Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑文
dc.contributor.authorYu-Ling Liuen
dc.contributor.author劉育伶zh_TW
dc.date.accessioned2021-07-11T15:02:16Z-
dc.date.available2024-08-29
dc.date.copyright2019-08-29
dc.date.issued2019
dc.date.submitted2019-08-18
dc.identifier.citation1. Perreault S, McManus D, Anderson A, Lin T, Ruggero M, Topal JE. Evaluating a voriconazole dose modification guideline to optimize dosing in patients with hematologic malignancies. J Oncol Pharm Pract 2018:1078155218786028.
2. Koselke E, Kraft S, Smith J, Nagel J. Evaluation of the effect of obesity on voriconazole serum concentrations. J Antimicrob Chemother 2012;67:2957-62.
3. Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018;24 Suppl 1:e1-e38.
4. Product Information: VFEND(R) oral tablets oral suspension intravenous injection solution, voriconazole oral tablets oral suspension intravenous injection solution. New York, NY: Pfizer (per FDA); 2017.
5. Micromedex® (electronic version). IBM Watson Health, Greenwood Village, Colorado, USA. (Available at: https://www.micromedexsolutions.com/).
6. 西藥、醫療器材、含藥化妝品許可證查詢. 行政院衛生署. (Accessed 12/4, 2018, at https://www.fda.gov.tw/MLMS/H0001.aspx ).
7. 黃玉婷碩士論文. 侵入性黴菌感染使用voriconazole之療劑監測研究. 2011:1-122.
8. Stott KE, Hope WW. Therapeutic drug monitoring for invasive mould infections and disease: pharmacokinetic and pharmacodynamic considerations. J Antimicrob Chemother 2017;72:i12-i8.
9. Luong ML, Al-Dabbagh M, Groll AH, et al. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother 2016;71:1786-99.
10. Jin H, Wang T, Falcione BA, et al. Trough concentration of voriconazole and its relationship with efficacy and safety: a systematic review and meta-analysis. J Antimicrob Chemother 2016;71:1772-85.
11. Patterson TF, Thompson GR, 3rd, Denning DW, et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016;63:e1-e60.
12. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 2014;69:1162-76.
13. Hamada Y, Tokimatsu I, Mikamo H, et al. Practice guidelines for therapeutic drug monitoring of voriconazole: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J Infect Chemother 2013;19:381-92.
14. Lat A, Thompson GR, 3rd. Update on the optimal use of voriconazole for invasive fungal infections. Infect Drug Resist 2011;4:43-53.
15. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance.pdf>. Clinical microbiology reviews 1999;12:501-17.
16. Donnelly JP, De Pauw BE. Voriconazole—a new therapeutic agent with an extended spectrum of antifungal activity. Clinical Microbiology and Infection 2004;10:107-17.
17. Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clinical pharmacokinetics 2006;45:649-63.
18. Job KM, Olson J, Stockmann C, et al. Pharmacodynamic studies of voriconazole: informing the clinical management of invasive fungal infections. Expert Rev Anti Infect Ther 2016;14:731-46.
19. Jeans AR, Howard SJ, Al-Nakeeb Z, et al. Combination of voriconazole and anidulafungin for treatment of triazole-resistant aspergillus fumigatus in an in vitro model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2012;56:5180-5.
20. Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother 2011;55:4782-8.
21. European committee on antimicrobial susceptibility testing. (Accessed on 29, Jan, 2019: https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=152&Specium=-1).
22. Torres-Rodriguez JM, Alvarado-Ramirez E, Murciano F, Sellart M. MICs and minimum fungicidal concentrations of posaconazole, voriconazole and fluconazole for Cryptococcus neoformans and Cryptococcus gattii. J Antimicrob Chemother 2008; 62:205-6.
23. Klepser ME, Malone D, Lewis RE, Ernst EJ, Pfaller MA. Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrobial Agents and Chemotherapy 2000;44:1917-20.
24. Espinel-Ingroff A. In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 2001;39:954-8.
25. Lewis RE, Wiederhold NP, Klepser ME. In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrob Agents Chemother 2005;49:945-51.
26. Hazirolan G, Canton E, Sahin S, Arikan-Akdagli S. Head-to-head comparison of inhibitory and fungicidal activities of fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole against clinical isolates of Trichosporon asahii. Antimicrob Agents Chemother 2013;57:4841-7.
