Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬(Wan-Wan Lin)
dc.contributor.authorChi-Ming Chanen
dc.contributor.author陳志明zh_TW
dc.date.accessioned2021-07-11T15:02:23Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citationAbcouwer, S. F., Marjon, P. L., Loper, R. K., & Vander Jagt, D. L. (2002). Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Invest Ophthalmol Vis Sci, 43(8), 2791-2798.
Adachi, T., Yasuda, H., Nakamura, S., Kamiya, T., Hara, H., Hara, H., & Ikeda, T. (2011). Endoplasmic reticulum stress induces retinal endothelial permeability of extracellular-superoxide dismutase. Free Radic Res, 45(9), 1083-1092. doi:10.3109/10715762.2011.595408
Ajlan, R. S., Silva, P. S., & Sun, J. K. (2016). Vascular endothelial growth factor and diabetic retinal disease. Semin Ophthalmol, 31(1-2), 40-48. doi:10.3109/08820538.2015.1114833
Allaman, I., Belanger, M., & Magistretti, P. J. (2015). Methylglyoxal, the dark side of glycolysis. Front Neurosci, 9, 23. doi:10.3389/fnins.2015.00023
Antognelli, C., Mezzasoma, L., Fettucciari, K., & Talesa, V. N. (2013). A novel mechanism of methylglyoxal cytotoxicity in prostate cancer cells. Int J Biochem Cell Biol, 45(4), 836-844. doi:10.1016/j.biocel.2013.01.003
Arruda, A. P., & Hotamisligil, G. S. (2015). Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab, 22(3), 381-397. doi:10.1016/j.cmet.2015.06.010
Baek, A., Yoon, S., Kim, J., Baek, Y. M., Park, H., Lim, D., Chung, H., Kim, D. E. (2017). Autophagy and KRT8/keratin 8 protect degeneration of retinal pigment epithelium under oxidative stress. Autophagy, 13(2), 248-263. doi:10.1080/15548627.2016.1256932
Bai, L., Zhang, Z., Zhang, H., Li, X., Yu, Q., Lin, H., & Yang, W. (2008). HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study. BMC Infect Dis, 8, 77. doi:10.1186/1471-2334-8-77
Balmer, J., Zulliger, R., Roberti, S., & Enzmann, V. (2015). Retinal cell death caused by sodium iodate involves multiple caspase-dependent and caspase-independent cell-death pathways. Int J Mol Sci, 16(7), 15086-15103. doi:10.3390/ijms160715086
Bandello, F., Battaglia Parodi, M., Lanzetta, P., Loewenstein, A., Massin, P., Menchini, F., & Veritti, D. (2017). Diabetic macular edema. Dev Ophthalmol, 58, 102-138. doi:10.1159/000455277
Barber, A. J., Gardner, T. W., & Abcouwer, S. F. (2011). The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci, 52(2), 1156-1163. doi:10.1167/iovs.10-6293
Barot, M., Gokulgandhi, M. R., & Mitra, A. K. (2011). Mitochondrial dysfunction in retinal diseases. Curr Eye Res, 36(12), 1069-1077. doi:10.3109/02713683.2011.607536
Barro-Soria, R., Stindl, J., Muller, C., Foeckler, R., Todorov, V., Castrop, H., & Strauss, O. (2012). Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel. PLoS One, 7(11), e49624. doi:10.1371/journal.pone.0049624
Behl, T., Kaur, I., & Kotwani, A. (2016). Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol, 61(2), 187-196. doi:10.1016/j.survophthal.2015.06.001
Bellezza, I., Giambanco, I., Minelli, A., & Donato, R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res, 1865(5), 721-733. doi:10.1016/j.bbamcr.2018.02.010
Bellezza, I., Mierla, A. L., & Minelli, A. (2010). Nrf2 and NF-kappaB and their concerted modulation in cancer pathogenesis and progression. Cancers (Basel), 2(2), 483-497. doi:10.3390/cancers2020483
Bento, C. F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., . . . Rubinsztein, D. C. (2016). Mammalian autophagy: how does it work? Annu Rev Biochem, 85, 685-713. doi:10.1146/annurev-biochem-060815-014556
Bhandary, B., Marahatta, A., Kim, H. R., & Chae, H. J. (2012). An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci, 14(1), 434-456. doi:10.3390/ijms14010434
Bhutto, I., & Lutty, G. (2012). Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med, 33(4), 295-317. doi:10.1016/j.mam.2012.04.005
Binet, F., & Sapieha, P. (2015). ER stress and angiogenesis. Cell Metab, 22(4), 560-575. doi:10.1016/j.cmet.2015.07.010
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ J, 5(1), 9-19. doi:10.1097/WOX.0b013e3182439613
Bird, G. S., & Putney, J. W., Jr. (2018). Pharmacology of store-operated calcium entry channels. In J. A. Kozak & J. W. Putney, Jr. (Eds.), Calcium Entry Channels in Non-Excitable Cells (pp. 311-324). Boca Raton (FL): CRC Press/Taylor & Francis (c) 2017 by Taylor & Francis Group, LLC.
Biswas, S., Ray, M., Misra, S., Dutta, D. P., & Ray, S. (1997). Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. Biochem J, 323 ( Pt 2), 343-348. doi:10.1042/bj3230343
Bittremieux, M., & Bultynck, G. (2015). p53 and Ca2+ signaling from the endoplasmic reticulum: partners in anti-cancer therapies. Oncoscience, 2(3), 233-238. doi:10.18632/oncoscience.139
Blasiak, J., Pawlowska, E., Szczepanska, J., & Kaarniranta, K. (2019). Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration. Int J Mol Sci, 20(1). doi:10.3390/ijms20010210
Bok, D. (1993). The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl, 17, 189-195.
Booij, J. C., Baas, D. C., Beisekeeva, J., Gorgels, T. G., & Bergen, A. A. (2010). The dynamic nature of Bruch's membrane. Prog Retin Eye Res, 29(1), 1-18. doi:10.1016/j.preteyeres.2009.08.003
Boriushkin, E., Wang, J. J., & Zhang, S. X. (2014). Role of p58IPK in endoplasmic reticulum stress-associated apoptosis and inflammation. J Ophthalmic Vis Res, 9(1), 134-143.
Bose, T., Cieslar-Pobuda, A., & Wiechec, E. (2015). Role of ion channels in regulating Ca2+ homeostasis during the interplay between immune and cancer cells. Cell Death Dis, 6, e1648. doi:10.1038/cddis.2015.23
Boyce, M., Bryant, K. F., Jousse, C., Long, K., Harding, H. P., Scheuner, D., Kaufman, R.J., Ma, D., Coen, D.M., Ron, D., & Yuan, J. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science, 307(5711), 935-939. doi:10.1126/science.1101902
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813-820. doi:10.1038/414813a
Cai, X., & McGinnis, J. F. (2012). Oxidative stress: the achilles' heel of neurodegenerative diseases of the retina. Front Biosci (Landmark Ed), 17, 1976-1995.
Calderon, G. D., Juarez, O. H., Hernandez, G. E., Punzo, S. M., & De la Cruz, Z. D. (2017). Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond), 31(8), 1122-1130. doi:10.1038/eye.2017.64
Cali, T., Ottolini, D., & Brini, M. (2011). Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Biofactors, 37(3), 228-240. doi:10.1002/biof.159
Camello-Almaraz, C., Gomez-Pinilla, P. J., Pozo, M. J., & Camello, P. J. (2006). Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol, 291(5), C1082-1088. doi:10.1152/ajpcell.00217.2006
Cano, M., Wang, L., Wan, J., Barnett, B. P., Ebrahimi, K., Qian, J., & Handa, J. T. (2014). Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med, 69, 1-14. doi:10.1016/j.freeradbiomed.2014.01.004
Chan, E. C., van Wijngaarden, P., Liu, G. S., Jiang, F., Peshavariya, H., & Dusting, G. J. (2013). Involvement of Nox2 NADPH oxidase in retinal neovascularization. Invest Ophthalmol Vis Sci, 54(10), 7061-7067. doi:10.1167/iovs.13-12883
Chang, C. C., Huang, T. Y., Chen, H. Y., Huang, T. C., Lin, L. C., Chang, Y. J., & Hsia, S. M. (2018). Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells. Oxid Med Cell Longev, 2018, 9015765. doi:10.1155/2018/9015765
Chang, Y. C., Hsieh, M. C., Wu, H. J., Wu, W. C., & Kao, Y. H. (2015). Methylglyoxal, a reactive glucose metabolite, enhances autophagy flux and suppresses proliferation of human retinal pigment epithelial ARPE-19 cells. Toxicol In Vitro, 29(7), 1358-1368. doi:10.1016/j.tiv.2015.05.014
Chaudhari, N., Talwar, P., Parimisetty, A., Lefebvre d'Hellencourt, C., & Ravanan, P. (2014). A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci, 8, 213. doi:10.3389/fncel.2014.00213
Chaurasia, S. S., Lim, R. R., Parikh, B. H., Wey, Y. S., Tun, B. B., Wong, T. Y., Luu, C.D., Agrawal, R., Ghosh, A., Mortellaro, A., Rackoczy, E., Mohan, R.R., & Barathi, V. A. (2018). The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Sci Rep, 8(1), 2847. doi:10.1038/s41598-018-21198-z
Chen, C., Cano, M., Wang, J. J., Li, J., Huang, C., Yu, Q., Herbert, T.P., Handa, J.T., & Zhang, S. X. (2014). Role of unfolded protein response dysregulation in oxidative injury of retinal pigment epithelial cells. Antioxid Redox Signal, 20(14), 2091-2106. doi:10.1089/ars.2013.5240
Chen, C., Zhong, Y., Wang, J. J., Yu, Q., Plafker, K., Plafker, S., & Zhang, S. X. (2018). Regulation of Nrf2 by X box-binding protein 1 in retinal pigment epithelium. Front Genet, 9, 658. doi:10.3389/fgene.2018.00658
Chen, J. H., Kuo, H. C., Lee, K. F., & Tsai, T. H. (2014). Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine. Toxicol Appl Pharmacol, 279(3), 294-302. doi:10.1016/j.taap.2014.07.005
Chen, L., Liu, M., Luan, Y., Liu, Y., Zhang, Z., Ma, B., Liu, X., Liu, Y. (2018). BMP6 protects retinal pigment epithelial cells from oxidative stressinduced injury by inhibiting the MAPK signaling pathways. Int J Mol Med, 42(2), 1096-1105. doi:10.3892/ijmm.2018.3675
Chen, Y., Sawada, O., Kohno, H., Le, Y. Z., Subauste, C., Maeda, T., & Maeda, A. (2013). Autophagy protects the retina from light-induced degeneration. J Biol Chem, 288(11), 7506-7518. doi:10.1074/jbc.M112.439935
