請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78535
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林泰元(Thai-Yen Ling) | |
dc.contributor.author | Pei-Wen Pai | en |
dc.contributor.author | 白佩雯 | zh_TW |
dc.date.accessioned | 2021-07-11T15:02:33Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-16 | |
dc.identifier.citation | 1. Volckaert, T., & De Langhe, S. (2014). Lung epithelial stem cells and their niches: Fgf10 takes center stage. Fibrogenesis & Tissue Repair, 7(1). https://doi.org/10.1186/1755-1536-7-8
2. Li, F., He, J., Wei, J., Cho, W. C., & Liu, X. (2015). Diversity of Epithelial Stem Cell Types in Adult Lung. Stem Cells International, 2015, 1–11. https://doi.org/10.1155/2015/728307 3. Rock, J. R., Randell, S. H., & Hogan, B. L. M. (2010). Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Disease Models & Mechanisms, 3(9–10), 545–556. https://doi.org/10.1242/dmm.006031 4. Hajj, R., Baranek, T., Le Naour, R., Lesimple, P., Puchelle, E., & Coraux, C. (2006). Basal Cells of the Human Adult Airway Surface Epithelium Retain Transit-Amplifying Cell Properties. STEM CELLS, 25(1), 139–148. https://doi.org/10.1634/stemcells.2006-0288 5. Hong, K. U., Reynolds, S. D., Watkins, S., Fuchs, E., & Stripp, B. R. (2004b). In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286(4), L643–L649. https://doi.org/10.1152/ajplung.00155.2003 6. Hong, K. U., Reynolds, S. D., Watkins, S., Fuchs, E., & Stripp, B. R. (2004a). Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium. The American Journal of Pathology, 164(2), 577–588. https://doi.org/10.1016/s0002-9440(10)63147-1 7. Rawlins, E. L., Okubo, T., Xue, Y., Brass, D. M., Auten, R. L., Hasegawa, H., … Hogan, B. L. M. (2009). The Role of Scgb1a1+ Clara Cells in the Long-Term Maintenance and Repair of Lung Airway, but Not Alveolar, Epithelium. Cell Stem Cell, 4(6), 525–534. https://doi.org/10.1016/j.stem.2009.04.002 8. Rock, J. R., Barkauskas, C. E., Cronce, M. J., Xue, Y., Harris, J. R., Liang, J., … Hogan, B. L. M. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences, 108(52), E1475–E1483. https://doi.org/10.1073/pnas.1117988108 9. Evans, M. J., Cabral, L. J., Stephens, R. J., & Freeman, G. (1973). Renewal of alveolar epithelium in the rat following exposure to NO2. The American Journal of Pathology, 70(2), 175–198. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1903972/ 10. Barkauskas, C. E., Cronce, M. J., Rackley, C. R., Bowie, E. J., Keene, D. R., Stripp, B. R., … Hogan, B. L. M. (2013). Type 2 alveolar cells are stem cells in adult lung. Journal of Clinical Investigation, 123(7), 3025–3036. https://doi.org/10.1172/jci68782 11. Ding, B.-S., Nolan, D. J., Guo, P., Babazadeh, A. O., Cao, Z., Rosenwaks, Z., … Rafii, S. (2011). Endothelial-Derived Angiocrine Signals Induce and Sustain Regenerative Lung Alveolarization. Cell, 147(3), 539–553. https://doi.org/10.1016/j.cell.2011.10.003 12. Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., … Jacks, T. (2005). Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer. Cell, 121(6), 823–835. https://doi.org/10.1016/j.cell.2005.03.032 13. Dong, J., Sutor, S., Jiang, G., Cao, Y., Asmann, Y. W., & Wigle, D. A. (2011). c-Myc Regulates Self-Renewal in Bronchoalveolar Stem Cells. PLoS ONE, 6(8), e23707. https://doi.org/10.1371/journal.pone.0023707 14. Qian, S., Ding, J., Xie, R., An, J., Ao, X., Zhao, Z., … Zhu, B. (2008). MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochemical and Biophysical Research Communications, 377(2), 668–673. https://doi.org/10.1016/j.bbrc.2008.10.052 15. Ling, T.-Y., Kuo, M.-D., Li, C.-L., Yu, A. L., Huang, Y.-H., Wu, T.-J., … Yu, J. (2006). Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences, 103(25), 9530–9535. https://doi.org/10.1073/pnas.0510232103 16. Khatri, M., Goyal, S. M., & Saif, Y. M. (2012). Oct4+ Stem/Progenitor Swine Lung Epithelial Cells Are Targets for Influenza Virus Replication. Journal of Virology, 86(12), 6427–6433. https://doi.org/10.1128/jvi.00341-12 17. Zuo, W., Zhang, T., Wu, D. Z., Guan, S. P., Liew, A.-A., Yamamoto, Y., … McKeon, F. (2014). p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature, 517(7536), 616–620. https://doi.org/10.1038/nature13903 18. Kumar, P. A., Hu, Y., Yamamoto, Y., Hoe, N. B., Wei, T. S., Mu, D., … McKeon, F. (2011). Distal Airway Stem Cells Yield Alveoli In Vitro and during Lung Regeneration following H1N1 Influenza Infection. Cell, 147(3), 525–538. https://doi.org/10.1016/j.cell.2011.10.001 19. Chapman, H. A., Li, X., Alexander, J. P., Brumwell, A., Lorizio, W., Tan, K., … Vu, T. H. (2011). Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. Journal of Clinical Investigation, 121(8), 3360–3360. https://doi.org/10.1172/jci59981 20. Herriges, M., & Morrisey, E. E. (2014). Lung development: orchestrating the generation and regeneration of a complex organ. Development, 141(3), 502–513. https://doi.org/10.1242/dev.098186 21. Shu, W., Lu, M. M., Zhang, Y., Tucker, P. W., Zhou, D., & Morrisey, E. E. (2007). Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development, 134(10), 1991–2000. https://doi.org/10.1242/dev.02846 22. Rawlins, E. L. (2008). Lung Epithelial Progenitor Cells: Lessons from Development. Proceedings of the American Thoracic Society, 5(6), 675–681. https://doi.org/10.1513/pats.200801-006aw 23. Bolt, R. J., van Weissenbruch, M. M., Lafeber, H. N., & Delemarre‐van de Waal, H. A. (2001). Glucocorticoids and lung development in the fetus and preterm infant. Pediatric Pulmonology, 32(1), 76–91. https://doi.org/10.1002/ppul.1092 24. Roberts, D., Brown, J., Medley, N., & Dalziel, S. R. (2017). Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd004454.pub3 25. Weiss, A., & Attisano, L. (2012). The TGFbeta Superfamily Signaling Pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 2(1), 47–63. https://doi.org/10.1002/wdev.86 26. Munir, S., Xu, G., Wu, Y., Yang, B., Lala, P. K., & Peng, C. (2004). Nodal and ALK7 Inhibit Proliferation and Induce Apoptosis in Human Trophoblast Cells. Journal of Biological Chemistry, 279(30), 31277–31286. https://doi.org/10.1074/jbc.m400641200 27. Zimmerman, C. M., & Padgett, R. W. (2000). Transforming growth factor β signaling mediators and modulators. Gene, 249(1–2), 17–30. https://doi.org/10.1016/s0378-1119(00)00162-1 28. Costanza, B., Umelo, I., Bellier, J., Castronovo, V., & Turtoi, A. (2017). Stromal Modulators of TGF-β in Cancer. Journal of Clinical Medicine, 6(1), 7. https://doi.org/10.3390/jcm6010007 29. Yan, X., Liu, Z., & Chen, Y. (2009). Regulation of TGF-beta signaling by Smad7. Acta Biochimica Et Biophysica Sinica, 41(4), 263–272. https://doi.org/10.1093/abbs/gmp018 30. Zhang, Y. E. (2008). Non-Smad Pathways in TGF-β Signaling. Cell Research, 19(1), 128–139. https://doi.org/10.1038/cr.2008.328 31. Wuyts, Wim A, Agostini, C., Antoniou, K. M., Bouros, D., Chambers, R. C., Cottin, V., … Verleden, Geert M. (2013). The pathogenesis of pulmonary fibrosis: a moving target. EUROPEAN RESPIRATORY JOURNAL, 41(5), 1207–1218. Retrieved from https://biblio.ugent.be/publication/4098915 32. Wynn, T. A. (2011). Integrating mechanisms of pulmonary fibrosis. The Journal of Experimental Medicine, 208(7), 1339–1350. https://doi.org/10.1084/jem.20110551 33. Brandsma, C.