請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78528完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君 | zh_TW |
| dc.contributor.author | 吳家駿 | zh_TW |
| dc.contributor.author | Chia-Chun Wu | en |
| dc.date.accessioned | 2021-07-11T15:02:09Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, pp. 214-217, 2003.
[2] H. Aitken, The continuous wave: Technology and American radio, 1900-1932, Princeton University Press, pp. 331-332, 2014. [3] W. F. Brinkman, D. E. Haggan, and W. W. Troutman, "A history of the invention of the transistor and where it will lead us", IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 1858-1865, 1997. [4] L. J. Edgar, "Device for controlling electric current," US Patents 1900018A, 1933. [5] P. K. Weimer, "The TFT a new thin-film transistor", IEEE of Proceedings of the IRE , vol. 50, no. 6, pp. 1462-1469, 1962. [6] H. Klasens and H. Koelmans, "A tin oxide field-effect transistor", Solid State Electronics ,vol. 7, pp. 701-702, 1964. [7] Y.-Y. Lin, D. Gundlach, S. F. Nelson, and T. N. Jackson, "Pentacene-based organic thin-film transistors", IEEE Transactions on Electron Devices , vol. 44, no. 8, pp. 1325-1331, 1997. [8] S. Zhang, C. Zhu, J. K. Sin, and P. K. Mok, "A novel ultrathin elevated channel low-temperature poly-Si TFT", IEEE Electron Device Letters, vol. 20, no. 11, pp. 569-571, 1999. [9] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin‐film transistors: a review of recent advances", Advanced Materials Technologies, vol. 24, no. 22, pp. 2945-2986, 2012. [10] J. Sheng, H.-J. Jeong, K.-L. Han, T. Hong, and J.-S. Park, "Review of recent advances in flexible oxide semiconductor thin-film transistors", Journal of Information Display, vol. 18, no. 4, pp. 159-172, 2017. [11] T. M. Betzner, D. P. O'connell, P. J. Straub, and M. J. Boehm, "Temperature sensor with flexible circuit substrate," US Patents No.6588931B2 , 2003. [12] J. K. Jeong, H. W. Yang, J. H. Jeong, Y.-G. Mo, and H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors", Appl. Phys. Lett., vol. 93, no. 12, pp. 123-508, 2008. [13] D. Hong, G. Yerubandi, H. Chiang, M. Spiegelberg, J. Wager, and M. Sciences, "Electrical modeling of thin-film transistors", Critical Reviews in Solid State and Materials Sciences, vol. 33, no. 2, pp. 101-132, 2008. [14] L. Petti et al., "Metal oxide semiconductor thin-film transistors for flexible electronics", Applied Physics Reviews, vol. 3, no. 2, pp. 021-303, 2016. [15] A. Rolland, J. Richard, J. Kleider, and D. Mencaraglia, "Electrical properties of amorphous silicon transistors and MIS‐devices: comparative study of top nitride and bottom nitride configurations", Journal of The Electrochemical Society, vol. 140, no. 12, pp. 3679-3683, 1993. [16] D. A. Neamen, Electronic Circuit Analysis and Design. McGraw-Hill, pp. 315-317 , 2001. [17] S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill, pp.037-039, 2003. [18] A. S. Sedra and K. C. Smith, Microelectronic Circuits. New York: Oxford University Press, pp. 417-432, 1998. [19] C. K. Alexander and M. Sadiku, "Electric circuits", Transformation, vol. 135, pp. 4-5, 2000. [20] M. Kondo et al., "Design of ultraflexible organic differential amplifier circuits for wearable sensor technologies," in 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS), pp. 79-84, 2018. [21] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, pp.031-033, 2001. [22] Y. P. Tsividis and P. R. Gray, "An integrated NMOS operational amplifier with internal compensation", IEEE Journal of Solid-State Circuits, vol. 11, no. 6, pp. 748-753, 1976. [23] Y.