Cheung, G. C. M., Lai, T. Y. Y., Gomi, F., Ruamviboonsuk, P., Koh, A., & Lee, W. K. (2017). Anti-VEGF therapy for neovascular amd and polypoidal choroidal vasculopathy. Asia Pac J Ophthalmol (Phila), 6(6), 527-534. doi:10.22608/apo.2017260
Cid-Castro, C., Hernandez-Espinosa, D. R., & Moran, J. (2018). ROS as regulators of mitochondrial dynamics in neurons. Cell Mol Neurobiol, 38(5), 995-1007. doi:10.1007/s10571-018-0584-7
Cohen, F. E., & Kelly, J. W. (2003). Therapeutic approaches to protein-misfolding diseases. Nature, 426(6968), 905-909. doi:10.1038/nature02265
Colijn, J. M., Buitendijk, G. H. S., Prokofyeva, E., Alves, D., Cachulo, M. L., Khawaja, A. P., Cougnard-Gregoire, A., Merle, B. M. J., Korb, C., Erke, M. G., Bron, A., Anastasopoulos, E., Meester-Smoor, M. A., Segato, T., Piermarocchi, S., de Jong, Ptvm, Vingerling, J. R., Topouzis, F., Creuzot-Garcher, C., Bertelsen, G., Pfeiffer, N., Fletcher, A. E., Foster, P. J., Silva, R., Korobelnik, J. F., Delcourt, C., Klaver, C. C. W. (2017). Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology, 124(12), 1753-1763. doi:10.1016/j.ophtha.2017.05.035
Congdon, N., O'Colmain, B., Klaver, C. C., Klein, R., Munoz, B., Friedman, D. S., Kempen, J., Taylor, H. R., Mitchell, P. (2004). Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol, 122(4), 477-485. doi:10.1001/archopht.122.4.477
Contreras-Ferrat, A., Lavandero, S., Jaimovich, E., & Klip, A. (2014). Calcium signaling in insulin action on striated muscle. Cell Calcium, 56(5), 390-396. doi:10.1016/j.ceca.2014.08.012
Croisier, H., Tan, X., Chen, J., Sneyd, J., Sanderson, M. J., & Brook, B. S. (2015). Ryanodine receptor sensitization results in abnormal calcium signaling in airway smooth muscle cells. Am J Respir Cell Mol Biol, 53(5), 703-711. doi:10.1165/rcmb.2014-0386OC
Cullinan, S. B., & Diehl, J. A. (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem, 279(19), 20108-20117. doi:10.1074/jbc.M314219200
Datta, S., Cano, M., Ebrahimi, K., Wang, L., & Handa, J. T. (2017). The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res, 60, 201-218. doi:10.1016/j.preteyeres.2017.03.002
Davalli, P., Mitic, T., Caporali, A., Lauriola, A., & D'Arca, D. (2016). ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev, 2016, 3565127. doi:10.1155/2016/3565127
Dhingra, A., Bell, B. A., Peachey, N. S., Daniele, L. L., Reyes-Reveles, J., Sharp, R. C., Jun, B., Bazan, N. G., Sparrow, J. R., Kim, H. J., Philp, N. J., Boesze-Battaglia, K. (2018). Microtubule-associated protein 1 light chain 3B, (LC3B) is necessary to maintain lipid-mediated homeostasis in the retinal pigment epithelium. Front Cell Neurosci, 12, 351. doi:10.3389/fncel.2018.00351
Di Loreto, S., Zimmitti, V., Sebastiani, P., Cervelli, C., Falone, S., & Amicarelli, F. (2008). Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol, 40(2), 245-257. doi:10.1016/j.biocel.2007.07.019
Diwanji, N., & Bergmann, A. (2018). An unexpected friend - ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin Cell Dev Biol, 80, 74-82. doi:10.1016/j.semcdb.2017.07.004
Dong, A., Xie, B., Shen, J., Yoshida, T., Yokoi, K., Hackett, S. F., & Campochiaro, P. A. (2009). Oxidative stress promotes ocular neovascularization. J Cell Physiol, 219(3), 544-552. doi:10.1002/jcp.21698
Du, M., Wu, M., Fu, D., Yang, S., Chen, J., Wilson, K., & Lyons, T. J. (2013). Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy? Diabetologia, 56(10), 2318-2328. doi:10.1007/s00125-013-2986-x
Du, W., An, Y., He, X., Zhang, D., & He, W. (2018). Protection of Kaempferol on Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage. Oxid Med Cell Longev, 2018, 1610751. doi:10.1155/2018/1610751
Fan, P., Xie, X. H., Chen, C. H., Peng, X., Zhang, P., Yang, C., & Wang, Y. T. (2019). Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol, 38(1), 10-22. doi:10.1089/dna.2018.4348
Fanjul-Moles, M. L., & Lopez-Riquelme, G. O. (2016). Relationship between oxidative stress, circadian rhythms, and AMD. Oxid Med Cell Longev, 2016, 7420637. doi:10.1155/2016/7420637
Feissner, R. F., Skalska, J., Gaum, W. E., & Sheu, S. S. (2009). Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed), 14, 1197-1218.