-A., van den Berge, M., Postma, D., & Timens, W. (2016). Fibulin-5 as a potential therapeutic target in COPD. Expert Opinion on Therapeutic Targets, 20(9), 1031–1033. https://doi.org/10.1517/14728222.2016.1164696 34. Biernacka, A., Dobaczewski, M., & Frangogiannis, N. G. (2011). TGF-β signaling in fibrosis. Growth Factors, 29(5), 196–202. https://doi.org/10.3109/08977194.2011.595714 35. Enomoto, Y., Matsushima, S., Shibata, K., Aoshima, Y., Yagi, H., Meguro, S., … Iwashita, T. (2018). LTBP2 is secreted from lung myofibroblasts and is a potential biomarker for idiopathic pulmonary fibrosis. Clinical Science, 132(14), 1565–1580. https://doi.org/10.1042/cs20180435 36. Lipson, K. E., Wong, C., Teng, Y., & Spong, S. (2012). CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis & Tissue Repair, 5(S1). https://doi.org/10.1186/1755-1536-5-s1-s24 37. Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X.-F., & Frangogiannis, N. G. (2010). Smad3 Signaling Critically Regulates Fibroblast Phenotype and Function in Healing Myocardial Infarction. Circulation Research, 107(3), 418–428. https://doi.org/10.1161/circresaha.109.216101 38. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration. Journal of Biological Chemistry, 275(47), 36803–36810. https://doi.org/10.1074/jbc.m005912200 39. Liu, S., Shi-wen, X., Kennedy, L., Pala, D., Chen, Y., Eastwood, M., … Leask, A. (2007). FAK Is Required for TGFβ-induced JNK Phosphorylation in Fibroblasts: Implications for Acquisition of a Matrix-remodeling Phenotype. Molecular Biology of the Cell, 18(6), 2169–2178. https://doi.org/10.1091/mbc.e06-12-1121 40. Shi-Wen, X., Parapuram, S. K., Pala, D., Chen, Y., Carter, D. E., Eastwood, M., … Leask, A. (2009). Requirement of transforming growth factor β-activated kinase 1 for transforming growth factor β-induced α-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis & Rheumatism, 60(1), 234–241. https://doi.org/10.1002/art.24223 41. Walton, K. L., Johnson, K. E., & Harrison, C. A. (2017). Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00461 42. Saito, A., Horie, M., & Nagase, T. (2018). TGF-β Signaling in Lung Health and Disease. International Journal of Molecular Sciences, 19(8), 2460. https://doi.org/10.3390/ijms19082460 43. Ursula I Heine ’t, Munoz, E. F., Flanders, K. C., Roberts, A. B., & Sporn, M. B. (2005). Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis*. Development, 109, 29–36. Retrieved from http://dev.biologists.org/content/develop/109/1/29.full.pdf 44. Schmid, P., Cox, D., G. Bilbe, Maier, R., & McMaster, G. . (1991). Differential expression of TGF beta 1, beta 2 and beta 3 genes during mouse embryogenesis. Development, 111(1), 117–130. Retrieved from http://dev.biologists.org/content/111/1/117 45. Masui, T., Wakefield, L. M., Lechner, J. F., LaVeck, M. A., Sporn, M. B., & Harris, C. C. (1986). Type beta transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proceedings of the National Academy of Sciences, 83(8), 2438–2442. https://doi.org/10.1073/pnas.83.8.2438 46. Serra, R., Pelton, R. ., & Moses, H. . (1994). TGF beta 1 inhibits branching morphogenesis and N-myc expression in lung bud organ cultures. Development, 120(8), 2153–2161. Retrieved from http://dev.biologists.org/content/120/8/2153 47. Zhou, L., Dey, C. R., Wert, S. E., & Whitsett, J. A. (1996). Arrested Lung Morphogenesis in Transgenic Mice Bearing an SP-C–TGF-β1 Chimeric Gene. Developmental Biology, 175(2), 227–238. https://doi.org/10.1006/dbio.1996.0110 48. Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., … Karlsson, S. (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proceedings of the National Academy of Sciences, 90(2), 770–774. https://doi.org/10.1073/pnas.90.2.770 49. Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., … Doetschman, T. (1992). Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699. https://doi.org/10.1038/359693a0 50. Sanford, L. ., Ormsby, I., A.C. Gittenberger-de Groot, H. Sariola, Friedman, R., Boivin, G. ., … T. Doetschman. (1997). TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 124(13), 2659–2670. Retrieved from http://dev.biologists.org/content/124/13/2659 51. Kaartinen, V., Voncken, J. W., Shuler, C., Warburton, D., Bu, D., Heisterkamp, N., & Groffen, J. (1995). Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nature Genetics, 11(4), 415–421. https://doi.org/10.1038/ng1295-415 52. Chen, H., Sun, J., Buckley, S., Chen, C., Warburton, D., Wang, X.-F., & Shi, W. (2005). Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(4), L683–L691. https://doi.org/10.1152/ajplung.00298.2004 53. Xing, Y., Li, C., Li, A., Sridurongrit, S., Tiozzo, C., Bellusci, S., … Minoo, P. (2010). Signaling via Alk5 controls the ontogeny of lung Clara cells. Development, 137(5), 825–833. https://doi.org/10.1242/dev.040535 54. Zhao, L., Yee, M., & O’Reilly, M. A. (2013). Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology, 305(6), L409–L418. https://doi.org/10.1152/ajplung.00032.2013 55. Karlsson, G., Sigvardsson, M., & Böiers, C. (2017). Don’t judge a cell by its cover: heterogeneity within early lymphoid progenitors. The EMBO Journal, 36(24), 3552–3554. https://doi.org/10.15252/embj.201798443 56. Cosacak, M. I., Bhattarai, P., Reinhardt, S., Petzold, A., Dahl, A., Zhang, Y., & Kizil, C. (2019). Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual Plasticity in a Zebrafish Brain Model of Amyloid Toxicity. Cell Reports, 27(4), 1307–1318.e3. https://doi.org/10.1016/j.celrep.2019.03.090 57. Wang, Y., Tang, Z., Huang, H., Li, J., Wang, Z., Yu, Y., … Tang, N. (2018). Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proceedings of the National Academy of Sciences, 115(10), 2407–2412. https://doi.org/10.1073/pnas.1719474115 58. Choi, Y. H., & Kim, J. K. (2019). Dissecting Cellular Heterogeneity Using Single-Cell RNA Sequencing. Molecules and Cells, 42(3), 189–199. https://doi.org/10.14348/molcells.2019.2446 59. Huang, C.-J., Chien, Y.-L., Ling, T.-Y., Cho, H.-C., Yu, J., & Chang, Y.-C. (2010). The influence of collagen film nanostructure on pulmonary stem cells and collagen–stromal cell interactions. Biomaterials, 31(32), 8271–8280. https://doi.org/10.1016/j.biomaterials.2010.07.038 60. Chiu, C.-J., Ling, T.-Y., & Chiang, B.-L. (2015). Lung-derived SSEA-1+stem/progenitor cells inhibit allergic airway inflammation in mice. Allergy, 70(4), 374–383. https://doi.org/10.1111/all.12567 61. Rock, J. R., Onaitis, M. W., Rawlins, E. L., Lu, Y., Clark, C. P., Xue, Y., … Hogan, B. L. M. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences, 106(31), 12771–12775. https://doi.org/10.1073/pnas.0906850106 62. Smirnova, N. F., Schamberger, A. C., Nayakanti, S., Hatz, R., Behr, J., & Eickelberg, O. (2016). Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respiratory Research, 17(1). https://doi.org/10.1186/s12931-016-0404-x 63. McQualter, J. L., Yuen, K., Williams, B., & Bertoncello, I. (2010). Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proceedings of the National Academy of Sciences, 107(4), 1414–1419. https://doi.org/10.1073/pnas.0909207107 64. Ochieng, J. K., Schilders, K., Kool, H., Boerema-de Munck, A., Buscop-van Kempen, M., Gontan, C., … Rottier, R. J. (2014). Sox2 regulates the emergence of lung basal cells by directly activating the transcription of Trp63. American Journal of Respiratory Cell and Molecular Biology, 51, 311–322. https://doi.org/10.1165/rcmb.2013-0419oc 65. Ray, S., Chiba, N., Yao, C., Guan, X., McConnell, A. M., Brockway, B., … Stripp, B. R. (2016). Rare SOX2 + Airway Progenitor Cells Generate KRT5 + Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection. Stem Cell Reports, 7(5), 817–825. https://doi.org/10.1016/j.stemcr.2016.09.010 66. El Agha, E., & Bellusci, S. (2014). Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. Scientifica, 2014, 1–20. https://doi.org/10.1155/2014/538379 67. Nichane, M., Javed, A., Sivakamasundari, V., Ganesan, M., Ang, L. T., Kraus, P., … Lim, B. (2017). Isolation and 3D expansion of multipotent Sox9+ mouse lung progenitors. Nature Methods, 14(12), 1205–1212. https://doi.org/10.1038/nmeth.4498 68. Rawlins, E. L. (2008). Lung Epithelial Progenitor Cells: Lessons from Development. Proceedings of the American Thoracic Society, 5(6), 675–681. https://doi.org/10.1513/pats.200801-006aw 69. Rawlins, E. L., Clark, C. P., Xue, Y., & Hogan, B. L. M. (2009). The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development, 136(22), 3741–3745. https://doi.org/10.1242/dev.037317 70. Shu, W., Lu, M. M., Zhang, Y., Tucker, P. W., Zhou, D., & Morrisey, E. E. (2007). Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development, 134(10), 1991–2000. https://doi.org/10.1242/dev.02846 71. Wu, T.-J., Tzeng, Y.-K., Chang, W.-W., Cheng, C.-A., Kuo, Y., Chien, C.-H., … Yu, J. (2013). Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nature Nanotechnology, 8(9), 682–689. https://doi.org/10.1038/nnano.2013.147 72. Soh, B. S., Zheng, D., Li Yeo, J. S., Yang, H. H., Ng, S. Y., Wong, L. H., … Lim, B. (2012). CD166pos Subpopulation From Differentiated Human ES and iPS Cells Support Repair of Acute Lung Injury. Molecular Therapy, 20(12), 2335–2346. https://doi.org/10.1038/mt.2012.182 73. Ding, Q., Subramanian, I., Luckhardt, T. R., Che, P., Waghray, M., Zhao, X.-K., … Thannickal, V. J. (2017). Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-β. American Journal of Physiology-Lung Cellular and Molecular Physiology, 312(6), L926–L935. https://doi.org/10.1152/ajplung.00121.2016 74. Leeman, K. T., Fillmore, C. M., & Kim, C. F. (2014). Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease. Current Topics in Developmental Biology, 207–233. https://doi.org/10.1016/b978-0-12-416022-4.00008-1 75. Koh, R. Y., Lim, C. L., Uhal, B. D., Abdullah, M., Vidyadaram, S., Ho, C. C., & Seow, H. F. (2015). Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Molecular Medicine Reports, 11(5), 3808–3813. https://doi.org/10.3892/mmr.2015.3193 76. Colonne, P. M., Winchell, C. G., & Voth, D. E. (2016). Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Frontiers in Cellular and Infection Microbiology, 6. https://doi.org/10.3389/fcimb.2016.00107 77. Oshima, M., Oshima, H., & Taketo, M. M. (1996). TGF-β Receptor Type II Deficiency Results in Defects of Yolk Sac Hematopoiesis and Vasculogenesis. Developmental Biology, 179(1), 297–302. https://doi.org/10.1006/dbio.1996.0259 78. Dickson, M. ., Martin, J. ., Cousins, F. ., Kulkarni, A. ., Karlsson, S., & R.J. Akhurst. (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 121(6), 1845–1854. Retrieved from http://dev.biologists.org/content/121/6/1845 79. Gore, J., Craven, K. E., Wilson, J. L., & Korc, M. (2015). Abstract 4180: TGF-beta promotes angiogenesis in an RB-deficient, Kras-driven mouse model of pancreatic cancer. Tumor Biology. https://doi.org/10.1158/1538-7445.am2015-4180 80. Geng, L., Chaudhuri, A., Talmon, G., Wisecarver, J. L., & Wang, J. (2013). TGF-Beta Suppresses VEGFA-Mediated Angiogenesis in Colon Cancer Metastasis. PLoS ONE, 8(3), e59918. https://doi.org/10.1371/journal.pone.0059918 81. Liu, Z., Kobayashi, K., van Dinther, M., van Heiningen, S. H., Valdimarsdottir, G., van Laar, T., … Pardali, E. (2009). VEGF and inhibitors of TGF type-I receptor kinase synergistically promote blood-vessel formation by inducing 5-integrin expression. Journal of Cell Science, 122(18), 3294–3302. https://doi.org/10.1242/jcs.048942 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78535 | - |
dc.description.abstract | 肺臟表皮由多種不同功能的表皮細胞所組成,由於直接與吸入的氣體接觸,肺臟表皮會持續地受到來自外界環境因子的刺激與傷害,有鑑於此,負責進行損傷修復與維持正常生理狀況下細胞汰換的肺臟幹/先驅細胞的存在是非常重要的。在先前的研究中,我們從新生小鼠的肺部中發現了一群稀少的肺臟幹/先驅細胞族群,這群細胞會表現具有特異性的細胞標誌,柯薩奇病毒/腺病毒受體(CAR),利用此細胞標誌可以分離出此細胞族群,並將其命名為mPSCsCAR+。這群細胞在培養七到十天後會分化成近似第I型肺泡上皮細胞。為了釐清mPSCsCAR+作為肺臟幹細胞的角色以及與其他已被研究過的肺臟幹/先驅細胞的相似程度,我們蒐集了其他研究提出的肺臟幹細胞所表現的細胞標誌,並利用單細胞定序分析這些細胞標誌在mPSCsCAR+的表現量,結果顯示,某些細胞標誌在所有的mPSCsCAR+都會表現,表示mPSCsCAR+可能與表現那些細胞標誌的細胞族群有很高的相關程度。此外,我們發現乙型轉化生長因子(TGF-β)的訊息傳遞路徑在mPSCsCAR+分化成第I型肺泡上皮細胞的過程中是不可或缺的,但同時此路徑的活化也會導致α-平滑肌動蛋白(α-SMA)以及其他與肺纖維化相關的基因表現量上升。在加入地塞米松(Dexamethasone)及乙型轉化生長因子受體抑制劑之後,α-平滑肌動蛋白與其他肺纖維化相關基因的表現量有顯著下降,此外,與細胞連接相關的蛋白,如上皮細胞黏著分子(EpCAM)及緊密連接蛋白(caludin18)的表現量也有所提升,顯示地塞米松與乙型轉化生長因子受體抑制劑對於肺纖維化的過程有潛在的抑制效果。然而,我們觀察到加入藥物後並不是所有細胞的α-平滑肌動蛋白表現量都會下降,不同細胞對藥物的反應不一致的現象使我們認為此細胞可能是一個異質化的族群。藉由單細胞定序的技術,我們可以從不同處理的細胞組別中分別分離出具有不同特徵的亞族群,並嘗試釐清不同組別中亞族群之間的關聯。 | zh_TW |
dc.description.abstract | The lung epithelium composed of various types of epithelial cells with their distinct functions is directly exposed to the external environment and continually undergoes injury caused by environmental factors from inhaled air. Given the reason, the existence of stem/progenitor cells responsible for injury repair and normal turnover at steady state is crucial. Recently, we have identified a rare population of mouse pulmonary stem/progenitor cells (mPSCs) from neonatal mice, which express a specific marker, coxsackievirus/adenovirus receptor (CAR) and were named mPSCsCAR+. They have the ability to differentiate into alveolar type I-like (ATI-like) cells in 7-10 days. To clarify the role and position of mPSCsCAR+ and the similarity to other proposed progenitor populations, we evaluated the expression of proposed stem/progenitor cell markers in mPSCsCAR+ by single-cell RNA sequencing. According to the gene expression, all of our cells would express some markers proposed by the previous studies, indicating our cells might be similar to the populations mentioned in those studies. Besides, we found the expression of α-SMA and other fibrosis-related genes were upregulated during the differentiation process by TGF-β signaling pathway which is necessary for differentiation of mPSCsCAR+ into ATI-like cells. After treating with dexamethasone and TGF-β receptor inhibitor, the expression of α-SMA and other fibrosis-related genes were downregulated. In addition, the cell junction protein, EpCAM and claudin18 were upregulated, indicating the potential therapeutic effect of TGF-β receptor inhibitor on fibrotic process. At the same time, we observed differentiated cells displayed different responses to TGF-β receptor inhibitor by expressing different levels of α-SMA, indicating our cells might be a heterogeneous population. By single-cell RNA sequencing, we identified the subpopulations with different characteristics in mPSCsCAR+, untreated and drug-treated differentiated cells, and attempted to clarify the relationships of subpopulations between each group. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:02:33Z (GMT). No. of bitstreams: 1 ntu-108-R06443019-1.pdf: 7644903 bytes, checksum: a2768daa4f49c659f92d7d5aac175b6a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書............................ii
誌謝.................................iii 中文摘要..............................iv Abstract ...............................v Abbreviation list........................... vii Chapter 1 Introduction.........................1 1.1 Lung epithelium.........................2 1.2 Stem/progenitor cell in lung.....................3 1.3 CAR+ mouse pulmonary stem/progenitor cells (mPSCsCAR+)........5 1.4 The effect of dexamethasone on mPSCsCAR+..............6 1.5 TGF-β signaling pathway......................7 1.6 TGF-β signaling pathway are involved in pathogenesis of lung fibrosis....8 1.7 The role of TGF-β signaling pathway in lung development.........10 1.8 The effect of TGF-β on regulating the differentiation process of mPSCsCAR+.12 1.9 Aim of the study..........................13 Chapter 2 Materials and methods.....................15 2.1 Primary culture of mPSCs (mouse pulmonary stem/progenitor cells).....16 2.2 mPSCsCAR+ isolation and in vitro differentiation.............17 2.3 RT-PCR, real-time qPCR and primers design..............18 2.4 Immunofluorescence staining.....................19 2.5 Western blotting..........................20 2.6 Single-cell RNA sequencing and data processing.............21 2.7 Statistical analysis.........................22 Chapter 3 Results...........................23 3.1 Different levels of epithelial stem/progenitor cell marker were expressed in mPSCsCAR+.............................24 3.2 TGF-β signaling pathway is involved in both fibrotic and cell differentiation process of mPSCsCAR+.........................25 3.3 Combination treatment of dexamethasone and TGF-β receptor inhibitor could promote the differentiation of mPSCsCAR+ into ATI-like cells.........26 3.4 TGF-β receptor inhibitor could downregulated the expression of fibrosis-related genes which was upregulated during the differentiation process........27 3.5 Single-cell gene expression profile distinguished subpopulations in differentiated cells with drug treatment........................28 3.6 Subpopulations in untreated cells were similar but not identical to those in drug-treated cells.............................29 3.7 Subpopulations in differentiated cells might be derived from progenitor cells.30 Chapter 4 Figures...........................31 4.1 Proposed stem/progenitor cell markers were expressed by mPSCsCAR+ in varying degrees...............................32 4.2 Changes of morphology and expression of markers were observed in the differentiation process of mPSCsCAR+ into ATI-like cells...........34 4.3 TGF-β Signaling pathway was involved in the differentiation process of mPSCsCAR+ into ATI-like cells......................36 4.4 The effect of drug combination treatment on α-SMA and cell junction protein EpCAM, claudin18 and ZO-1.....................39 4.5 Upregulated genes during the differentiation process...........42 4.6 Downregulated genes after drug treatment...............45 4.7 Gene expression of fibrosis-related genes in different states of mPSCsCAR+..50 4.8 Subpopulation analysis of differentiated cells treated with drug.......52 4.9 Subpopulation analysis of differentiated cells without treatment.......54 4.10 Subpopulation analysis of progenitor cells (mPSCsCAR+).........56 Chapter 5 Tables........................... 58 Table 1. Summary of stem/progenitor cell types and markers of lung epithelium.59 Table 2. List of primers used for RT-PCR and real-time qPCR.........60 Chapter 6 Discussion.........................61 6.1 Stem/progenitor markers in mPSCsCAR+................62 6.2 Effect of TGF-β receptor inhibitor on fibrotic process...........63 6.3 Subpopulations in mPSCsCAR+, differentiated cells with and without drug treatment..............................64 Chapter 7 Reference..........................67 | |
dc.language.iso | zh-TW | |
dc.title | 單細胞定序分析肺臟幹/先驅細胞分化成第I型肺泡上皮細胞過程中的基因及子群變化 | zh_TW |
dc.title | Identification of differentially expressed genes and heteropopulations in the differentiation process of pulmonary stem/progenitor cell to alveolar type I cells by single-cell RNA sequencing | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 董奕鍾(Yi-Chung Tung),曹伯年(Po-Nien Tsao),林仲彥(Chung-Yen Lin),沈家寧(Chia-Ning Shen),陳惠文(Huei-Wen Chen) | |
dc.subject.keyword | 肺臟幹/先驅細胞,第一型肺泡上皮細胞,單細胞定序,乙型轉化生長因子訊息傳遞路徑,異質性, | zh_TW |
dc.subject.keyword | lung stem/progenitor cells,type I alveolar epithelial cells,single-cell RNA sequencing,TGF-β signaling pathway,heterogeneity, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU201903918 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06443019-1.pdf 目前未授權公開取用 | 7.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。