-W. Heo et al., "Effects of channel dimensions on performance of a-InGaZnO 4 thin-film transistors", Journal of Vacuum Science & Technology B, vol. 29, no. 2, p. 021203, 2011. [24] N. Gay, W. Fischer, M. Halik, H. Klauk, U. Zschieschang, and G. Schmid, "Analog signal processing with organic FETs," in 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers, pp. 1070-1079, 2006. [25] C.-H. Wu, H.-H. Hsieh, P.-C. Ku, and L.-H. Lu, "A differential Sallen-key low-pass filter in amorphous-silicon technology", Journal of display technology, vol. 6, no. 6, pp. 207-214, 2010. [26] Y.-H. Tai, H.-L. Chiu, L.-S. Chou, and C.-H. Chang, "Boosted gain of the differential amplifier using the second gate of the dual-gate a-IGZO TFTs", IEEE Electron Device Letters, vol. 33, no. 12, pp. 1729-1731, 2012. [27] K. Kim, K.-Y. Choi, and H. Lee, "A-InGaZnO thin-film transistor-based operational amplifier for an adaptive DC–DC converter in display driving systems", IEEE Transactions on Electron Devices, vol. 62, no. 4, pp. 1189-1194, 2015. [28] Y.-C. Tarn, P.-C. Ku, H.-H. Hsieh, and L.-H. Lu, "An amorphous-silicon operational amplifier and its application to a 4-bit digital-to-analog converter", IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1028-1035, 2010. [29] D. Kim, K.-Y. Choi, and H. Lee, "On-glass operational amplifier using solution-processed a-IGZO TFTs," in Circuits and Systems (APCCAS), 2016 IEEE Asia Pacific Conference on, pp. 551-553, 2016. [30] H. Marien, M. Steyaert, N. van Aerle, and P. Heremans, "An analog organic first-order CT ΔΣ ADC on a flexible plastic substrate with 26.5 dB precision," in 2010 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 136-137, 2010. [31] C. Zysset, N. Münzenrieder, L. Petti, L. Büthe, G. A. Salvatore, and G. Tröster, "IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm", IEEE Electron Device Letters, vol. 34, no. 11, pp. 1394-1396, 2013. [32] K. Ishida et al., "22.5 dB open-loop gain, 31 kHz GBW pseudo-CMOS based operational amplifier with a-IGZO TFTs on a flexible film," in Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian, pp. 313-316, 2014. [33] C. Garripoli et al., "Analogue frontend amplifiers for bio-potential measurements manufactured with a-IGZO TFTs on flexible substrate", IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 1, pp. 60-70, 2017. [34] P. G. Bahubalindruni et al., "High-gain transimpedance amplifier for flexible radiation rosimetry using InGaZnO TFTs", IEEE Journal of the Electron Devices Society, vol. 6, pp. 760-765, 2018. [35] I. Nausieda, K. K. Ryu, D. Da He, A. I. Akinwande, V. Bulovic, and C. G. Sodini, "Mixed-signal organic integrated circuits in a fully photolithographic dual threshold voltage technology", IEEE Transactions on Electron Devices, vol. 58, no. 3, pp. 865-873, 2011. [36] H. Marien, M. S. Steyaert, E. van Veenendaal, and P. Heremans, "Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil", IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1712-1720, 2012. [37] G. A. Salvatore et al., "Wafer-scale design of lightweight and transparent electronics that wraps around hairs", Nature Communications, vol. 5, pp. 29-82, 2014. [38] R. Shabanpour et al., "A 70° phase margin OPAMP with positive feedback in flexible a-IGZO TFT technology," in Circuits and Systems (MWSCAS), 2015 IEEE 58th International Midwest Symposium on, pp. 1-4, 2015. [39] C. Garripoli, S. Abdinia, J.-L. J. van der Steen, G. H. Gelinck, and E. Cantatore, "A fully integrated 11.2 mm² a-IGZO EMG front-end circuit on flexible substrate achieving up to 41dB SNR and 29MΩ input impedance", IEEE Solid-State Circuits Letters, vol. 1, no. 6, pp. 142-145, 2018. [40] C. Y. Chen et al., "P‐96: A de‐bonding technique with inorganic buffer layer on flexible display panel," SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 1348-1350, 2014. [41] H. Microsystem, "PI-2600 series-low stress applications", HD Microsystem, 2009. [42] 蕭宏, 半導體製程技術導論. 台灣培生教育, pp.317-332, 2007. [43] B. J. Neudecker and J. F. Whitacre, "Method for sputter targets for electrolyte films", US Patents No.9334557, 2016. [44] K. Tsuchiya, T. Kitagawa, and E. Nakamachi, "Development of RF magnetron sputtering method to fabricate PZT thin film actuator", Precision engineering, vol. 27, no. 3, pp. 258-264, 2003. [45] M. E. A. Hussein, "Fabrication and characterization of GaN-based nanowires for photoelectrochemical water splitting applications", King Abdullah University of Science and Technology, 2015. [46] B. A. Vaartstra, "Systems and methods for forming zirconium and/or hafnium-containing layers", US Patents No.7112485, 2015. [47] R. D. Clark, "Method for depositing dielectric films," US Patents No.6764958B1, 2015. [48] J. Sheng, K.-L. Han, T. Hong, W.-H. Choi, and J.-S. Park, "Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes", Journal of Semiconductors, vol. 39, no. 1, pp. 801-812, 2018. [49] C. E. Morosanu, Thin Films by Chemical Vapour Deposition, Elsevier, pp.314-323, 2016. [50] M. Li, Y. Cheng, Y. Zheng, X. Zhang, T. Xi, and S. Wei, "Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film", Applied Surface Science, vol. 258, no. 7, pp. 3074-3081, 2012. [51] M. J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology, CRC press, pp.217-231, 2011. [52] S. Franssila, Introduction To Microfabrication. John Wiley & Sons, pp.432-434, 2010. [53] R. J. Poulsen, "Plasma etching in integrated circuit manufacture—A review", Journal of Vacuum Science and Technology, vol. 14, no. 1, pp. 266-274, 1977. [54] H. Gleskova, S. Wagner, and Z. Suo, "Failure resistance of amorphous silicon transistors under extreme in-plane strain", Applied Physics Letters, vol. 75, no. 19, pp. 3011-3013, 1999. [55] Z. Suo, E. Ma, H. Gleskova, and S. Wagner, "Mechanics of rollable and foldable film-on-foil electronics", Applied Physics Letters, vol. 74, no. 8, pp. 1177-1179, 1999. [56] S. Wagner, H. Gleskova, I.-C. Cheng, J. C. Sturm, and Z. Suo, "Mechanics of TFT technology on flexible substrates", Flexible Flat Panel Displays, vol. 14, pp. 263-283, 2005. [57] B. Liu, X. Feng, S.-M. Zhang, "The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect", Composites Science and Technology, vol. 69, no. 13, pp. 2198-2204, 2009. [58] B. K. Sharma et al., "Load‐controlled roll transfer of oxide transistors for stretchable electronics", Advanced Functional Materials, vol. 23, no. 16, pp. 2024-2032, 2013. [59] H.-J. Jeong, K.-L. Han, K.-S. Jeong, S. Oh, and J.-S. Park, "Effects of repetitive mechanical stress on flexible oxide thin-film transistors and stress reduction via sdditional organic layer", IEEE Electron Device Letters, vol. 39, no. 7, pp. 971-974, 2018. [60] 王淳真, "全透明可撓性氧化銦鎵鋅薄膜電晶體之研究," 碩士論文, 光電工程研究所, 國立台灣大學, pp. 82-83, 2018. [61] K. E. Petersen and C. Guarnieri, "Young’s modulus measurements of thin films using micromechanics", Journal of Applied Physics, vol. 50, no. 11, pp. 6761-6766, 1979. [62] B. Ilic, S. Krylov, and H. Craighead, "Young’s modulus and density measurements of thin atomic layer deposited films using resonant nanomechanics", Journal of Applied Physics, vol. 108, no. 4, pp. 044-317, 2010. [63] T. Yoshikawa et al., "Thermal conductivity of amorphous indium–gallium–zinc oxide thin films", Applied Physics Express, vol. 6, no. 2, pp. 021-101, 2013. [64] S. K. Park, J. I. Han, D. G. Moon, and W. K. Kim, "Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates", Japanese Journal of Applied Physics, vol. 42, no. 2, pp. 623-629, 2003. [65] J. Luo, A. Flewitt, S. Spearing, N. Fleck, and W. Milne, "Young's modulus of electroplated Ni thin film for MEMS applications", Materials Letters, vol. 58, no. 17-18, pp. 2306-2309, 2004. [66] W. Sharpe, J. Pulskamp, D. Gianola, C. Eberl, R. Polcawich, and R. J. Thompson, "Strain measurements of silicon dioxide microspecimens by digital imaging processing", Experimental Mechanics, vol. 47, no. 5, pp. 649-658, 2007. [67] S.-Y. Na, Y.-M. Kim, D.-J. Yoon, and S.-M. Yoon, "Impact of atomic-layer-deposition temperature for the HfO 2 gate insulators on the device performance of the In-Ga-Zn-O thin film transistors," in 2017 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), pp. 169-172, 2017. [68] M. D. H. Chowdhury et al., "Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous indium-gallium zinc-oxide thin-film transistors under high humidity", IEEE Transactions on Electron Devices, vol. 62, no. 3, pp. 869-874, 2015. [69] Y.-C. Huang, P.-Y. Yang, H.-Y. Huang, S.-J. Wang, and H.-C. Cheng, "Effect of the annealing ambient on the electrical characteristics of the amorphous InGaZnO thin film transistors", Journal of Nanoscience and Nanotechnology, vol. 12, no. 7, pp. 5625-5630, 2012. [70] S. Yoon et al., "Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors", ACS Appl. Mater. Interfaces, vol. 6, no. 16, pp. 13496-13501, 2014. [71] T. Mudgal, N. Walsh, R. G. Manley, and K. D. Hirschman, "Impact of annealing on contact formation and stability of IGZO TFTs", ECS Transactions, vol. 61, no. 4, pp. 405-417, 2014. [72] D. Han Kang, J. Ung Han, M. Mativenga, S. Hwa Ha, and J. Jang, "Threshold voltage dependence on channel length in amorphous-indium-gallium-zinc-oxide thin-film transistors", Applied Physics Letters, vol. 102, no. 8, p. 083508, 2013. [73] M. Mativenga, D. Geng, J. H. Chang, T. J. Tredwell, and J. Jang, "Performance of 5-nm a-IGZO TFTs with various channel lengths and an etch stopper manufactured by back UV exposure", IEEE Electron Device Letters, vol. 33, no. 6, pp. 824-826, 2012. [74] W.-P. Zhang, S. Chen, S.-B. Qian, and S.-J. Ding, "Effects of thermal annealing on the electrical characteristics of In-Ga-Zn-O thin-film transistors with Al2O3 gate dielectric", Semiconductor Science and Technology, vol. 30, no. 1, p. 015003, 2014. [75] Y.-H. Kim, E. Lee, J. G. Um, M. Mativenga, and J. Jang, "Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics", Scientific Reports, vol. 6, p. 25734, 2016. [76] X. Li et al., "Highly robust flexible oxide thin-film transistors by bulk accumulation", IEEE Electron Device Letters, vol. 36, no. 8, pp. 811-813, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78528 | - |
| dc.description.abstract | 本研究目標在開發可撓性非晶氧化銦鎵鋅(a-IGZO)薄膜電晶體差分放大器。研究中使用5.5 μm的聚醯亞胺軟板為基板,並利用聚醯亞胺封裝層使電路元件能位在中性面,降低機械應變下對元件、對電路的特性影響。首先在玻璃基板上進行電晶體特性與電路設計的測試,在完成鈍化層接觸孔的蝕刻後,對元件進行第一次350℃空氣退火,產生n型電晶體的特性,但由於電晶體的臨界電壓、接觸電阻過大,嚴重影響電路的表現,於是再進行二次退火來調整電晶體的特性,使電路特性能接近理論值。接著再將電路製程轉移到聚醯亞胺軟性基板上,由於封裝層固化會使元件經歷額外的熱退火效應,導致電晶體成為空乏型,不符合電路設計,在調整退火程序,取消350℃空氣退火,僅使用封裝層固化的溫度來退火元件,成功完成具封裝之可撓性非晶氧化銦鎵鋅薄膜電晶體差分放大器。
本研究的薄膜電晶體採用下閘極交錯型的結構,使用鉻當閘極、二氧化鉿當介電層、氧化銦鎵鋅當主動層、氧化銦錫當源極和汲極、二氧化矽當鈍化層,製程中在完成鈍化層接觸孔的蝕刻後,於空氣中進行350℃退火。在元件通道寬長尺寸為180 μm/30 μm時,可以得到元件特性如下:Vth, sat = 3.49 V、μsat = 5.46 cm2V-1s-1、S.S. = 0.24 V/dec;當元件在製作完成後,再經過330℃的氮氣退火以提升元件特性,所獲得的元件特性參數為:Vth, sat = 1.87 V、μsat = 9.12 cm2V-1s-1、S.S. = 0.12 V/dec。在此條件下製成的共源極放大器擁有15 dB的電壓增益以及1442 Hz的截止頻率、單階差分放大器有15.83 dB的電壓增益以及1315 Hz的截止頻率、二階差分放大器則有30.8 dB的電壓增益以及358 Hz的截止頻率。 接著在聚醯亞胺基板上製作元件,以矽基板當承載基板,在上面旋塗聚醯亞胺前驅物,並於475℃固化,接著沉積氮化矽以及二氧化矽作為緩衝層,再進行電晶體製作,最後進行固化封裝製程,同時對元件退火,完成後以機械性的方式分離矽基板,完成具封裝之可撓性差分放大器。此時通道寬長尺寸為180 μm/30 μm的電晶體特性如下:Vth, sat = 1.26 V、μsat = 7.05 cm2V-1s-1、S.S. = 0.12 V/dec,共源極放大器的電壓增益14.55 dB,截止頻率885 Hz;單階差分放大器電壓增益15.56 dB,截止頻率514 Hz;二階差分放大器電壓增益30.54 dB,截止頻率393 Hz。在電壓增益值上,製作於聚醯亞胺基板上的電路與玻璃上的結果接近,但在截止頻率上,製作於聚醯亞胺基板上的共源極放大器和單階差分放大器則低於玻璃上的電路,可能是因為軟板較不平整所致。 最後對於封裝的電晶體以及電路進行彎曲測試,元件在0.8 cm的曲率半徑下,張應力以及壓應力對於元件特性都沒有太大的改變,元件特性與平坦時相近,可以得知經過封裝後,元件的確接近中性面,不容易受到機械應變的影響。 | zh_TW |
| dc.description.abstract | In this study, flexible differential amplifier circuits based on amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) are developed. To minimize the influence of mechanical bending on the circuit performance, the circuits are fabricated on a 5.5-μm-thick polyimide (PI) substrate and then encapsulated with another polyimide layer of the same thickness to place them on the neutral plane. The TFTs and circuits are first fabricated on glass substrates for optimization. After the etching of passivation layer’s contact hole, TFT is annealed at 350℃ in air to get the n-type characteristic. However, the transistor is not perfect enough. Because of the larger threshold voltage and contact resistance, the characteristic of amplifier degrading a lot. To improve the TFT performance, post fabrication anneal at 330℃ in nitrogen ambient is adopted. Next, the fabrication process is transferred to the PI substrate. However, the extra heating effect introduced during the curing process of encapsulation layer causes the operation of the TFT changes from enhancement to depletion mode. To circumvent this issue, the process of annealing was changed. The 350℃ anneal in air is canceled which is replaced by the heating effect during the curing process. The encapsulated flexible a-IGZO TFT-based differential amplifier is successfully developed.
The TFT has an inverted-staggered bottom-gate structure. E-beam evaporated Cr, atomic-layer deposited HfO2, rf-sputtered IGZO, e-beam evaporated indium tin oxide and plasma-enhanced-chemical-vapor-deposited SiO2 are used as the gate electrode, gate dielectric, active channel, source/drain electrodes and back-channel passivation, respectively. After the etching of contacr hole, annealing at 350℃ in the air. The TFT with a channel dimension of W / L = 180 μm / 30 μm exhibits a threshold voltage of 3.49 V, saturation mobility of 5.46 cm2V-1s-1, and subthreshold swing of 0.24 V/dec. After the post-fabrication anneal at 330℃ in nitrogen, the threshold voltage, saturation mobility and subthreshold swing are improved to 1.87 V, 9.12 cm2V-1s-1, and 0.12 V/dec, respectively. The voltage gain and cut-off frequency of the common source amplifier are 15 dB and 1442 Hz, respectively. Those of the single-stage differential amplifier are 15.83 dB and 1315 Hz. For two-stage differential amplifier, the corresponding values are 30.8 dB and 358 Hz. To fabricate flexible a-IGZO TFT-base differential amplifiers, we use Si wafer as the carrier substrate and spin PI varnish on it. Next, the PI varnish is cured at 475 ℃, followed by the deposition of SiNx and SiO2 buffer layers by PECVD. The amplifiers are then fabricated. After the circuit fabrication, another PI layer is spun on and cured as the encapsulation. Finally, the sample is debonded from the Si carrier substrate by mechanical force. The flexible a-IGZO TFT with a channel dimension of W / L = 180 μm / 30 μm has a threshold voltage of 1.26 V, saturation mobility of 7.05 cm2V-1s-1, and subthreshold swing of 0.12 V/dec. The voltage gain and cut-off frequency of the flexible common source amplifier are 14.55 dB and 885 Hz, respectively. Those of the flexible single-stage differential amplifier are 15.56 dB and 514 Hz. For the flexible two-stage differential amplifier, the corresponding values are 30.54 dB and 393 Hz. The voltage gains of the on-PI amplifiers are comparable to those of on-glass counterparts. The degraded bandwidth of the on-PI amplifiers may cause by the unflat of the flexible substrate. Finally, the influence of mechanical bending on the performance of the flexible TFT and amplifier circuits are investigated. For both outward (tension) and inward (compression) bending at a radius up to 0.8 cm, the performance of TFT and amplifier circuits are nearly unchanged, which confirms that flexible circuits are insensitive to mechanical bending events when they are located close to the neutral plane. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:02:09Z (GMT). No. of bitstreams: 1 ntu-108-R06941035-1.pdf: 6445158 bytes, checksum: b533c35eff5619d327e9c927c3e5d1e0 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT IV 目錄 VII 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 1.3論文架構 4 第二章 理論基礎與文獻回顧 5 2.1薄膜電晶體簡介 5 2.1.1薄膜電晶體之結構 5 2.1.2薄膜電晶體之工作原理 6 2.1.3薄膜電晶體之特徵參數 7 2.1.4薄膜電晶體之介電層電性分析 11 2.2共源極放大器簡介 12 2.2.1共源極放大器之工作原理 12 2.2.2電壓轉換特性 13 2.2.3雜訊邊界 16 2.2.4頻率響應 17 2.3差分放大器簡介 20 2.4雙輸出轉單輸出電路簡介 22 2.5製作於玻璃基板上之薄膜電晶體差分放大器文獻回顧 24 2.6可撓性薄膜電晶體差分放大器之文獻回顧 30 第三章 實驗方法與步驟 37 3.1聚醯亞胺固化製程 37 3.2薄膜沉積方法 38 3.2.1射頻磁控濺鍍 38 3.2.2電子束蒸鍍 40 3.2.3原子層沉積 41 3.2.4電漿輔助化學氣相沉積 42 3.3微影製程 43 3.4蝕刻製程 45 3.4.1濕式蝕刻製程 45 3.4.2乾式蝕刻製程 45 3.5 MIM結構製備流程 47 3.6可撓性氧化銦鎵鋅薄膜電晶體差分放大器製備流程 48 3.6.1共源極放大器光罩設計 48 3.6.2差分放大器光罩設計 49 3.6.3可撓性氧化銦鎵鋅薄膜電晶體差分放大器製作流程 51 3.7量測分析 58 3.7.1電壓-電容量測方法 58 3.7.2薄膜電晶體特性量測方法 58 3.7.3共源極放大器電壓轉換特性量測方法 59 3.7.4共源極放大器及差分放大器動態訊號量測方法 60 3.7.5彎曲測試量測方法 62 第四章 結果與討論 66 4.1二氧化鉿介電層電壓-電容特性分析 66 4.2氧化銦鎵鋅薄膜電晶體特性分析 67 4.2.1二次退火對於氧化銦鎵鋅薄膜電晶體之特性影響 67 4.2.2不同通道尺寸對於氧化銦鎵鋅薄膜電晶體之特性影響 70 4.3氧化銦鎵鋅薄膜電晶體差分放大器 77 4.3.1未經過二次退火共源極放大器 77 4.3.2經過二次退火之共源極放大器 81 4.3.3未經二次退火差分放大器 84 4.3.4經二次退火差分放大器 86 4.4可撓性氧化銦鎵鋅薄膜電晶體特性分析 91 4.4.1聚醯亞胺封裝製程對於可撓性氧化銦鎵鋅薄膜電晶體之特性影響 91 4.4.2不同通道尺寸對於可撓性氧化銦鎵鋅薄膜電晶體之特性影響 95 4.5可撓性氧化銦鎵鋅薄膜電晶體差分放大器 98 4.5.1可撓性共源極放大器 98 4.5.2可撓性差分放大器 101 4.5.3可撓性電路於彎曲情況下之特性分析 105 第五章 結論與未來展望 110 5.1結論 110 5.2未來展望 112 A. 附錄 113 Ⅰ.差分放大器電路模擬 113 Ⅱ.濺鍍氧氣比例對已封裝可撓性電晶體的影響 116 Ⅲ.鈍化層沉積氣體比例對未經過二次退火電晶體的影響 118 Ⅳ.不同基板對於氧化銦錫電阻率之影響 120 參考文獻 121 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 差分放大器 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 彎曲測試 | zh_TW |
| dc.subject | 可撓性電子元件 | zh_TW |
| dc.subject | 共源極放大器 | zh_TW |
| dc.subject | 非晶氧化銦鎵鋅 | zh_TW |
| dc.subject | bending test | en |
| dc.subject | flexible electronics | en |
| dc.subject | thin-film transistor | en |
| dc.subject | a-IGZO | en |
| dc.subject | common source amplifier | en |
| dc.subject | differential amplifier | en |
| dc.title | 可撓性非晶氧化銦鎵鋅薄膜電晶體差分放大器之研究 | zh_TW |
| dc.title | Flexible a-IGZO Thin-Film Transistor-Based Differential Amplifier Circuits | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳肇欣;吳育任;徐振哲;陳建彰 | zh_TW |
| dc.contributor.oralexamcommittee | ;;; | en |
| dc.subject.keyword | 可撓性電子元件,薄膜電晶體,非晶氧化銦鎵鋅,共源極放大器,差分放大器,彎曲測試, | zh_TW |
| dc.subject.keyword | flexible electronics,thin-film transistor,a-IGZO,common source amplifier,differential amplifier,bending test, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU201903996 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 6.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