Feng, Y., Liang, J., Zhai, Y., Sun, J., Wang, J., She, X., Gu, Q., Liu, Y., Zhu, H., Luo, X., Sun, X. (2018). Autophagy activated by SIRT6 regulates Abeta induced inflammatory response in RPEs. Biochem Biophys Res Commun, 496(4), 1148-1154. doi:10.1016/j.bbrc.2018.01.159
Fu, D., Wu, M., Zhang, J., Du, M., Yang, S., Hammad, S. M., Wilson, K., Chen, J., Lyons, T. J. (2012). Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia, 55(11), 3128-3140. doi:10.1007/s00125-012-2692-0
Fuhrmann, S., Zou, C., & Levine, E. M. (2014). Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res, 123, 141-150. doi:10.1016/j.exer.2013.09.003
Gammella, E., Recalcati, S., & Cairo, G. (2016). Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxid Med Cell Longev, 2016, 8629024. doi:10.1155/2016/8629024
Ganapathy-Kanniappan, S., & Geschwind, J. F. (2013). Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer, 12, 152. doi:10.1186/1476-4598-12-152
Gao, X. H., Gao, R., Tian, Y. Z., McGonigle, P., Barrett, J. E., Dai, Y., & Hu, H. (2015). A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br J Pharmacol, 172(12), 2991-3002. doi:10.1111/bph.13104
Ghosh, R., Lipson, K. L., Sargent, K. E., Mercurio, A. M., Hunt, J. S., Ron, D., & Urano, F. (2010). Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One, 5(3), e9575. doi:10.1371/journal.pone.0009575
Glenn, J. V., Beattie, J. R., Barrett, L., Frizzell, N., Thorpe, S. R., Boulton, M. E., McGarvey, J. J., Stitt, A. W. (2007). Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch's membrane leading to accurate, nondestructive prediction of ocular aging. Faseb j, 21(13), 3542-3552. doi:10.1096/fj.06-7896com
Glenn, J. V., & Stitt, A. W. (2009). The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta, 1790(10), 1109-1116. doi:10.1016/j.bbagen.2009.04.016
Gorlach, A., Bertram, K., Hudecova, S., & Krizanova, O. (2015). Calcium and ROS: A mutual interplay. Redox Biol, 6, 260-271. doi:10.1016/j.redox.2015.08.010
Green, D. R., & Levine, B. (2014). To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 157(1), 65-75. doi:10.1016/j.cell.2014.02.049
Guo, Z., Johnson, V., Barrera, J., Porras, M., Hinojosa, D., Hernandez, I., McGarrah, P., Potter, D. A. (2018). Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev, 37(2-3), 409-423. doi:10.1007/s10555-018-9749-6
Gurlo, T., Rivera, J. F., Butler, A. E., Cory, M., Hoang, J., Costes, S., & Butler, P. C. (2016). CHOP contributes to, but is not the only mediator of, IAPP induced beta-cell apoptosis. Mol Endocrinol, 30(4), 446-454. doi:10.1210/me.2015-1255
Guzman, D. C., Olguin, H. J., Garcia, E. H., Peraza, A. V., de la Cruz, D. Z., & Soto, M. P. (2017). Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress. Redox Rep, 22(1), 10-16. doi:10.1080/13510002.2016.1205303
Hanus, J., Anderson, C., Sarraf, D., Ma, J., & Wang, S. (2016). Retinal pigment epithelial cell necroptosis in response to sodium iodate. Cell Death Discov, 2, 16054. doi:10.1038/cddiscovery.2016.54
Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., & Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3), 497-510. doi:10.1083/jcb.200712064
Hariri, S., Tam, M. C., Lee, D., Hileeto, D., Moayed, A. A., & Bizheva, K. (2013). Noninvasive imaging of the early effect of sodium iodate toxicity in a rat model of outer retina degeneration with spectral domain optical coherence tomography. J Biomed Opt, 18(2), 26017. doi:10.1117/1.JBO.18.2.026017
Harper, J. L., Camerini-Otero, C. S., Li, A. H., Kim, S. A., Jacobson, K. A., & Daly, J. W. (2003). Dihydropyridines as inhibitors of capacitative calcium entry in leukemic HL-60 cells. Biochem Pharmacol, 65(3), 329-338. doi:10.1016/s0006-2952(02)01488-0
He, S., Yaung, J., Kim, Y. H., Barron, E., Ryan, S. J., & Hinton, D. R. (2008). Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol, 246(5), 677-683. doi:10.1007/s00417-008-0770-2
Hogan, P. G., & Rao, A. (2015). Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun, 460(1), 40-49. doi:10.1016/j.bbrc.2015.02.110
Hong, Q., Qi, K., Feng, Z., Huang, Z., Cui, S., Wang, L., Fu, B., Ding, R., Yang, J., Chen, X., Wu, D. (2012). Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium, 51(5), 402-410. doi:10.1016/j.ceca.2012.01.003
Hu, W. K., Liu, R., Pei, H., & Li, B. (2012). Endoplasmic reticulum stress-related factors protect against diabetic retinopathy. Exp Diabetes Res, 2012, 507986. doi:10.1155/2012/507986
Huang, C., Lu, H., Xu, J., Yu, H., Wang, X., & Zhang, X. (2018). Protective roles of autophagy in retinal pigment epithelium under high glucose condition via regulating PINK1/Parkin pathway and BNIP3L. Biol Res, 51(1), 22. doi:10.1186/s40659-018-0169-4
Huang, J. D., Amaral, J., Lee, J. W., Larrayoz, I. M., & Rodriguez, I. R. (2012). Sterculic acid antagonizes 7-ketocholesterol-mediated inflammation and inhibits choroidal neovascularization. Biochim Biophys Acta, 1821(4), 637-646. doi:10.1016/j.bbalip.2012.01.013
Hwang, J., & Qi, L. (2018). Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci, 43(8), 593-605. doi:10.1016/j.tibs.2018.06.005
Hyttinen, J. M. T., Viiri, J., Kaarniranta, K., & Blasiak, J. (2018). Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell Mol Life Sci, 75(16), 2991-3008. doi:10.1007/s00018-018-2843-7
Ishikawa, J., Ohga, K., Yoshino, T., Takezawa, R., Ichikawa, A., Kubota, H., & Yamada, T. (2003). A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J Immunol, 170(9), 4441-4449. doi:10.4049/jimmunol.170.9.4441
Ivanova, H., Vervliet, T., Missiaen, L., Parys, J. B., De Smedt, H., & Bultynck, G. (2014). Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta, 1843(10), 2164-2183. doi:10.1016/j.bbamcr.2014.03.007
Jackson, M. J. (2016). Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med, 50, 33-40. doi:10.1016/j.mam.2016.05.002
Jarrett, S. G., & Boulton, M. E. (2012). Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med, 33(4), 399-417. doi:10.1016/j.mam.2012.03.009
Jezek, J., Cooper, K. F., & Strich, R. (2018). Reactive Oxygen Species and Mitochondrial Dynamiycs: The yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel), 7(1). doi:10.3390/antiox7010013
Jiang, X., Wei, Y., Zhang, T., Zhang, Z., Qiu, S., Zhou, X., & Zhang, S. (2017). Effects of GSK2606414 on cell proliferation and endoplasmic reticulum stressassociated gene expression in retinal pigment epithelial cells. Mol Med Rep, 15(5), 3105-3110. doi:10.3892/mmr.2017.6418
Johnson, D., Allman, E., & Nehrke, K. (2012). Regulation of acid-base transporters by reactive oxygen species following mitochondrial fragmentation. Am J Physiol Cell Physiol, 302(7), C1045-1054. doi:10.1152/ajpcell.00411.2011
Juel, H. B., Faber, C., Svendsen, S. G., Vallejo, A. N., & Nissen, M. H. (2013). Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death. PLoS One, 8(5), e64619. doi:10.1371/journal.pone.0064619
Kaarniranta, K., Sinha, D., Blasiak, J., Kauppinen, A., Vereb, Z., Salminen, A., Boulton, M. E., Petrovski, G. (2013). Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy, 9(7), 973-984. doi:10.4161/auto.24546
Kalapos, M. P. (2013). Where does plasma methylglyoxal originate from? Diabetes Res Clin Pract, 99(3), 260-271. doi:10.1016/j.diabres.2012.11.003
Karachalias, N., Babaei-Jadidi, R., Ahmed, N., & Thornalley, P. J. (2003). Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem Soc Trans, 31(Pt 6), 1423-1425. doi:10.1042/
Karunadharma, P. P., Nordgaard, C. L., Olsen, T. W., & Ferrington, D. A. (2010). Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci, 51(11), 5470-5479. doi:10.1167/iovs.10-5429
Kauppila, T. E. S., Kauppila, J. H. K., & Larsson, N. G. (2017). Mammalian mitochondria and aging: an update. Cell Metab, 25(1), 57-71. doi:10.1016/j.cmet.2016.09.017
Keeling, E., Lotery, A. J., Tumbarello, D. A., & Ratnayaka, J. A. (2018). Impaired cargo clearance in the retinal pigment epithelium (RPE) underlies irreversible blinding diseases. Cells, 7(2). doi:10.3390/cells7020016
Kheitan, S., Minuchehr, Z., & Soheili, Z. S. (2017). Exploring the cross talk between ER stress and inflammation in age-related macular degeneration. PLoS One, 12(7), e0181667. doi:10.1371/journal.pone.0181667
Kim, J. H., Kim, K. A., Shin, Y. J., Kim, H., Majid, A., & Bae, O. N. (2018). Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells. J Toxicol Environ Health A, 81(9), 266-277. doi:10.1080/15287394.2018.1440185
Kim, J. Y., Zhao, H., Martinez, J., Doggett, T. A., Kolesnikov, A. V., Tang, P. H., Ablonczy, Z., Chan, C. C., Zhou, Z., Green, D. R., Ferguson, T. A. (2013). Noncanonical autophagy promotes the visual cycle. Cell, 154(2), 365-376. doi:10.1016/j.cell.2013.06.012
Kim, Y. W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123(5), 625-631. doi:10.1182/blood-2013-09-512749
Koinzer, S., Reinecke, K., Herdegen, T., Roider, J., & Klettner, A. (2015). Oxidative stress induces biphasic ERK1/2 activation in the RPE with distinct effects on cell survival at early and late activation. Curr Eye Res, 40(8), 853-857. doi:10.3109/02713683.2014.961613
Kolosova, N. G., Kozhevnikova, O. S., Telegina, D. V., Fursova, A. Z., Stefanova, N. A., Muraleva, N. A., Venanzi, F., Sherman, M. Y., Kolesnikov, S. I., Sufianov, A. A., Gabai, V. L., Shneider, A. M. (2018). p62 /SQSTM1 coding plasmid prevents age related macular degeneration in a rat model. Aging (Albany NY), 10(8), 2136-2147. doi:10.18632/aging.101537
Kowluru, R. A., & Chan, P. S. (2007). Oxidative stress and diabetic retinopathy. Exp Diabetes Res, 2007, 43603. doi:10.1155/2007/43603
Kowluru, R. A., & Mishra, M. (2015). Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta, 1852(11), 2474-2483. doi:10.1016/j.bbadis.2015.08.001
Koyama, Y., Matsuzaki, S., Gomi, F., Yamada, K., Katayama, T., Sato, K., Kumada, T., Fukuda, A., Matsuda, S., Tano, Y., Tohyama, M. (2008). Induction of amyloid beta accumulation by ER calcium disruption and resultant upregulation of angiogenic factors in ARPE19 cells. Invest Ophthalmol Vis Sci, 49(6), 2376-2383. doi:10.1167/iovs.07-1067
Krebs, J., Agellon, L. B., & Michalak, M. (2015). Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun, 460(1), 114-121. doi:10.1016/j.bbrc.2015.02.004
Ktistakis, N. T., & Tooze, S. A. (2016). Digesting the expanding mechanisms of autophagy. Trends Cell Biol, 26(8), 624-635. doi:10.1016/j.tcb.2016.03.006
Kunchithapautham, K., Atkinson, C., & Rohrer, B. (2014). Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation. J Biol Chem, 289(21), 14534-14546. doi:10.1074/jbc.M114.564674
Larosa, V., & Remacle, C. (2018). Insights into the respiratory chain and oxidative stress. Biosci Rep, 38(5). doi:10.1042/bsr20171492
Laver, D. R. (2007). Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Clin Exp Pharmacol Physiol, 34(9), 889-896. doi:10.1111/j.1440-1681.2007.04708.x
Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 441(2), 523-540. doi:10.1042/bj20111451
Lee, S. Y., Oh, J. S., Rho, J. H., Jeong, N. Y., Kwon, Y. H., Jeong, W. J., Ryu, W. Y., Ahn, H. B., Park, W. C., Rho, S. H., Yoon, Y. G., Jeong, S. Y., Choi, Y. H., Kim, H. Y., Yoo, Y. H. (2014). Retinal pigment epithelial cells undergoing mitotic catastrophe are vulnerable to autophagy inhibition. Cell Death Dis, 5, e1303. doi:10.1038/cddis.2014.266
Lei, L., Tzekov, R., Li, H., McDowell, J. H., Gao, G., Smith, W. C., Tang, S., Kaushal, S. (2017). Inhibition or stimulation of autophagy affects early formation of lipofuscin-like autofluorescence in the retinal pigment epithelium cell. Int J Mol Sci, 18(4). doi:10.3390/ijms18040728
Lei, Y., Wang, S., Ren, B., Wang, J., Chen, J., Lu, J., Zhan, S., Fu, Y., Huang, L., Tan, J. (2017). CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLoS One, 12(8), e0183680. doi:10.1371/journal.pone.0183680
Li, B., Li, D., Li, G. G., Wang, H. W., & Yu, A. X. (2008). P58(IPK) inhibition of endoplasmic reticulum stress in human retinal capillary endothelial cells in vitro. Mol Vis, 14, 1122-1128.
Li, C., Miao, X., Li, F., Wang, S., Liu, Q., Wang, Y., & Sun, J. (2017). Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy. Oxid Med Cell Longev, 2017, 9702820. doi:10.1155/2017/9702820
Li, J., Wang, J. J., Yu, Q., Wang, M., & Zhang, S. X. (2009). Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett, 583(9), 1521-1527. doi:10.1016/j.febslet.2009.04.007
Li, W. W., Alexandre, S., Cao, X., & Lee, A. S. (1993). Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. J Biol Chem, 268(16), 12003-12009.
Lin, Y. C., Horng, L. Y., Sung, H. C., & Wu, R. T. (2018). Sodium iodate disrupted the mitochondrial-lysosomal axis in cultured retinal pigment epithelial cells. J Ocul Pharmacol Ther, 34(7), 500-511. doi:10.1089/jop.2017.0073
Liu, X., Henkel, A. S., LeCuyer, B. E., Schipma, M. J., Anderson, K. A., & Green, R. M. (2015). Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet. Am J Physiol Gastrointest Liver Physiol, 309(12), G965-974. doi:10.1152/ajpgi.00132.2015
Lorenzon, N. M., & Beam, K. G. (2008). Disease causing mutations of calcium channels. Channels (Austin), 2(3), 163-179. doi:10.4161/chan.2.3.5950
Ma, J. H., Wang, J. J., & Zhang, S. X. (2014). The unfolded protein response and diabetic retinopathy. J Diabetes Res, 2014, 160140. doi:10.1155/2014/160140
Maamoun, H., Benameur, T., Pintus, G., Munusamy, S., & Agouni, A. (2019). Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: a focus on the protective roles of heme oxygenase (HO)-1. Front Physiol, 10, 70. doi:10.3389/fphys.2019.00070
Maeda, A., Maeda, T., Golczak, M., & Palczewski, K. (2008). Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem, 283(39), 26684-26693. doi:10.1074/jbc.M804505200
Maessen, D. E., Stehouwer, C. D., & Schalkwijk, C. G. (2015). The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond), 128(12), 839-861. doi:10.1042/cs20140683
Malhotra, J. D., & Kaufman, R. J. (2007). Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal, 9(12), 2277-2293. doi:10.1089/ars.2007.1782
Mao, X., Pan, T., Shen, H., Xi, H., Yuan, S., & Liu, Q. (2018). The rescue effect of mesenchymal stem cell on sodium iodate-induced retinal pigment epithelial cell death thr
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78532-
dc.description.abstract在已發展國家中,糖尿病視網膜病變(DR)和老年性黃斑部病變(AMD)是後天性失明的兩個主要原因。晚期糖化終產物(Advanced glycation end products, AGEs)在視網膜色素上皮細胞的堆積,在糖尿病視網膜病變及AMD中佔有重要角色。其中,晚期糖化終產物中的甲基乙二醛 (Methylglyoxal, MGO) 對蛋白質結構和功能,有著不可逆的影響。另外,氧化壓力是視網膜色素上皮細胞損傷的主要因素,是導致老年性黃斑部病變的主要原因。碘酸鈉(Sodium iodate, NaIO3)是一種氧化毒性劑,其選擇性破壞視網膜色素上皮細胞,使其成為老年性黃斑部病變的可重複模型。雖然碘酸鈉是一種氧化壓力誘導劑,但活性氧化物(ROS)在碘酸鈉誘導的訊息路徑和細胞活性中的角色尚未釐清,而碘酸鈉對視網膜色素上皮細胞自噬作用仍然不清楚。
在我們的研究中,我們研究了兩種化學甲基乙二醛和碘酸鈉對視網膜色素上皮細胞死亡的機轉。我們利用ARPE-19細胞,了解甲基乙二醛誘導的視網膜色素上皮細胞死亡的機制。研究結果顯示甲基乙二醛通過非依賴性凋亡蛋白酶(caspase-independent)的方式,誘導視網膜色素上皮細胞死亡,會造成活性氧化物形成,粒線體膜電位(MMP)喪失,細胞內鈣離子上升和內質網壓力反應。抑制活性氧化物的產生可以逆轉甲基乙二醛的活性氧化物產生,粒線體膜電位損失,細胞內鈣離子增加和細胞死亡。此外,存儲運作的鈣離子通道抑制劑(store-operated calcium channel inhibitors) MRS1845和YM-58483,而不是肌醇1,4,5-三磷酸 (inositol 1,4,5‐trisphosphate, IP3)受體抑制劑xestospongin C,可以阻止甲基乙二醛對ARPE-19細胞誘導的活性氧化物產生,粒線體膜電位損失和持續的細胞內鈣離子增加。最後,內質網壓力的抑制劑的salubrinal和4-PBA,可以減少甲基乙二醛誘導的細胞內變化和細胞死亡。
此外,我們研究了碘酸鈉誘導的細胞死亡的機制。在人類ARPE-19細胞中,我們使用annexin V/PI染色來確定細胞活性,使用免疫墨點法去確定蛋白質表達和訊息級聯,共軛焦顯微鏡以確定粒線體動力學和粒線體自噬,以及海馬分析以確定粒線體氧化磷酸化。我們發現碘酸鈉可以顯著誘導細胞質,而不是粒線體活性氧化物產生。碘酸鈉還可以活化ERK、p38、JNK和Akt,增加LC3II表達,誘導Drp-1磷酸化和粒線體分裂,但抑制粒線體呼吸。共軛焦顯微鏡數據顯示碘酸鈉和巴弗洛黴素(bafilomycin )A1對LC3點狀形成的協同作用,顯示會誘發自噬作用。使用細胞質抗氧化劑N-乙醯半胱氨酸(NAC),我們發現p38和JNK是活性氧化物的下游信息,並且涉及碘酸鈉誘導的細胞毒性,但不參與粒線體動力學,而活性氧化物也參與LC3II表達。出乎意料的是,碘酸鈉的刺激及同時使用NAC,會導致粒線體片段化和加強細胞死亡。此外,抑制自噬作用和Akt,會進一步加強細胞對碘酸鈉的易感性。
總括來說,我們的結果顯示甲基乙二醛可以降低視網膜色素上皮細胞活性,是透過內質網壓力導致細胞內活性氧化物產生,粒線體膜電位損失和細胞內鈣離子增加所致。由於甲基乙二醛是老年性黃斑部病變中玻璃疣(druen)的成分之一,並且是糖尿病視網膜病變中的晚期糖化終產物加成物,因此本研究可以作為老年性黃斑部病變和糖尿病視網膜病變的發病機制和相關治療提供有價值的研究。另外,碘酸鈉誘導的氧化壓力和細胞質活性氧化物產生,會誘發多種訊息路徑,去協調控制視網膜色素上皮細胞的死亡。雖然活性氧化物依賴性p38和JNK的活化會參與細胞毒性,但ROS誘導的自噬作用以及粒線體動態平衡,可以減少由碘酸鈉誘導的視網膜色素上皮細胞死亡。
zh_TW
dc.description.abstractDiabetic retinopathy (DR) and age-related macular degeneration (AMD) are two important leading causes of acquired blindness in developed countries. As accumulation of advanced glycation end products (AGEs) in retinal pigment epithelial (RPE) cells plays an important role in both DR and AMD, and the methylglyoxal (MGO) within the AGEs exerts irreversible effects on protein structure and function, it is crucial to understand the underlying mechanism of MGO-induced RPE cell death. Moreover, oxidative stress is a major factor in RPE cells injury that contributes to AMD. Sodium iodate (NaIO3) is an oxidative toxic agent and its selective RPE cell damage makes it as a reproducible model of AMD. Although NaIO3 is an oxidative stress inducer, the roles of ROS in NaIO3-elicited signaling pathways and cell viability have not been elucidated, and the effect of NaIO3 on autophagy in RPE cells remains elusive.
In our research, we investigated the mechanism of two chemicals MGO and NaIO3 on the RPE cell death. Using ARPE-19 as the cell model, our study revealed that MGO induces RPE cell death through a caspase‐independent manner, which relying on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, intracellular calcium elevation and endoplasmic reticulum (ER) stress response. Suppression of ROS generation can reverse the MGO-induced ROS production, MMP loss, intracellular calcium increase and cell death. Moreover, store-operated calcium channel inhibitors MRS1845 and YM-58483, but not the inositol 1,4,5-trisphosphate (IP3) receptor inhibitor xestospongin C, can block MGO‐induced ROS production, MMP loss and sustained intracellular calcium increase in ARPE-19 cells. Lastly, inhibition of ER stress by salubrinal and 4-PBA can reduce the MGO-induced intracellular events and cell death.
Moreover, we investigated the mechanism of NaIO3-induced cell death. In human ARPE-19 cells, we used Annexin V/PI staining to determine cell viability, immunoblotting to determine protein expression and signaling cascades, confocal microscopy to determine mitochondrial dynamics and mitophagy, and Seahorse analysis to determine mitochondrial oxidative phosphorylation. We found that NaIO3 can dramatically induce cytosolic but not mitochondrial ROS production. NaIO3 can also activate ERK, p38, JNK and Akt, increase LC3II expression, induce Drp-1 phosphorylation and mitochondrial fission, but inhibit mitochondrial respiration. Confocal microscopic data indicated a synergism of NaIO3 and bafilomycin A1 on LC3 punctate formation, indicating the induction of autophagy. Using cytosolic ROS antioxidant N-acetyl cysteine (NAC), we found that p38 and JNK are downstream signals of ROS and involve in NaIO3-induced cytotoxicity but not in mitochondrial dynamics, while ROS is also involved in LC3II expression. Unexpectedly NAC treatment upon NaIO3 stimulation leads to an enhancement of mitochondrial fragmentation and cell death. Moreover, inhibition of autophagy and Akt further enhances cell susceptibility to NaIO3.
In summary, our data indicate that MGO can decrease RPE cell viability, resulting from the ER stress‐dependent intracellular ROS production, MMP loss and increased intracellular calcium increase. As MGO is one of the components of drusen in AMD and is the AGEs adduct in DR, this study could provide a valuable insight into the molecular pathogenesis and therapeutic intervention of AMD and DR. Moreover, NaIO3 induces oxidative stress and cytosolic ROS production exerts multiple signaling pathways that coordinate to control cell death in RPE cells. ROS-dependent p38 and JNK activation lead to cytotoxicity, while ROS-mediated autophagy and mitochondrial dynamic balance counteract the cell death mechanisms induced by NaIO3 in RPE cells.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:02:23Z (GMT). No. of bitstreams: 1
ntu-108-D95443004-1.pdf: 5598579 bytes, checksum: 64155ded9b224994789dbcaeb796dc21 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書..........................................................................................................................i
致謝.................................................................................................................................................ii
ABBREVIATIONS.......................................................................................................................iii
ABSTRACT...................................................................................................................................vi
中文摘要........................................................................................................................................ix
CHAPTER 1. INTRODUCTION.................................................................................................1
1.1 Role of retinal pigment epithelial (RPE) cells in retinal pathology.....................................2
1.1.1 Role of RPE cells in AMD.............................................................................................2
1.1.2 Role of RPE cells in DR.................................................................................................3
1.2 Oxidative stress........................................................................................................................4
1.2.1 Role of cellular ROS......................................................................................................4
1.2.2 Oxidative Stress in AMD..............................................................................................6
1.2.3 Oxidative Stress in DR..................................................................................................7
1.3 Role of Endoplasmic reticulum stress in retinal disease………………..............................8
1.3.1 Unfolded protein response (UPR) activation...............................................................8
1.3.2 ER stress in AMD..........................................................................................................9
1.3.3 ER stress in DR…........................................................................................................12
1.3.4 Crosstalk between oxidative stress and ER stress in retinal diseases.....................13
1.3.5 Ca2+ Dysregulation in retinal diseases........................................................................15
1.4. Role of Autophagy in retinal disease...................................................................................17
1.4.1 Autophagy.....................................................................................................................18
1.4.2 Autophagy in AMD......................................................................................................18
1.4.3 Autophagy in DR..........................................................................................................20
1.4.4 Crosstalk between oxidative stress and autophagy in retinal diseases.................. 21
1.5 Methylglyoxal in RPE cell death..........................................................................................22
1.6 Sodium iodate in RPE cell death..........................................................................................23
CHAPTER 2. SPECIFIC AIMS.................................................................................................25
CHAPTER 3. MATERIALS AND METHODS........................................................................28
3.1 Reagents..................................................................................................................................29
3.2 Cell culture.............................................................................................................................30
3.3 Measurement of cell viability by MTT assay......................................................................30
3.4 Flow cyometry on Annexin V-FITC / PI staining...............................................................31
3.5 Flow cyometry on PI uptake assay.......................................................................................31
3.6 Determination of the cytosolic ROS and mitochondrial ROS...........................................32
3.7 Determination of the mitochondrial membrane potential (MMP)...................................32
3.8 Measurement of intracellular calcium.................................................................................32
3.9 Cell lysate preparation and western blotting analysis........................................................33
3.10 Measurement of mitochondrial oxygen consumption rate...............................................34
3.11 Mitochondrial imaging........................................................................................................34
3.12 Statistical analysis................................................................................................................35
CHAPTER 4. RESULTS.............................................................................................................36
Part I: Methylglyoxal induces cell death through endoplasmic reticulum stress‐associated ROS production and mitochondrial dysfunction...............................................................37
4.1 Methylglyoxal induces a mixed type of cell death in ARPE‐19 cells.................................37
4.2 Increased mitochondrial ROS production contributes to mitochondrial membrane potential loss and cell death caused by MGO....................................................................38
4.3 MGO increases intracellular calcium level through SOC pathway, and intracellular calcium and ROS exert an amplified effect to induce MMP loss.....................................39
4.4 MGO‐induced ER stress response mediates ROS production, calcium increase and MMP loss...............................................................................................................................40
Part II: Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death.......................................................................................................................................42
4.5 NaIO3-induced mixed type cell death in ARPE-19 cells is accompanied by ROS production and mitochondrial dysfunction........................................................................42
4.6 Antioxidant NAC and trolox enhances NaIO3-induced mitochondrial fission and cell death......................................................................................................................................43
4.7 ROS-dependent autophagy protects RPE cells against NaIO3-induced cell death.........44
4.8 ROS mediates NaIO3-induced p38 and JNK activation, but not ERK activation..........46
4.9 NaIO3-induced p38 and JNK contribute to cell survival...................................................47
CHAPTER 5. DISCUSSION AND CONCLUSION.................................................................48
CHAPTER 6. REFERENCES....................................................................................................58
CHAPTER 7. FIGURES AND LEGENDS................................................................................82
SUMMARY FIGURES..............................................................................................................107
PUBLICATIONS.......................................................................................................................109
APPENDIXES............................................................................................................................110
dc.language.isoen
dc.subject老年性黃斑部病變zh_TW
dc.subject糖尿病視網膜病變zh_TW
dc.subject甲基乙二醛zh_TW
dc.subject內質網壓力zh_TW
dc.subject鈣離子通道zh_TW
dc.subject活性氧化物zh_TW
dc.subject視網膜色素上皮細胞zh_TW
dc.subject自噬作用zh_TW
dc.subject碘酸鈉zh_TW
dc.subjectSodium iodateen
dc.subjectMethylglyoxalen
dc.subjectRetinal pigment epithelial cellsen
dc.subjectReactive oxygen speciesen
dc.subjectEndoplasmic reticulum stressen
dc.subjectCalcium channelen
dc.subjectAutophagyen
dc.subjectDiabetic retinopathyen
dc.subjectAge-related macular degenerationen
dc.title甲基乙二醛和碘酸鈉對視網膜色素上皮細胞之細胞死亡模式zh_TW
dc.titleThe cell death modalities of the retinal pigment epithelial cells caused by methylglyoxal and sodium iodateen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee蕭哲志(George Hsiao),林滿玉(A. Maan-Yuh Lin),蔡丰喬(Feng-Chiao Tsai),林泰元(Thai-Yen Ling)
dc.subject.keyword甲基乙二醛,碘酸鈉,視網膜色素上皮細胞,活性氧化物,內質網壓力,鈣離子通道,自噬作用,老年性黃斑部病變,糖尿病視網膜病變,zh_TW
dc.subject.keywordMethylglyoxal,Sodium iodate,Retinal pigment epithelial cells,Reactive oxygen species,Endoplasmic reticulum stress,Calcium channel,Autophagy,Age-related macular degeneration,Diabetic retinopathy,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201903948
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-108-D95443004-1.pdf
  未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved