dc.relation.page139-
dc.identifier.doi10.6342/NTU201903384-
dc.rights.note未授權-
dc.date.accepted2019-08-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2024-08-28-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
12.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved