請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78524完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐展言 | |
| dc.contributor.author | Hao-Wen Lee | en |
| dc.contributor.author | 李顥文 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:01:55Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-19 | |
| dc.identifier.citation | Aizawa, H., Sekine, Y., Takemura, R., Zhang, Z., Nangaku, M., and Hirokawa, N. J. (1992). Kinesin family in murine central nervous system. Cell Biol. 119, 1287–1296.
Akerboom, J., Chen, T.W., Wardill, T.J., Tian, L., Marvin, J.S., Mutlu, S., Calderón, N.C., Esposti, F., Borghuis, B.G., Sun, X.R., Gordus, A., Orger, M.B., Portugues, R., Engert, F., Macklin, J.J., Filosa, A., Aggarwal, A., Kerr, R.A., Takagi, R., Kracun, S., Shigetomi, E., Khakh, B.S., Baier, H., Lagnado, L., Wang, S.S., Bargmann, C.I., Kimmel, B.E., Jayaraman, V., Svoboda, K., Kim, D.S., Schreiter, E.R., and Looger, L.L. (2012). Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819-13840. Berlot, C.H. (2002). Use of scanning mutagenesis to delineate structure-function relationships in G protein alpha subunits. Methods Enzymol. 344, 455-468. Besset, V., Rhee, K., and Wolgemuth, D.J. (1999). The cellular distribution and kinase activity of the Cdk family member Pctaire1 in the adult mouse brain and testis suggest functions in differentiation. Cell Growth Differ. 10, 73-81. Bradshaw, N.J., Soares, D.C., Carlyle, B.C., Ogawa, F., Davidson-Smith, H, Christie, S., Mackie, S., Thomson, P.A., Porteous, D.J., Millar, J.K. (2011). PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1. J Neurosci. 31,9043-9054. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Broadhead, G.K., Mun, H.C., Avlani, V.A., Jourdon, O., Church, W. B., Christopoulos, A., Delbridge, L., Conigrave, A.D. (2010) Allosteric Modulation of the Calcium-sensing Receptor by γ-Glutamyl Peptides. J. of Bio. Chem. 286, 8786-8797. Brocke, L., Chiang, L.W., Wagner, P.D., Schulman, H. (1999) Functional Implications of the Subunit Composition of Neuronal CaM Kinase II. J. Bio. Chem. 274, 22713-22722. Buechler, Y.J., Herberg, F.W., and Taylor, S.S. (1993). Regulation-defective mutants of type I cAMP-dependent protein kinase. Consequences of replacing arginine 94 and arginine 95. J. Biol. Chem. 268, 16495-16503. Burkhardt, J.K. (1998). The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim. Biophys. Acta. 1404, 113-126. Bury, L.A., and Sabo, S.L. (2011). Coordinated trafficking of synaptic vesicle and active zone proteins prior to synapse formation. Neural Dev. 6:24. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 57, 411–425. Caylor, R., Jin Y., Ackley. B.D. (2013). The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Dev. 8:10. Chetkovich, D.M., and Sweatt, J.D. (1993). nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J. Neurochem. 61, 1933-1942. Chung, S.H., Sun, L., and Gabel, C.V. (2013). In vivo neuronal calcium imaging in C. elegans. J. Vis. Exp. 74. Cianfrocco, M.A., DeSantis, M.E., Leschziner, A.E., Reck-Peterson, S.L. (2016) Mechanism and Regulation of Cytoplasmic Dynein. Annu. Rev. Cell. Dev. Biol. 31, 83-108. Delghandi, M.P., Johannessen, M., and Moens, U. (2005). The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell. Signal. 17, 1343-1351. Dixon, S.J. and Roy, P.J. (2005) Muscle arm development in Caenorhabditis elegans. Development. 132, 3079-92. Duncan, J.E., and Goldstein, L.S. (2006). The genetics of axonal transport and axonal transport disorders. PLoS Genet. 29, e124. Endicott, J.A., and Noble, M.E. (2013). Structural characterization of the cyclin-dependent protein kinase family. Biochem. Soc. Trans. 41, 1008-1016. Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L., and Malinow, R. (2003). PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136-143. Feng, T. (2018) L-Type Calcium Channels: Structure and Functions. Ion Channels in Health and Sickness. 127-147. Fioravante, D., Chu, Y., de Jong, A.P., Leitges, M., Kaeser, P.S., Regehr, W.G. (2014). eLife. 3, e03011. Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y., Chisholm, A.D. (2010). Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci. 30, 3175-3183. Goldstein, L.S., and Yang, Z. (2000). Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39-71. Graeser, R., Gannon, J., Poon, R.Y., Dubois, T., Aitken, A., and Hunt, T. (2002). Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. J. Cell Sci. 115, 3479-3490. Gunawardena, S., and Goldstein, L.S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401. Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40. Hall, D.H., and Hedgecock, E.M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847. Hancock, W.O. (2014) Nat. Rev. Mol. Cell Biol. 15, 615-28. Haspel, G., O'Donovan, M.J., Hart, A.C. (2010) Motorneurons dedicated to either forward or backward locomotion in the nematode C. elegans. J. Neurosci. 30, 11151-11156. Hawasli, A.H., and Bibb, J.A. (2007). Alternative roles for Cdk5 in learning and synaptic plasticity. Biotechnol. J. 2, 941-948. Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696. Hirose, T., Tamaru, T., Okumura, N., Nagai, K., and Okada, M. (1997). PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur. J. Biochem. 249, 481-488. Hoerndli, F.J., Wang, R., Mellem, J.E., Kallarackal, A., Brockie, P.J., Thacker, C., Madsen, D.M., Maricq, A.V. (2015). Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron 86, 457-474. Hoerndli, F.J., Maxfield, D.A., Brockie, P.J., Mellem, J.E., Jensen, E., Wang, R., Madsen, D.M., Maricq, A.V. (2013). Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron. 80,1421-1437. Horiuchi, D., Collins, C.A., Bhat, P., Barkus, R.V., Diantonio, A., and Saxton, W.M. (2007). Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr. Biol. 17, 1313-1317. Ichinose, S., Ogawa, T., and Hirokawa, N. (2015). Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87, 1022-1035. Iwano, S., Satou, A., Matsumura, S., Sugiyama, N., Ishihama, Y., and Toyoshima, F. (2015). PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol. Cell Biol. 35, 1197-1208. Jordens, I., Marsman, M., Kuijl, C., and Neefjes, J. (2005). Rab proteins, connecting transport and vesicle fusion. Traffic 6, 1070-1077. Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H., and Goldstein, L.S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459. Kashina, A.S., Semenova, I.V., Ivanov, P.A., Potekhina, E.S., Zaliapin, I., and Rodionov, V.I. (2004). Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877-1881. Kesavapany, S., Li, B.S., Amin, N., Zheng, Y.L., Grant, P., and Pant, H.C. (2004). Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim. Biophys. Acta. 1697, 143-153. Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C., and Ross, M.E. (2003). Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673-8681. Klassen, M.P., and Shen, K. (2007). Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 130, 704-716. Klinman, E., Holzbaur, E.L. (2015). Stress-Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/Dynein. Cell 12, 462-473. Kobayashi, K., Nakano, J., Mutsuki, A., Tsuboi, D., Nishioka, T., Ikeda, S., Yokoyama, G., Kaibuchi, K., Mori, I. (2016) Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior. Cell Report 14, 11-21 Korswagen, H.C., Park, J.H., Ohshima, Y., and Plasterk, R.H. (1997). An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 11, 1493-1503. Kuijpers, M., van de Willige, D., Freal, A., Chazeau, A., Franker, M.A., Hofenk, J., Rodrigues, R.J., Kapitein, L.C., Akhmanova, A., Jaarsma, D., Hoogenraad, C.C. (2016). Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron. 89, 461-471. Lai, K.O., and Ip, N.Y. (2009). Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr. Opin. Neurobiol. 19, 275-283. Laine, V., Frokjaer-Jensen, C., Couchoux, H., Jospin, M.(2011). The alpha1 subunit EGL-19, the alpha2/delta subunit UNC-36, and the beta subunit CCB-1 underlie voltage-dependent calcium currents in Caenorhabditis elegans striated muscle. J Biol Chem. 286, 36180-36187. Leenders, A.G., Lopes da Silva, F.H., Ghijsen, W.E., and Verhage, M. (2001). Rab3a is involved in transport of synaptic vesicles to the active zone in mouse brain nerve terminals. Mol. Biol. Cell 12, 3095-3102. Li, M., Wang, X., Meintzer, M.K., Laessig, T., Birnbaum, M.J., and Heidenreich, K.A. (2000). Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3 beta. Mol. Cell Biol. 20, 9356-9363. Lin, S.X., and Collins, C.A. (1993). Regulation of the intracellular distribution of cytoplasmic dynein by serum factors and calcium. J. Cell Sci. 105, 579-588. Ma, C., Su, L., Seven, A.B., Xu, Y., and Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421-425. Macosko, E.Z., Pokala, N., Feinberg, E.H., Chalasani, S.H., Butcher, R.A., Clardy, J., and Bargmann, C.I. (2009). A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171-1175. Malenka, R.C., and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5-21. Martin, M., Iyadurai, S.J., Gassman, A., Gindhart, J.G.Jr., Hays, T.S., and Saxton, W.M. (1999). Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell. 10, 3717-3728. McKenney, R.J., Huynh,W., Tanenbaum, M.E., Bhabha, G., Vale, R.D. (2014) Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science. 345, 337-341 Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970. Mikolcevic, P., Sigl, R., Rauch, V., Hess, M.W., Pfaller, K., Barisic, M., Pelliniemi, L. J., Boesl, M., and Geley, S. (2012). Cyclin-dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for spermatogenesis. Mol. Cell Biol. 32, 868-879. Mullen, G.P., Grundahl, K.M., Gu, M., Watanabe, S., Hobson, R.J., Crowell, J.A., McManus, J.R., Mathews, E.A., Jorgensen, E.M., Rand, J.B. (2012). UNC-41/stonin functions with AP2 to recycle synaptic vesicles in Caenorhabditis elegans. PLoS One. 7, e40095. Murdoch, H., Vadrevu, S., Prinz, A., Dunlop, A.J., Klussmann, E., Bolger, G.B., Norman, J.C., and Houslay, M.D. (2011). Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function. J. Cell Sci. 124, 2253-2266. Nagy, S., Wright, C., Tramm, N., Labello, N., Burov, S., and Biron, D. (2013). A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by G(αs) signaling. elife 2, e00782. Nakata, T., Terada, S., and Hirokawa, N. (1998). Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659-674. Niwa, S., Lipton, D.M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H., Shen, K. (2016) Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Rep. 16, 2129-2141 Niwa, S. (2017) Immobilization of Caenorhabditis elegans to Analyze Intracellular Transport in Neurons. J. Vis. Exp. 128, 56690 Nogales, E. (2000). Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277-302. Okada, Y., Sato-Yoshitake, R., and Hirokawa, N. (1995). The activation of protein kinase A pathway selectively inhibits anterograde axonal transport of vesicles but not mitochondria transport or retrograde transport in vivo. J. Neurosci. 15, 3053-3064. Oldham, W.M., and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71. Ou, C.Y., Poon, V.Y., Maeder, C.I., Watanabe, S., Lehrman, E.K., Fu, A.K., Park, M., Fu, W.Y., Jorgensen, E.M., Ip, N.Y., and Shen, K. (2010). Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 141, 846-858. Park, E.C. and Horvitz, H.R. (1986) Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics. 113, 821-852. Poon, V.Y., Klassen, M.P., and Shen, K. (2008). UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455, 669-673. Reiner, D.J., Newton, E.M., Tian, H., Thomas, J.H. (1999) Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM Kinase II. Nature 402, 199-203. Richmond, J.E., Davis, W.S., Jorgensen, E.M. (1999). UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 11, 959-64. Richmond, J.E., Weimer, R.M., Jorgensen, E.M. (2001). An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature. 412, 338-41. Rieckhof, G.E., Yoshihara, M., Guan, Z., Littleton, J.T. (2003). Presynaptic N-type calcium channels regulate synaptic growth. J. Biol. Chem. 278, 41099-41108. Roberts, A.J., Kon, T., Knight, P.J., Sutoh, K., and Burgess, S.A. (2013). Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713-726. Rondaij, M.G., Bierings, R., Kragt, A., Gijzen, K.A., Sellink, E., van Mourik, J.A., Fernandez-Borja, M., and Voorberg, J. (2006). Dynein-dynactin complex mediates protein kinase A-dependent clustering of Weibel-Palade bodies in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 49-55. Rouleau, G.A., Clark, A.W., Rooke, K., Pramatarova, A., Krizus, A., Suchowersky, O., Julien, J.P., and Figlewicz, D. (1996). SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 39, 128-131. Sagasti, A., Hisamoto, N., Hyodo, J., Tanaka-Hino, M., Matsumoto, K., Bargmann, C.I. (2001). The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell. 20;105(2):221-32. Saheki, Y., Bargmann, C.I. (2009). Presynaptic CaV2 calcium channel traffic requires CALF-1 and the α2δsubunit UNC-36. Nat. Neurosci. 12,1257–1265. Sasaki, S., Shionoya, A., Ishida, M., Gambello, M.J., Yingling, J., Wynshaw- Boris, A., and Hirotsune, S. (2000). A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681-696. Sassone-Corsi, P. (2012). The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol. 4, a011148. Sauer, B. (1998). Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381-392. Schade, M.A., Reynolds, N.K., Dollins, C.M., and Miller, K.G. (2005). Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network. Genetics 169, 631-649. Scherer, J., Yi, J., and Vallee, R.B. (2014). PKA-dependent dynein switching from lysosomes to adenovirus: a novel form of host-virus competition. J. Cell Biol. 205, 163-177. Schoch, S., Castillo, P.E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R.C., and Südhof, T.C. (2002). RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321-326. Schoch, S., Deák, F., Königstorfer, A., Mozhayeva, M., Sara, Y., Südhof, T.C., and Kavalali, E.T. (2001). SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117-1122. Shonesy, B.C., Jalan-Sakrikar, N., Cavener, V.S., Colbran, R.J. (2014) CaMKII: a molecular substrate for synaptic plasticity and memory. Prog. Mol. Biol. Transl. Sci. 122, 61-87. Skalhegg, B.S., and Tasken, K. (2000). Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5, 678-693. Skeberdis, V.A., Chevaleyre, V., Lau, C.G., Goldberg, J.H., Pettit, D.L., Suadicani, S.O., Lin, Y., Bennett, M.V., Yuste, R., Castillo, P.E., and Zukin, R.S. (2006). Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501-510. Stenius, K., Janz, R., Südhof, T.C., and Jahn, R. (1995). Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J. Cell Biol. 131, 1801-1809. Stone, M.C., Roegiers, F., Rolls, M.M. (2008) Microtubules Have Opposite Orientation in Axons and Dendrites of Drosophila Neurons. Mol. Biol. Cell. 19, 4122-4129. Sure, G.R., Chatterjee, A., Mishra, N., Sabharwal, V., Devireddy, S., Awasthi, A., Mohan, S., Koushika, S.P. (2018) UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Sci. Rep. 8, 8938. Swulius, M.T., Waxham, M.N. (2008) Ca2+/Calmodulin-dependent Protein Kinases. Cell Mol. Life Sci. 65, 2637-2657. Tesmer, J.J., Sunahara, R.K., Gilman, A.G., and Sprang, S.R. (1997). Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsα·GTPγS. Science 278, 1907-1916. Toda, H., Mochizuki, H., Flores, R. III, Josowitz, R., Krasieva, T.B., Lamorte, V.J., Suzuki, E., Gindhart, J.G., Furukubo-Tokunaga, K., Tomoda, T. (2008). UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev. 22, 3292-3307. Trottier, Y., Biancalana, H., and Mandel, J. L. (1994). Instability of CAG repeats in Huntington's disease: relation to parental transmission and age of onset. J. Med. Genet. 31, 377-382. Uemura, T., Rapp, P., Rongo, C. (2005). The role of regulatory domain interactions in UNC-43 CaMKII localization and trafficking. J. Cell Sci. 118, 3327-3338. Urnavicius, L., Zhang,K., Diamant, A.G., Motz, C., Schlager, M.A., Yu, M., Patel, N.A., Robinson, C.V., Carter1, A.P. (2015) The structure of the dynactin complex and its interaction with dynein. Mol. Biol. Cell. E13-05-0283. Vetter, I.R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304. Wagner, O.I., Esposito, A., Köhler, B., Chen, C.W., Shen, C.P., Wu, G.H., Butkevich, E., Mandalapu, S., Wenzel, D., Wouters, F.S., Klopfenstein, D.R. (2009) Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc. Natl. Acad. Sci. 106, 10605-10. Wang, H., and Sieburth, D. (2013). PKA controls calcium influx into motor neurons during a rhythmic behavior. PLoS Genet. 9, e1003831. Weimer, R.M., Gracheva, E.O., Meyrignac, O., Miller, K.G., Richmond, J.E., Bessereau, J.L. (2006). UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26, 8040-8047. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1976). The structure of the ventral nerve cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond B Biol. Sci. 275, 327-348. Weimer, R.M., Richmond, J.E., Davis, W.S., Hadwiger, G., Nonet, M.L., Jorgensen, E.M. (2013). Defects in synaptic vesicle docking in unc-18 mutants. Nat. Neurosci. 10, 1023-1030. Yagensky, O., Dehaghi, T.K., Chua, J.J.E. (2016) The Roles of Microtubule-Based Transport at Presynaptic Nerve Terminals. Front Synaptic Neurosci. 8: 3. Yan, J., Chao, D.L. Toba, S., Koyasako, K., Yasunaga, T., Hirotsune, S., Shen, K. (2013). Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2, e00133 Yogev, S., Cooper, R., Fetter, R., Horowitz, M., Shen, K. (2016). Microtubule Organization Determines Axonal Transport Dynamics. Neuron. 92,449-460. Zaccolo, M., Magalhães, P., and Pozzan, T. (2002). Compartmentalisation of cAMP and Ca2+ signals. Curr. Opin. Cell Biol. 14, 160-166. Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Terada, S., Nakata, T., Takei, Y., Saito, M., Tsuji, S., Hayashi, Y., and Hirokawa, N. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105, 587-597. Zhao, H., and Nonet, M.L. (2001). A conserved mechanism of synaptogyrin localization. Mol. Biol. Cell. 12, 2275-2289. Zhou, K., Stawicki, T.M., Goncharov, A., Jin, Y. (2013). Position of UNC-13 in the active zone regulates synaptic vesicle release probability and release kinetics. elife. 2, e01180. Zhu, J.J., Esteban, J.A., Hayashi, Y., and Malinow, R. (2000). Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098-1106. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78524 | - |
| dc.description.abstract | 神經為生物體中用來接收環境訊息並透過突觸(synapse)傳遞訊息的細胞。為了維持神經的正常運作,特定的蛋白質與囊泡必須被運送到正確的突觸區域以維持其功能。目前已知負責極性突觸運輸(polarized synaptic trafficking)的馬達蛋白(motor proteins)分為負責正向運輸(anterograde trafficking)的驅動蛋白(kinesin)UNC-116/kinesin-1與UNC-104/kinesin-3;以及逆向運輸(retrograde trafficking)的動力蛋白(dynein)。先前的研究指出在線蟲中有一類週期素的同系蛋白CYY-1會啟動它的下游激酶PCT-1來調控突觸運輸。在我們的研究中,我們發現一個鈣調素依賴性蛋白UNC-43/CaMKII會調控突觸運輸。缺少CYY-1會使得線蟲DA9神經中的突觸小泡被錯誤地送進樹突,而當UNC-43的突變被加入時,這個錯誤的運輸會被抑制。失去UNC-43並沒有辦法恢復UNC-104或UNC-116突變中突觸小泡的錯誤運輸,顯示這些驅動蛋白即使在缺乏UNC-43的狀況下仍能正常運作。透過曠時影像(timelapse imaging)我們發現在同時缺乏CYY-1與UNC-43的線蟲當中,逆向運輸的比例會大幅度下降。在同時缺乏CYY-1與UNC-43的線蟲當中使其DA9中過度表現UNC-43也無法逆轉UNC-43對於突觸運輸的救援效果,顯示UNC-43的調控可能不是一個細胞自主的反應。總而言之,UNC-43會透過抑制逆向運輸來調控突觸運輸,且這個運輸可能是跟驅動蛋白無關的。 | zh_TW |
| dc.description.abstract | Neurons are specialized cells that receive signals from environments and transmit signals to target cells through synapses. To maintain the function of synapses, proteins and vesicles, such as synaptic vesicle protein transport vesicles (STVs), must be precisely transported to synaptic region. Anterograde directed motors, UNC-116/kinesin-1, UNC-104/kinesin-3, and retrograde directed motor dynein regulate polarized synaptic trafficking. Previous study showed that a cyclin homolog CYY-1/cyclinc Y activates cyclin-dependent Pctaire kinase PCT-1 to regulate synaptic trafficking in C. elegans DA9 neuron. In our study, we identified a calmodulin-dependent kinase UNC-43/CaMKII necessary for regulating synaptic trafficking. When unc-43 was genetically ablated in cyy-1 mutant, mislocalized synaptic vesicles (SVs) in dendrites were reduced. Loss of UNC-43 was not able to rescue synaptic defect caused by loss of UNC-104 or UNC-116, indicating that these kinesins are still necessary in the absence of UNC-43. Results of timelapse imaging showed that retrograde transport was reduced in cyy-1; unc-43 double mutant. Overexpression of UNC-43 did not restore synaptic localization in cyy-1; unc-43(tm1605), indicating that UNC-43 might not function cell autonomously. Altogether, UNC-43 regulates synaptic trafficking by reducing retrograde transport events in an independent pathway with kinesin-mediated trafficking. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:55Z (GMT). No. of bitstreams: 1 ntu-108-R06442025-1.pdf: 5493920 bytes, checksum: e3e601b53f81251ee0e75b252f14c3a0 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii TABLE OF CONTENTS iii 1. INTRODUCTION 1 1.1 Polarized trafficking in neuron 1 1.2 Functions and regulations of motor proteins 2 1.3 Axonal transport and neuronal disorders 4 1.4 The role of Ca2+ in neurons 5 2. MATERIALS AND METHODS 7 2.1 Strains and genetics 7 2.2 Cloning and constructs 8 2.3 Combination of different genotypes 9 2.4 Worm lysis for genomic DNA 10 2.5 Dynamic imaging 10 2.6 Functional assay of backward locomotion 10 2.7 Quantification 11 3. RESULTS 13 3.1 Loss of UNC-43/CaMKII suppresses synaptic defect caused by cyy-1 13 3.2 Gain of function of UNC-43 results in the similar phenotype to loss of function 15 3.3 UNC-43 seemed not to regulate kinesins directly 16 3.4 Retrograde transport was strongly suppressed in cyy-1; unc-43(tm1605) and cyy-1; unc-43(n498) 17 3.5 Loss of CDK-5 restored retrograde events in cyy-1; unc43(tm1605) 19 3.6 Loss of UNC-43 disrupted SVs localization in the absence of SYD-2 20 3.7 Depletion of UNC-43 suppressed the defect caused by loss of UNC-2 21 3.8 Overexpression of UNC-43 in DA9 did not restored SVs localization 21 3.9 Functional assay revealed that backward locomotion was damaged in cyy-1; unc-43 worms 22 3.10 CYY-1 and UNC-43 regulate mitochondria localization 23 3.11 Muscle arms were thinner but still existed in cyy-1; unc-43 (tm1605) 24 4. DISCUSSION 26 4.1 Synaptic targeting character of UNC-43 26 4.2 Dynamic Images revealed that retrograde transport was suppressed in the absence of UNC-43 27 4.3 Candidate screening of UNC-43 28 4.4 Overexpression of UNC-43 rescues synaptic formation but not trafficking 28 4.5 UNC-43 also regulate mitochondria and postsynaptic cell morphology 29 5. FIGURES 31 Figure 1 Loss of UNC-43 suppressed synaptic defect caused by losing CYY-1/PCY-1 but not CDK-5 32 Figure 2 Alternative allele of UNC-43 also suppressed cyy-1 defect 36 Figure 3 UNC-43 seemed not to regulate motor proteins directly 38 Figure 4 Loss of UNC-43 suppressed retrograde transport events 43 Figure 5 Loss of CDK-5 restored retrograde events that was suppressed in cyy-1; unc-43(tm1605) 46 Figure 6 UNC-43 seemed not to function through SYD-2-mediated synaptic formation and trafficking 48 Figure 7 Depletion of UNC-43 suppressed the defect caused by loss of UNC-2 49 Figure 8 Overexpression of UNC-43 could not restore the rescue effect in cyy-1; unc-43(tm1605) 53 Figure 9 Functional assay revealed that cyy-1; unc-43 worms were almost incapable of backward locomotion 55 Figure 10 UNC-43 regulated mitochondria localization with CYY-1 58 Figure 11 Loss of UNC-43 made both neurite and muscle arm thinner 59 6. REFERENCE 60 7 APPENDIX 80 7.1 Primers for genotyping and sequencing 80 7.2 Constructs and transgenic worms 83 7.3 Plasmid sequence and cDNA 84 8. SUPPLEMENTARY FIGURES 93 Figure S1 Genetic ablation of DNC-1 in cyy-1 mutant rescued synaptic defect 94 Figure S2 Kymographs with obvious events 99 | |
| dc.language.iso | en | |
| dc.subject | 動力蛋白 | zh_TW |
| dc.subject | 驅動蛋白 | zh_TW |
| dc.subject | 突觸小泡運輸 | zh_TW |
| dc.subject | UNC-43蛋白 | zh_TW |
| dc.subject | CYY-1蛋白 | zh_TW |
| dc.subject | synaptic vesicles trafficking | en |
| dc.subject | UNC-43 | en |
| dc.subject | CYY-1 | en |
| dc.subject | dynein complex | en |
| dc.subject | kinesin | en |
| dc.title | 研究UNC-43蛋白於神經運輸的角色 | zh_TW |
| dc.title | The characterization of UNC-43 in synaptic trafficking | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡正鼎,林敬哲,王歐力 | |
| dc.subject.keyword | 突觸小泡運輸,驅動蛋白,動力蛋白,CYY-1蛋白,UNC-43蛋白, | zh_TW |
| dc.subject.keyword | synaptic vesicles trafficking,kinesin,dynein complex,CYY-1,UNC-43, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201903855 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06442025-1.pdf 未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