27. Al Jalali V, Sauermann R, Eberl S, Zeitlinger M. In vitro activity of voriconazole and amphotericin B against Candida albicans, Candida krusei, and Cryptococcus neoformans in human cerebrospinal fluid. Infection 2019.
28. Oude Lashof AM, Sobel JD, Ruhnke M, et al. Safety and tolerability of voriconazole in patients with baseline renal insufficiency and candidemia. Antimicrob Agents Chemother 2012;56:3133-7.
29. Lilly CM, Welch VL, Mayer T, Ranauro P, Meisner J, Luke DR. Evaluation of intravenous voriconazole in patients with compromised renal function. BMC infectious diseases 2013;13:14.
30. Kim SH, Kwon JC, Park C, et al. Therapeutic drug monitoring and safety of intravenous voriconazole formulated with sulfobutylether beta-cyclodextrin in haematological patients with renal impairment. Mycoses 2016;59:644-51.
31. Yamada T, Imai S, Koshizuka Y, et al. Necessity for a Significant Maintenance Dosage Reduction of Voriconazole in Patients with Severe Liver Cirrhosis (Child-Pugh Class C). Biol Pharm Bull 2018;41:1112-8.
32. Davies‐Vorbrodt S, Ito JI, Tegtmeier BR, Dadwal SS, Kriengkauykiat J. Voriconazole serum concentrations in obese and overweight immunocompromised patients: a retrospective review. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2013;33:22-30.
33. Richards PG, Dang KM, Kauffman CA, et al. Therapeutic drug monitoring and use of an adjusted body weight strategy for high-dose voriconazole therapy. J Antimicrob Chemother 2017;72:1178-83.
34. Purkins L, Wood N, Greenhalgh K, Allen MJ, Oliver SD. Voriconazole, a novel wide-spectrum triazole: oral pharmacokinetics and safety. British Journal of Clinical Pharmacology 2003;56:10-6.
35. Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. British Journal of Clinical Pharmacology 2003;56:17-23.
36. Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis 2012;55:381-90.
37. Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev 2014;27:68-88.
38. Lutsar I, Roffey, S., Troke, P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clinical infectious diseases 2003;37:728-32.
39. Yao Y, Zhang JT, Yan B, et al. Voriconazole: a novel treatment option for cryptococcal meningitis. Infect Dis (Lond) 2015;47:694-700.
40. Schwartz S, Kontoyiannis DP, Harrison T, Ruhnke M. Advances in the diagnosis and treatment of fungal infections of the CNS. The Lancet Neurology 2018;17:362-72.
41. Hyland R, Jones, B. C., & Smith, D. A. Identification of the cytochrome P450 enzymes involved in the N_oxidation of voriconazole. Drug Metabolism and Disposition 2003;31:540-7.
42. Leveque D, Nivoix Y, Jehl F, Herbrecht R. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents 2006;27:274-84.
43. Scholz I, Oberwittler H, Riedel K-D, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. British Journal of Clinical Pharmacology 2009;68:906-15.
44. 賀筠婷碩士論文. CYP2C19基因多型性與Voriconazole藥品血中濃度與不良反應之關聯性研究. 2012:1-103.
45. Wang SC, Ho IK, Tsou HH, et al. Functional genetic polymorphisms in CYP2C19 gene in relation to cardiac side effects and treatment dose in a methadone maintenance cohort. OMICS 2013;17:519-26.
46. Kuo CH, Liu CJ, Yang CC, et al. A Rapid and Accurate Method to Evaluate Helicobacter pylori Infection, Clarithromycin Resistance, and CYP2C19 Genotypes Simultaneously From Gastric Juice. Medicine (Baltimore) 2016;95:e3458.
47. van Wanrooy MJ, Span LF, Rodgers MG, et al. Inflammation is associated with voriconazole trough concentrations. Antimicrob Agents Chemother 2014;58:7098-101.
48. Veringa A, Ter Avest M, Span LF, et al. Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother 2017;72:261-7.
49. Health NCIotNIo. Common terminology criteria for adverse events version 5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (Accessed on January 04, 2019). 2017.
50. Kim SH, Lee DG, Kwon JC, et al. Clinical Impact of Cytochrome P450 2C19 Genotype on the Treatment of Invasive Aspergillosis under Routine Therapeutic Drug Monitoring of Voriconazole in a Korean Population. Infect Chemother 2013;45:406-14.
51. Blanco-Dorado S, Cea-Arestin C, Gonzalez Carballo A, et al. An Observational Study of the Efficacy and Safety of Voriconazole in a Real-Life Clinical Setting. J Chemother 2019;31:49-57.
52. Wang T, Zhu H, Sun J, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents 2014;44:436-42.
53. Chu HY, Jain, R., Xie, H., Pottinger, P., & Fredricks, D. N. . Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events. BMC infectious diseases 2013;13:105.
54. Luong ML, Hosseini-Moghaddam SM, Singer LG, et al. Risk factors for voriconazole hepatotoxicity at 12 weeks in lung transplant recipients. Am J Transplant 2012;12:1929-35.
55. den Hollander JG, van Arkel C, Rijnders BJ, Lugtenburg PJ, de Marie S, Levin MD. Incidence of voriconazole hepatotoxicity during intravenous and oral treatment for invasive fungal infections. J Antimicrob Chemother 2006;57:1248-50.
56. Maertens JA, Raad II, Marr KA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. The Lancet 2016;387:760-9.
57. Zonios DI, Gea-Banacloche J, Childs R, Bennett JE. Hallucinations during voriconazole therapy. Clin Infect Dis 2008;47:e7-e10.
58. Moon WJ, Scheller EL, Suneja A, et al. Plasma fluoride level as a predictor of voriconazole-induced periostitis in patients with skeletal pain. Clin Infect Dis 2014;59:1237-45.
59. Wermers RA, Cooper K, Razonable RR, et al. Fluoride excess and periostitis in transplant patients receiving long-term voriconazole therapy. Clin Infect Dis 2011;52:604-11.
60. Epaulard O, Villier C, Ravaud P, et al. A multistep voriconazole-related phototoxic pathway may lead to skin carcinoma: results from a French nationwide study. Clin Infect Dis 2013;57:e182-8.
61. Williams K, Mansh, M., Chin-Hong, P., Singer, J., & Arron, S. T. . Voriconazole-Associated Cutaneous Malignancy: A Literature Review on Photocarcinogenesis in Organ Transplant Recipients. Clinical infectious diseases 2013;58:997-1002.
62. Kato H, Hagihara, M., Hamada, Y., Koizumi, Y., Nishiyama, N., Yamagishi, Y., ... & Mikamo, H. Visual disturbance or central symptom like hallucination in patients treated voriconazole: report of six cases. The Japanese journal of antibiotics 2016;69:143-50.
63. Mangal N, Hamadeh IS, Arwood MJ, et al. Optimization of Voriconazole Therapy for the Treatment of Invasive Fungal Infections in Adults. Clin Pharmacol Ther 2018;104:957-65.
64. Qi F, Zhu L, Li N, Ge T, Xu G, Liao S. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents 2017;49:403-9.
65. Imataki O, Yamaguchi K, Uemura M, Fukuoka N. Voriconazole concentration is inversely correlated with corticosteroid usage in immunocompromised patients. Transpl Infect Dis 2018;20:e12886.
66. Naito T, Yamada T, Mino Y, Kawakami J. Impact of inflammation and concomitant glucocorticoid administration on plasma concentration of triazole antifungals in immunocompromised patients. Clin Chim Acta 2015;441:127-32.
67. Chen K, Zhang, X., Ke, X., Du, G., Yang, K., & Zhai, S. Individualized Medication of Voriconazole: A Practice Guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Therapeutic drug monitoring 2018;40.
68. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 2008;46:201-11.
69. Park WB, Kim NH, Kim KH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis 2012;55:1080-7.
70. Matsumoto K, Abematsu K, Shigemi A, et al. Therapeutic drug monitoring of voriconazole in Japanese patients: analysis based on clinical practice data. J Chemother 2016;28:198-202.
71. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008;46:1813-21.
72. Simard M, Sirois, C., & Candas, B. Validation of the combined comorbidity index of Charlson and Elixhauser to predict 30-day mortality across ICD-9 and ICD-10. Medical care 2018;56:441-7.
73. 曾郁茹碩士論文. 某醫學中心Voriconazole使用現狀之回溯性研究. 2010:1-130.
74. Li X, Yu C, Wang T, Chen K, Zhai S, Tang H. Effect of cytochrome P450 2C19 polymorphisms on the clinical outcomes of voriconazole: a systematic review and meta-analysis. Eur J Clin Pharmacol 2016;72:1185-93.
75. Trifilio SM, Yarnold PR, Scheetz MH, Pi J, Pennick G, Mehta J. Serial plasma voriconazole concentrations after allogeneic hematopoietic stem cell transplantation. Antimicrob Agents Chemother 2009;53:1793-6.
76. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-41.
77. Ladda MA, Goralski KB. The Effects of CKD on Cytochrome P450-Mediated Drug Metabolism. Adv Chronic Kidney Dis 2016;23:67-75.
78. Herbrecht R, Denning, D. W., Patterson, T. F., Bennett, J. E., Greene, R. E., Oestmann, J. W., ... & Sylvester, R. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. New England Journal of Medicine 2002;347:408-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78530-
dc.description.abstract背景
  Voriconazole為第二代廣效型抗黴菌藥品,為治療麴菌感染之第一線用藥,可以通過血腦障壁(blood brain barrier,BBB),因此對於中樞之黴菌感染也有重要地位。由於使用病人族群病情複雜、代謝酵素CYP2C19基因多型性、潛在藥品交互作用等等,個體間與個體內血中濃度差異大,過去多數研究顯示voriconazole的療效與副作用皆與血中谷濃度(trough concentration,Ctrough)有關,目前各國治療指引建議使用此藥品之病人需進行療劑監測(therapeutic drug monitoring,TDM),大部分建議濃度落在1-6 mcg/mL之間。由於非線性之藥品動態學特性,臨床上根據血中谷濃度調整voriconazole劑量相當困難,目前對於如何調整劑量還沒有定論與標準,且關於療劑監測與劑量調整的文獻,大多樣本數較少。近期臺灣大學醫學院附設醫院(簡稱臺大醫院)根據過去臨床經驗發展了劑量調整之準則,因此本研究分析過去9年間在臺大醫院進行voriconazole療劑監測之結果,探討其與療效及安全性之相關性,以評估目前臺大醫院之劑量調整準則之適用性。
研究目的
  研究voriconazole療劑監測結果與調整劑量方式、劑量調整與濃度變化的關係,並評估目前臺大醫院之調整劑量準則,探討可能影響血中濃度之因子,分析血中濃度與臨床療效及安全性的關係。
研究方法
  本研究對象納入18歲以上,於臺大醫院前瞻性收案使用voriconazole同意參加試驗且已簽署同意書之病人,排除條件包括資料不全、檢體錯誤或並非血中谷濃度、病人在納入試驗之療程前12週內有使用voriconazole等。研究收案期間為2009年3月1日至2017年12月31日。資料來源包括病人口述、電子與紙本病歷、本實驗室測得之抽血濃度結果、臺大醫療體系醫療整合資料庫(Integrated Medical Database, National Taiwan University Hospital, NTUH-iMD),蒐集病人基本資料、使用voriconazole前後之實驗室檢驗值、voriconazole處方型態等。
  Voriconazole之理想目標濃度訂為1-6 mcg/mL,待病人使用 voriconazole 5-7天達穩定血中濃度狀態後,研究人員在病人服用(或注射)下一劑劑量前量測血中谷濃度;以高效能液相層析儀系統(high-performance liquid chromatography, HPLC)測定病人血中濃度。療效評估分為12週內全原因死亡與感染相關死亡率,安全性則評估在用藥期間是否發生肝臟不良反應。
  統計方法以Student’ s t test或Mann-Whitney U Test比較兩組連續性變項間之差異,以ANOVA或Kruskal Wallis U test進行三組連續性變項之比較,以Chi-square test或Fisher’s exact test檢定類別變項,以logistic regression分析可能影響voriconazole血中濃度之因子。以cox proportional hazard regression進行存活分析。檢定以雙尾檢定,若p-value<0.05則視為有統計上顯著意義。
研究結果
  本研究排除給藥劑量或方式不符合條件、抽血時間錯誤、非全血檢體、抽血日期未達到穩定狀態(steady-state)、資料嚴重缺失者,共納入670人,2339筆療劑監測資料。病人年齡中位數為歲55.4歲,以血液疾病病人為主(78.2%),主要黴菌感染部位與致病黴菌以肺部及麴菌(Aspergillus spp.)感染為主。每人進行療劑監測次數之中位數為2次,最多達29次。在用藥穩定狀態後第一次進行療劑監測時,共有67.0%達到理想濃度範圍(1-6 mcg/mL)。
  針對濃度不在理想範圍內之病人,依照臺大醫院voriconazole劑量調整準則調整,約有61-86%可以達到理想濃度,相較於不調整(僅28-64%達到理想濃度)或是其他方式調整者(43-67%達到理想濃度),有較高之達成率,與不調整者達到統計學上之顯著差異(p <0.01),但與以其他方式調整者則沒有統計上顯著差異。依照濃度分組後,血中濃度愈高,每日減少劑量100 mg造成的影響愈大,濃度4 mcg/mL以下、4-6 mcg/mL、6-8 mcg/mL、以及高於8 mcg/mL之濃度減少分別為0.7-1.1 mcg/mL、1.2-2.0 mcg/mL、2.6-3.4 mcg/mL與2.2-4.3 mcg/mL。在濃度4 mcg/mL以下者,每增加100 mg/day的劑量時,血中濃度平均增加0.8-1.3 mcg/mL。相同劑量頻次下,途徑轉換時,口服與輸注之間濃度變化顯示吸收率遠低於90%。
  分析影響血中谷濃度相關之因子,結果顯示在校正其他因子後,體重增加、使用靜脈輸注、每日給藥劑量(mg/kg/day)增加、具有肝臟疾病、肌肝酸清除率(creatinine clearance,CLCr)減少、C-反應蛋白(C-reactive protein,CRP)增加與血中濃度較高者有高度相關性;合併使用降低voriconazole血中濃度之藥品則與血中濃度偏低者有高度相關性。
  療效方面,以cox proportional hazard model分析12週內全原因死亡率與感染相關死亡率相關因子,顯示療程濃度、靜脈輸注給藥、腎功能變差、觀察期間內曾休克與死亡風險顯著相關。肝臟不良反應以膽汁淤積型(cholestatic type)或混合型(mixed type)為主,在血中濃度以3或4 mcg/mL為切點時,肝臟不良反應發生率在濃度大於切點時顯著增加,若以其他濃度為切點則沒有顯著差異。
結論
  本研究評估之臺大醫院劑量調整準則,與沒有調整之組別(約28-63%達理想濃度)或是依照其他方法調整(約43-67%達理想濃度)相比,依照準則進行調整後,達到理想濃度之比例約61-87%較高。依不同濃度分組時,若每天增加或降低100 mg/day,在濃度小於4 mcg/mL者,濃度變化量約1 mcg/mL左右,隨著濃度上升,濃度變化量也越來越大。血中濃度影響因子,體重增加、使用輸注途徑、每日劑量增加、具有肝臟疾病、腎功能不佳、CRP數值上升,與濃度較高者有顯著相關;併用使voriconazole濃度下降藥品與濃度較低者有顯著相關。肝臟不良反應在濃度以3或4 mcg/mL為切點時有顯著差異。
zh_TW
dc.description.abstractBackground
  Voriconazole, a second-generation broad-spectrum antifungal agent, is first-line antifingal agents for invasive Aspergillus infections. It is able to pass blood brain barrier (BBB), so it’s also an important agent in the treatment of central nervous system infection. Voriconazole has significantly variable intra- and inter-individual plasma concentration because of complicated condition in these patients, including genetic polymorphism of CYP2C19 and potential drug-drug interaction, etc. Previous studies showed the trough concentration (Ctrough) of voriconazole had high correlation with efficacy and safety outcomes. Therefore, therapeutic drug monitoring (TDM) of voriconazole has been strongly recommended. Preferred range of Ctrough is approximately 1-6 mcg/mL, but it’s slightly different in the studies and the treatment guidelines. However, there is also no consensus on dosage modification guidance in response to voriconazole concentration results. Recent studies included relatively small sample size. Therefore, we analyzed our 9-year experience of voriconazole TDM in a large patient population and assessed the effectiveness and safety outcomes to evaluate current protocol of dosage adjustment developed by National Taiwan University Hospital (NTUH).
Objectives
  This study was designed to analyze the results of TDM, the dosage adjustment patterns of voriconazole, and the distribution of concentration before and after dosage adjustment. In addition, the study was aimed to evaluate NTUH dosage adjustment protocol and to explore factors which affected the concentration. The effectiveness and safety outcomes were also assessed.
Methods
  We conducted this study with prospective patient enrollment and retrospective medical data collection in NTUH from March 2009 to December 2017. Patients who were more than 18 years old, received voriconazole, and signed the informed consents with plasma concentration measurements were enrolled. Incomplete records, inappropriate sample collection, and patients had used voriconazole during 12 weeks before the course of study were excluded. Medical data were recorded from medical records and the Integrated Medical Database, National Taiwan University Hospital (NTUH-iMD).
  Plasma Ctrough of voriconazole were measured at steady state (5-7 days after the initiation of voriconazole) and before the next dose administration. Ctrough were determined by high performance liquid chromatography (HPLC). We used the target range of Ctrough between 1 and 6 mcg/mL. The all-cause mortality and infection-related mortality during 12 weeks after the start of voriconazole therapy were evaluated for effectiveness. All liver adverse events that occurred during voriconazole therapy were recorded as safety outcomes.
  Continuous variables were compared by Student’s t test or Mann-Whitney U Test. Categorical variables were compared by Chi-square test or Fisher’s exact test. Three continuous variables were compared by analysis of variance (ANOVA) or Kruskal Wallis U test. Factors which influenced the Ctrough was analyzed with a logistic regression model. Survival analysis was analyzed with cox proportional hazard model. Two-sided P-values < 0.05 were considered statistically significant.
Results
  During the 9-year study period, a total of 670 patients with 2339 trough levels were included. Median age of study population was 55.4 years old. Approximately 78.2% patients had hematological diseases. The median of 2 samples for TDM per patient were analyzed. There were 67.0% of the first Ctrough within target level of 1-6 mcg/mL.
  Dosage adjustment based on NTUH protocol in response to out-of-target levels resulted in approximately 61-87% of target achievement in the subsequent TDM. It had statistically significant high achieving rate compared to the group without dosage adjustment (p<0.01), but no statistically significant difference compared to the group not abiding by protocol. When dose was decreased by 100 mg/day, the mean decrease of Ctrough were 0.7-1.1, 1.2-2.0, 2.6-3.4, and 2.2-4.3 mcg/mL in the groups of Ctrough< 4, 4-6, 6-8, and > 8 mcg/mL, respectively. When dose was increased by 100 mg/day, the mean increase of Ctrough were 0.8-1.3 mcg/mL in the group of Ctrough< 4 mcg/mL.
  Increased body weight, intravenous infusion, daily dose (mg/kg/day), liver disease, decreased renal function, and increased C-reactive protein (CRP) had statistically significant correlation with higher Ctrough. Concomitant medications which decrease voriconazole level had statistically significant correlation with lower Ctrough.
  Factors had statistically significant correlation with 12 weeks of all-cause and infection-related mortality were Ctrough¬ of course, intravenous infusion, decreased renal function, and shock during the course. Most of liver adverse events were cholestatic or mixed type hepatotoxicity. The crude risk of liver adverse events were statistically significant in the Ctrough > cut-off concentrations when the cut-off concentration at 3 mcg/mL or 4 mcg/mL.
Conclusions
  Dosage adjustment based on the NTUH protocol in response to previous out-of target range had higher rate to achieve target level (about 61-87%) compared with group without dosage adjustment or by other strategies. Route, daily dose adjusted by body weight, liver disease, CRP, and drug-drug interaction were statistically significant factors related to Ctrough . The risk of liver adverse events were statistically significant high when the concentration > 3 mcg/mL.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:02:16Z (GMT). No. of bitstreams: 1
ntu-108-R07451005-1.pdf: 2991613 bytes, checksum: a2767c8589e53d7a296e45f787ece4c5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝..................i
中文摘要..................ii
Abstract..................v
目錄..................viii
表目錄..................xi
圖目錄..................xiv
第一章 緒論..................1
第二章 文獻探討..................2
2.1 Voriconazole 簡介..................2
2.1.1 藥理與藥效學作用..................2
2.1.2 臨床用途與使用劑量..................6
2.1.3 藥品動態學特性..................10
2.1.4 不良反應與注意事項..................13
2.1.5 藥品交互作用..................15
2.2 療劑監測與voriconazole劑量調整..................17
2.2.1 療劑監測範圍..................17
2.2.2 劑量調整..................19
第三章 研究目的..................26
第四章 研究方法..................27
4.1 研究架構..................27
4.2 研究對象、地點、收案流程..................28
4.2.1 納入條件..................29
4.2.2 排除條件:..................29
4.3 資料收集..................29
4.3.1 資料來源..................29
4.3.2 受試者基本資料..................29
4.3.3 Voriconazole給藥劑量與血中濃度..................30
4.3.4 Voriconazole血中濃度測定方法..................31
4.3.5 病人之生化數值..................31
4.4血中濃度變化評估與劑量調整..................32
4.5 侵入性黴菌感染適應症評估..................33
4.6 臨床治療效果與肝臟不良反應評估..................38
4.6.1 臨床治療效果評估..................38
4.6.2 肝臟不良反應評估..................38
4.7潛在影響因子定義..................40
4.7.1 藥品交互作用..................40
4.7.2 其他潛在因子定義..................40
4.8 統計方法..................41
第五章 研究結果..................42
5.1收案流程..................42
5.2 病人基本特性..................43
5.2.1 病人基本資料與基本生化數值..................43
5.2.2 Voriconazole適應症..................50
5.3 療劑監測與藥品使用情形..................53
5.3.1 各次療劑監測之基本性質..................53
5.3.2 評估臺大醫院劑量調整之準則..................58
5.3.3劑量調整、劑型轉換與濃度變化之關係..................71
5.4 Voriconazole血中濃度影響因子..................77
5.4.1 潛在影響血中濃度之因子分析—logistic regression..................77
5.4.2 潛在影響血中濃度之因子分析—linear regression..................95
5.5臨床療效與不良反應..................105
5.5.1 死亡率與療程血中濃度—crude risk..................105
5.5.2 潛在影響死亡率之因子分析—cox proportional hazard model..................107
5.5.3 肝臟不良反應與血中濃度..................123
第六章 討論..................131
6.1 病人族群..................131
6.2 療劑監測、劑量劑型調整與濃度關係..................132
6.2.1 療劑監測相關之基本性質..................132
6.2.2 評估臺大醫院劑量調整之準則..................133
6.2.3 劑量調整、劑型轉換與濃度變化..................134
6.3 影響voriconazole血中濃度因子..................135
6.4 療效及肝臟不良反應..................137
6.4.1死亡率與療程濃度之相關性..................137
6.4.2 肝臟不良反應與濃度之關係..................138
6.5 研究優勢與限制..................139
6.5.1 研究優勢..................139
6.5.2 研究限制..................139
6.6 未來展望..................140
第七章 結論..................141
參考文獻..................142
dc.language.isozh-TW
dc.subject療劑監測zh_TW
dc.subjectVoriconazolezh_TW
dc.subject死亡率zh_TW
dc.subject肝臟不良反應zh_TW
dc.subject劑量調整準則zh_TW
dc.subject血中濃度zh_TW
dc.subjectmortalityen
dc.subjectdosage adjustment protocolen
dc.subjectvoriconazole plasma concentrationen
dc.subjecttherapeutic drug monitoringen
dc.subjectVoriconazoleen
dc.subjectliver adverse eventsen
dc.titleVoriconazole用於治療或預防侵入性黴菌感染之9年療劑監測經驗zh_TW
dc.title9-Year Experiences of Therapeutic Drug Monitoring of Voriconazole for the Treatment or Prevention of Invasive Fungal Infectionsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林慧玲,沈麗娟,蕭斐元,陳宜君
dc.subject.keywordVoriconazole,療劑監測,血中濃度,劑量調整準則,死亡率,肝臟不良反應,zh_TW
dc.subject.keywordVoriconazole,therapeutic drug monitoring,voriconazole plasma concentration,dosage adjustment protocol,mortality,liver adverse events,en
dc.relation.page147
dc.identifier.doi10.6342/NTU201903152
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
dc.date.embargo-lift2024-08-29-
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R07451005-1.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved