請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78523
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳益群 | zh_TW |
dc.contributor.advisor | Yi-Chun Wu | en |
dc.contributor.author | 周思妤 | zh_TW |
dc.contributor.author | Ssu-Yu Chou | en |
dc.date.accessioned | 2021-07-11T15:01:52Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Arroyo, J.D., and Hahn, W.C. (2005). Involvement of PP2A in viral and cellular transformation. Oncogene 24, 7746-7755.
Ashrafi, K. (2007). Obesity and the regulation of fat metabolism. In WormBook: The Online Review of C elegans Biology [Internet] (WormBook). Ausman, J., Abbade, J., Ermini, L., Farrell, A., Tagliaferro, A., Post, M., and Caniggia, I. (2018). Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis 9, 298. Baker, K.D., and Thummel, C.S. (2007). Diabetic larvae and obese flies—emerging studies of metabolism in Drosophila. Cell metabolism 6, 257-266. Birsoy, K., Festuccia, W.T., and Laplante, M. (2013). A comparative perspective on lipid storage in animals. J Cell Sci 126, 1541-1552. Chalfant, C.E., Kishikawa, K., Mumby, M.C., Kamibayashi, C., Bielawska, A., and Hannun, Y.A. (1999). Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A Activation is stereospecific and regulated by phosphatidic acid. Journal of Biological Chemistry 274, 20313-20317. Chen, C.L., Lin, C.F., Chiang, C.W., Jan, M.S., and Lin, Y.S. (2006). Lithium inhibits ceramide-and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Molecular Pharmacology 70, 510-517. Chen, L., Wang, K., Long, A., Jia, L., Zhang, Y., Deng, H., Li, Y., Han, J., and Wang, Y. (2017). Fasting-induced hormonal regulation of lysosomal function. Cell Res 27, 748-763. Coolon, J.D., Jones, K.L., Todd, T.C., Carr, B.C., and Herman, M.A. (2009). Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genet 5, e1000503. DeBose-Boyd, R.A., Brown, M.S., Li, W.P., Nohturfft, A., Goldstein, J.L., and Espenshade, P.J. (1999). Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99, 703-712. Després, J.-P. (2012). Body fat distribution and risk of cardiovascular disease: an update. Circulation 126, 1301-1313. Dobrowsky, R.T., Kamibayashi, C., Mumby, M.C., and Hannun, Y.A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268, 15523-15530. Dong, L., Cornaglia, M., Krishnamani, G., Zhang, J., Mouchiroud, L., Lehnert, T., Auwerx, J., and Gijs, M.A.M. (2018). Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. PLoS One 13, e0193989. Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., and Sul, H.S. (2007). Regulation of lipolysis in adipocytes. Annu Rev Nutr 27, 79-101. El-Brolosy, M.A., and Stainier, D.Y.R. (2017). Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet 13, e1006780. Fan, W., Xu, Y., Liu, Y., Zhang, Z., Lu, L., and Ding, Z. (2017). Obesity or Overweight, a Chronic Inflammatory Status in Male Reproductive System, Leads to Mice and Human Subfertility. Front Physiol 8, 1117. Fares, H., and Greenwald, I. (2001). Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133-145. Galadari, S., Rahman, A., Pallichankandy, S., Galadari, A., and Thayyullathil, F. (2013). Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 12, 98. Haesen, D., Sents, W., Lemaire, K., Hoorne, Y., and Janssens, V. (2014). The Basic Biology of PP2A in Hematologic Cells and Malignancies. Front Oncol 4, 347. Hahn, K., Miranda, M., Francis, V.A., Vendrell, J., Zorzano, A., and Teleman, A.A. (2010). PP2A regulatory subunit PP2A-B′ counteracts S6K phosphorylation. Cell metabolism 11, 438-444. Han, S., Schroeder, E.A., Silva-Garcia, C.G., Hebestreit, K., Mair, W.B., and Brunet, A. (2017). Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185-190. Hannun, Y.A., and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9, 139-150. Hardie, D.G., Ross, F.A., and Hawley, S.A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology 13, 251-262. Hino, H., Takaki, K., and Mochida, S. (2015). Inhibitor-1 and-2 of PP2A have preference between PP2A complexes. Biochemical and biophysical research communications 467, 297-302. Hofmann, K., and Dixit, V.M. (1998). Ceramide in apoptosis—does it really matter? Trends in biochemical sciences 23, 374-377. Jenkins, R.W., Idkowiak-Baldys, J., Simbari, F., Canals, D., Roddy, P., Riner, C.D., Clarke, C.J., and Hannun, Y.A. (2011). A novel mechanism of lysosomal acid sphingomyelinase maturation: requirement for carboxyl-terminal proteolytic processing. J Biol Chem 286, 3777-3788. Jiang, W., and Ogretmen, B. (2014). Autophagy paradox and ceramide. Biochim Biophys Acta 1841, 783-792. Jones, K.T., and Ashrafi, K. (2009). Caenorhabditis elegans as an emerging model for studying the basic biology of obesity. Disease models & mechanisms 2, 224-229. Kabi, A., and McDonald, C. (2014). Protein phosphatase 2A has positive and negative roles in autophagy. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging (Elsevier), pp. 211-225. Kaizuka, T., Morishita, H., Hama, Y., Tsukamoto, S., Matsui, T., Toyota, Y., Kodama, A., Ishihara, T., Mizushima, T., and Mizushima, N. (2016). An Autophagic Flux Probe that Releases an Internal Control. Molecular Cell 64, 835-849. Kane, P.A. (2006). The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol R 70, 177-+. Kiely, M., and Kiely, P. (2015). PP2A: the wolf in sheep’s clothing? Cancers 7, 648-669. Kimura, S., Noda, T., and Yoshimori, T. (2007). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460. Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., Ohsumi, M., Takao, T., Noda, T., and Ohsumi, Y. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151, 263-276. Kitatani, K., Idkowiak-Baldys, J., and Hannun, Y.A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20, 1010-1018. Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721. Kopelman, P.G. (2000). Obesity as a medical problem. Nature 404, 635. Krahmer, N., Guo, Y., Wilfling, F., Hilger, M., Lingrell, S., Heger, K., Newman, H.W., Schmidt-Supprian, M., Vance, D.E., Mann, M., et al. (2011). Phosphatidylcholine Synthesis for Lipid Droplet Expansion Is Mediated by Localized Activation of CTP:Phosphocholine Cytidylyltransferase. Cell Metabolism 14, 504-515. Kuo, Y.-C., Huang, K.-Y., Yang, C.-H., Yang, Y.-S., Lee, W.-Y., and Chiang, C.-W. (2008). Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55α regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. Journal of Biological Chemistry 283, 1882-1892. Lamb, C.A., Yoshimori, T., and Tooze, S.A. (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14, 759-774. Lee, S.-K., Li, W., Ryu, S.-E., Rhim, T., and Ahnn, J. (2010). Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797, 1687-1695. Letourneux, C., Rocher, G., and Porteu, F. (2006). B56‐containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX‐1 and ERK. The EMBO journal 25, 727-738. Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42. Li, Z., and Vance, D.E. (2008). Thematic review series: glycerolipids. Phosphatidylcholine and choline homeostasis. Journal of lipid research 49, 1187-1194. Liesa, M., and Shirihai, O.S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17, 491-506. MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252. Magnaudeix, A., Wilson, C.M., Page, G., Bauvy, C., Codogno, P., Leveque, P., Labrousse, F., Corre-Delage, M., Yardin, C., and Terro, F. (2013). PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiol Aging 34, 770-790. Martinez-Gonzalez, M.A., and Martin-Calvo, N. (2016). Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Curr Opin Clin Nutr Metab Care 19, 401-407. Melendez, A., and Levine, B. (2009). Autophagy in C. elegans. WormBook 24, 1-26. Mijaljica, D., Prescott, M., and Devenish, R.J. (2011). Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673-682. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873. Mizushima, N., Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075. Mozaffarian, D. (2016). Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 133, 187-225. Mukhopadhyay, A., Saddoughi, S.A., Song, P., Sultan, I., Ponnusamy, S., Senkal, C.E., Snook, C.F., Arnold, H.K., Sears, R.C., and Hannun, Y.A. (2009). Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. The FASEB Journal 23, 751-763. Mullaney, B.C., and Ashrafi, K. (2009). C. elegans fat storage and metabolic regulation. Biochim Biophys Acta 1791, 474-478. Nakamura, S., and Yoshimori, T. (2017). New insights into autophagosome–lysosome fusion. J Cell Sci 130, 1209-1216. Napolitano, G., and Ballabio, A. (2016). TFEB at a glance. Journal of Cell Science 129, 2475-2481. Nomura, T., Horikawa, M., Shimamura, S., Hashimoto, T., and Sakamoto, K. (2010). Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes & nutrition 5, 17. Oaks, J., and Ogretmen, B. (2014). Regulation of PP2A by Sphingolipid Metabolism and Signaling. Front Oncol 4, 388. Ohsaki, Y., Suzuki, M., and Fujimoto, T. (2014). Open questions in lipid droplet biology. Chem Biol 21, 86-96. Oku, M., Maeda, Y., Kagohashi, Y., Kondo, T., Yamada, M., Fujimoto, T., and Sakai, Y. (2017). Evidence for ESCRT- and clathrin-dependent microautophagy. Journal of Cell Biology 216, 3263-3274. Oku, M., and Sakai, Y. (2018). Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries. Bioessays 40, e1800008. Parzych, K.R., and Klionsky, D.J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20, 460-473. Pattingre, S., Bauvy, C., Levade, T., Levine, B., and Codogno, P. (2009). Ceramide-induced autophagy: to junk or to protect cells? Autophagy 5, 558-560. Pavoine, C., and Pecker, F. (2009). Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovascular research 82, 175-183. Rabanal-Ruiz, Y., Otten, E.G., and Korolchuk, V.I. (2017). mTORC1 as the main gateway to autophagy. Essays in biochemistry 61, 565-584. Ramanadham, S., Hsu, F.-F., Zhang, S., Jin, C., Bohrer, A., Song, H., Bao, S., Ma, Z., and Turk, J. (2004). Apoptosis of insulin-secreting cells induced by endoplasmic reticulum stress is amplified by overexpression of group VIA calcium-independent phospholipase A2 (iPLA2β) and suppressed by inhibition of iPLA2β. Biochemistry 43, 918-930. Rambold, A.S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108, 10190-10195. Saha, A.K., Xu, X.J., Lawson, E., Deoliveira, R., Brandon, A.E., Kraegen, E.W., and Ruderman, N.B. (2010). Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes 59, 2426-2434. Salminen, A., and Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11, 230-241. Sardiello, M., Palmieri, M., di Ronza, A., Medina, D.L., Valenza, M., Gennarino, V.A., Di Malta, C., Donaudy, F., Embrione, V., Polishchuk, R.S., et al. (2009). A gene network regulating lysosomal biogenesis and function. Science 325, 473-477. Sato, K., Norris, A., Sato, M., and Grant, B.D. (2014). C. elegans as a model for membrane traffic. WormBook: the online review of C elegans biology, 1-47. Saxton, R.A., and Sabatini, D.M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976. Schulze, R.J., Sathyanarayan, A., and Mashek, D.G. (2017). Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 1862, 1178-1187. Sentelle, R.D., Senkal, C.E., Jiang, W., Ponnusamy, S., Gencer, S., Selvam, S.P., Ramshesh, V.K., Peterson, Y.K., Lemasters, J.J., Szulc, Z.M., et al. (2012). Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8, 831-838. Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18. Settembre, C., Fraldi, A., Jahreiss, L., Spampanato, C., Venturi, C., Medina, D., de Pablo, R., Tacchetti, C., Rubinsztein, D.C., and Ballabio, A. (2008). A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17, 119-129. Singh, R., and Cuervo, A.M. (2012). Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012, 282041. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. Son, J.H., Shim, J.H., Kim, K.H., Ha, J.Y., and Han, J.Y. (2012). Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44, 89-98. Summers, S.A., Garza, L.A., Zhou, H., and Birnbaum, M.J. (1998). Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18, 5457-5464. Sutter, B.M., Wu, X., Laxman, S., and Tu, B.P. (2013). Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403-415. Thiam, A.R., Farese, R.V., Jr., and Walther, T.C. (2013). The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14, 775-786. Trichopoulou, A., and Vasilopoulou, E. (2000). Mediterranean diet and longevity. Br J Nutr 84 Suppl 2, S205-209. van Blitterswijk, W.J., van der Luit, A.H., Veldman, R.J., Verheij, M., and Borst, J. (2003). Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369, 199-211. van Zutphen, T., Todde, V., de Boer, R., Kreim, M., Hofbauer, H.F., Wolinski, H., Veenhuis, M., van der Klei, I.J., and Kohlwein, S.D. (2014). Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 25, 290-301. Vogiatzi, T., Xilouri, M., Vekrellis, K., and Stefanis, L. (2008). Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. Journal of Biological Chemistry 283, 23542-23556. Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., et al. (2011). A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840-852. Walther, T.C., and Farese, R.V., Jr. (2009). The life of lipid droplets. Biochim Biophys Acta 1791, 459-466. Wang, C., Wang, H., Zhang, D., Luo, W., Liu, R., Xu, D., Diao, L., Liao, L., and Liu, Z. (2018). Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy. Nat Commun 9, 3492. Wang, S., Song, P., and Zou, M.H. (2012). AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122, 555-573. Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., and Walhout, A.J. (2014). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770. Watts, J.L., and Ristow, M. (2017). Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 207, 413-446. Wu, Y., Song, P., Xu, J., Zhang, M., and Zou, M.H. (2007). Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem 282, 9777-9788. Yen, K., Le, T.T., Bansal, A., Narasimhan, S.D., Cheng, J.-X., and Tissenbaum, H.A. (2010). A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PloS one 5, e12810. Yoshii, S.R., and Mizushima, N. (2017). Monitoring and Measuring Autophagy. Int J Mol Sci 18, 1865. Yuan, H.X., Xiong, Y., and Guan, K.L. (2013). Nutrient sensing, metabolism, and cell growth control. Mol Cell 49, 379-387. Zachari, M., and Ganley, I.G. (2017). The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61, 585-596. Zhang, P., Na, H., Liu, Z., Zhang, S., Xue, P., Chen, Y., Pu, J., Peng, G., Huang, X., Yang, F., et al. (2012). Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics 11, 317-328. Zhang, S.O., Trimble, R., Guo, F., and Mak, H.Y. (2010). Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC cell biology 11, 96. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78523 | - |
dc.description.abstract | 養分攝取的多樣性深深地影響生物體內能量的穩定,不平衡的飲食內容,便可能導致一些代謝相關疾病。眾所周知,不同的營養成份會在生物體內有各種生理上的影響,然而飲食如何調控宿主的代謝機制仍有待釐清。在本研究中,我們發現餵食線蟲不同的飲食會改變線蟲脂肪的儲存、胞器數量以及動態平衡。此外,我們也發現了參與在特定的脂肪代謝以及蛋白質去磷酸化的基因對於細胞和生理過程上扮演了很重要的角色。有趣的是,在利用線蟲作為研究帕金森氏症的動物模型時,我們發現飲食可以藉由影響溶酶體清除累積蛋白質的能力,進而調控α-突觸核蛋白的累積的程度。簡而言之,我們透過許多研究來了解線蟲是如何透過飲食來調控分子與細胞機制進而造成不同的生理反應。透過釐清這些機制,可以增進我們對於飲食是如何影響肥胖以及神經退化性的帕金森氏症等疾病的知識,以及提供日後可能利用飲食進行之治療策略的一些潛在方向。 | zh_TW |
dc.description.abstract | Diets profoundly affect energy homeostasis and the susceptibility of metabolism-related diseases. While different diets could induce distinct physiological responses, the relationship between diets and host metabolism remains elucidated. Here, we show that fat storage and organelle numbers and dynamics are altered in Caenorhabditis elegans on different diets and that genes involved in specific lipid metabolism and protein dephosphorylation play roles in these cellular and physiological processes. Interestingly, using the C. elegans Parkinson’s disease model, we found that diets can modulate the level of alpha-synuclein inclusions through lysosome-mediated clearance of protein aggregations. In brief, we have provided molecular and cellular bases for diets-mediated physiological responses, which would enhance our knowledge and provide insights for possible dietary interventions for diseases such as obesity, neurodegenerative Parkinson disease. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:52Z (GMT). No. of bitstreams: 1 ntu-108-R06b43007-1.pdf: 5719372 bytes, checksum: 5e17ea614552f4ee8d55d03c73a21efc (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Introduction 1 Dietary is important for homeostasis and regulates various organismal physiology 1 Post translational modification 2 PP2A and its regulation 3 Ceramide structure and metabolism 5 The storage of lipid 8 Lipid catabolism and metabolism 8 Autophagy types and mechanisms 9 C. elegans is the powerful model to investigate the lipid homeostasis and autophagy 12 Materials and methods 14 Caenorhabditis elegans strains and culture 14 Caenorhabditis elegans synchronization 15 Oil-Red-O (ORO) staining 15 RNA extraction and real-time PCR 16 let-92 double-stranded RNA generation and microinjection 17 BODIPY staining 18 Construction and microinjection 19 Western blotting 20 Ceramide inhibitor treatment 22 Fatty acid/ choline supplementation 22 Lifespan assay 23 HLH-30::GFP nuclear localization analysis 23 Microscopy visualization 24 Results 24 let-92 contributes to the diet-mediated lipid reduction in DA1877-fed worms 24 DA1877 increases ceramides level which would activate LET-92 in C. elegans 25 asm-3, a sphingomyelinase pathway gene is required for the increased ceramides in DA1877-fed worms 26 Loss of asm-3 reduced the level of ceramides in DA1877-fed worms 28 Loss of asm-3 suppressed lipid reduction on both diets 28 Ceramide plays an important role in lipid reduction in DA1877-fed worms 29 let-92 does not reduce the lipid level through inhibition of sbp-1-dependent lipogenesis on DA1877 diet 30 The autophagic flux is decreased in DA1877-fed worms and asm-3-let-92 axis seems to lead to this process 31 The decreased autophagic flux may lead to the protein aggregation and diseases 33 let-92 may affect autophagosom-lyosome fusion step in the autophagic process 34 asm-3-let-92 axis affects autophagosome-lysosome fusion step in the autophagic process 35 let-92 and asm-3 may reduce the lipid level through inducing the biosynthesis of lysosome-related organelles 36 HLH-30 does not localize to nucleus in both-diets fed worms 37 Loss of asm-3 affects the mitochondrial morphology in DA1877-fed animals 39 Discussion 41 Ceramides activate PP2A 41 DA1877-fed animals have increased PP2A activity 42 The role of let-92 in regulating the autophagy process 44 Autophagosome-lysosome fusion defect in DA1877-fed worms 44 The relationship between asm-3 and phosphatidylcholine in DA1877-fed animals 46 The possible role of microautophagy in DA1877-mediated lipid reduction 47 AMPK is not the target of PP2A, and they may be antagonized to each other 49 The roles of different bioactive molecules between bacteria diet OP50 and DA1877 50 Figures 53 Figure 1. let-92 plays an important role in regulating lipid content in DA1877-fed worms 53 Figure 2. DA1877 diet increases ceramides level in the worms 55 Figure 3. The transcriptional expression and translational expression of asm-3 are both up-regulated in DA1877-fed worms 57 Figure 4. Loss of asm-3 reduces ceramide level in DA1877-fed w orms 59 Figure 5. asm-3 mutation increased lipid content and lipid droplets size in both OP50 and DA1877-fed worms 61 Figure 6. Ceramide inhibitors increase the level of lipid content in DA1877-fed worms 63 Figure 7. Loss of sbp-1 does not suppress the increase of lipid content by let-92 RNAi 65 Figure 8. DA1877-fed worms showed decreased autophagic flux 66 Figure 9. No significant lipophagy events are found in both OP50- or DA1877-fed worms 67 Figure 10. Diet DA1877 promotes alpha synuclein inclusions in C. elegans Parkinson Disease model. 68 Figure 11. Deficiency of asm-3 or let-92 suppresses the autophagic flux reduction 69 Figure 12. asm-3 mutation and let-92 RNAi increases autophagosomes but not autolysosomes in DA1877-fed animals 72 Figure 13. let-92 RNAi and asm-3 mutant decrease the number of lysosome-related organelles in DA1877-fed worms 73 Figure 14. The mitochondrial morphology is affected by asm-3 in DA1877-fed animals 75 Figure 15. Model 76 Supplemantary figures 77 Figure S1. DA1877-fed worms have more PP2A protein 77 Figure S2. Magnified view of Pasm-3::gfp and Pasm-3::asm-3::mCherry transgenic worms 79 Figure S3. Starvation increased the autophagic flux on both diets 80 Figure S4. let-92 RNAi knockdown increases the size of LROs in DA1877-fed worms 81 Figure S5. HLH-30 localized to the intestinal nuclei in DA1877-fed worms under sodium azide treatment 83 Figure S6. Loss of hlh-30 showed different effects on the lipid content level in different diets-fed worms. 84 Figure S7. The activity of PP2A which is regulate by ceramide may not through the inhibition of SET protein 85 Figure S8. Supplementation of PC precursor, choline decreased the autophagic flux in OP50-fed worms 86 Figure S9. Total level of PC level in worms 87 Figure S10. There are more activated AMPK in DA1877-fed worms 89 Figure S11. Vitamin B12 synthesis mutant showed partial suppression on DA1877-medaited lipid reduciton 91 Figure S12. Dietary supplemetaion with palmitic acid 92 Tables 94 Table S1. Most autophagosome–lysosome fusion genes are not siginificantly differentiated expressed on different diets by RNAseq analysis 94 Supplementary: One-way ANOVA analysis 95 Supplementary: Two-way ANOVA analysis 97 References 112 | - |
dc.language.iso | en | - |
dc.title | 在線蟲內飲食調控胞器的數量與動態平衡 | zh_TW |
dc.title | Regulation of organelle numbers and dynamics in C. elegans by bacterial diets | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王昭雯;陳昌熙;金翠庭 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Wen Wang;Chang-Shi Chen;Tsiu-Ting Ching | en |
dc.subject.keyword | 秀麗隱桿線蟲,溶?體,脂肪,脂質,飲食, | zh_TW |
dc.subject.keyword | Caenorhabditis elegans,lysosome,fat,lipid,diet, | en |
dc.relation.page | 119 | - |
dc.identifier.doi | 10.6342/NTU201904030 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-19 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
dc.date.embargo-lift | 2024-08-26 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。