Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78529
標題: 風機動態增益輔助頻率控制器於系統故障時的應用
Application of Dynamic Gain Supplementary Frequency Controller of DFIG during System Fault
作者: Yu-Chuan Huang
黃昱全
指導教授: 許源浴(Yuan-Yih Hsu)
關鍵字: 風力發電,雙饋式感應發電機,風機線上機組數量,輔助頻率控制器,類神經網路,
Wind power generation,Doubly fed induction generator,DFIG online number,Supplementary frequency controller,Artificial neural network,
出版年 : 2021
學位: 碩士
摘要: 本論文主要目的在於設計雙饋式感應風力發電機之類神經網路輔助頻率控制器,以改善電力系統於穩態運轉時遭受到一大型發電廠跳機之頻率響應,並提高系統頻率之最低點,增加整體電力系統的穩定度,避免造成用戶停電。
首先推導電力系統頻率控制非線性數學模型,再將其線性化進行小訊號分析,並利用參與率與特徵值靈敏度釐清系統狀態變數、系統特徵值與輔助頻率控制器參數之間的關係。接著利用非線性數學模型分析在不同跳機容量、風速及風機容量下之最佳動態增益參數。以這些當做類神經網路輔助頻率控制器之訓練樣本資料,再將訓練完的類神經網路輔助頻率控制器應用於風機上,與固定增益('K' _'PD' )控制器比較兩者間的系統動態響應,以驗證類神經網路輔助頻率控制器在系統遭遇跳機事故後,可以獲得較佳的頻率響應,提高系統的穩定度。
本論文藉由MATLAB®/Simulink軟體進行模擬,並以台灣西部地區電網之非線性數學模型為例,驗證所提出之類神經網路輔助頻率控制器的有效性。
To improve the dynamic frequency response for a power system subject to a generator trip, a supplementary frequency controller for a wind farm with doubly fed induction generator (DFIG) is designed using artificial neural network (ANN) in this thesis. The proposed controller can also improve system frequency nadir and stability. Service interruption due to generator trip can there be avoided.
A nonlinear mathematical model for frequency control of the power system is first derived. The nonlinear model is then linearized for small signal analysis. Participation factors and eigenvalue sensitivity are analyzed in order to clarify the relationship between system state variables, eigenvalues and parameters of supplementary frequency controller. The optimal dynamic gains for the supplementary frequency controller under various operating conditions such as outage capacities, wind speeds, and wind farm capacities are obtained using nonlinear model simulations. There dynamic gains for different operating conditions are employed as the training patterns for the ANN. After the ANN has been trained using there training patterns, it is tested with both case within the training set and cases outside the training set. It is concluded that the proposed ANN based frequency controller can yield better dynamic frequency response than the fixed gain controller under various operating conditions.
MATLAB®/Simulink is employed for digital simulations and the nonlinear mathematical model of the power grid in western Taiwan is taken as an example to verify the effectiveness of the proposed neural network supplementary frequency controller.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78529
DOI: 10.6342/NTU202100089
全文授權: 有償授權
電子全文公開日期: 2026-01-28
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1901202110325200.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved