請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78519完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈偉強Liliek SulistyowatiAbdul Latief Abadi | zh_TW |
| dc.contributor.advisor | Wei Chiang ShenLiliek SulistyowatiAbdul Latief Abadi | en |
| dc.contributor.author | 馬約瑟 | zh_TW |
| dc.contributor.author | Yosep Marpaung | en |
| dc.date.accessioned | 2021-07-11T15:01:39Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Agrios, G. N. 2005. Plant Pathology. Fifth Edition. Elsevier Academic Press, New York.
Ahmad, F., Ahmad, L., and Kan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181. Akila, R., Rajendran, L., Harish, S., Saveetha, K., Raguchander, T., and Samiyappan, R. 2011. Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biol. Control 57:175-183. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., and Jacobsen, B. J. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant P. 61:289-298. Baylei, B. A., Bae, H., Stream, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., Vinyard, B. T., and Holmes, K. A. 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol. Control 46:24-35. Beckman, C., and Roberts, E. 1995. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv. Bot. Res. 21: 35-77. Buddenhagen, I. 2009. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘tropical race 4’ to better manage banana production. ISHS Acta Horticulturae 828: International Symposium on Recent Advances in Banana Crop Protection for Sustainable Production and Improved Livelihoods. Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liepin, M., Desoignies, N., Modrie, P., Legreve, A., Mahillon, J., and Bragard, C. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front. Microbiol. 9:143. Chandra, S., Askari, K., and Madhumita, K. 2018. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Genet. Eng. Biotechnol. J. 16:581-586. Chen, S. K., Edwards, C. A., and Subler, S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol. Biochem. 33:1971-1980. Chen, J. L., Sun, S. Z., Miao, C. P., Wu, P., Chen, P. W., Xu, L. W., Guan, H. L., and Zhao, L. X. 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 40:315-324. Chen, Y., Shen, X., Peng, H., Bu, H., W, W., and Zhang, W. 2015. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom. Data 4:33-42. Chen, J. L., Sun, S. Z., Miao, C. P., Wu, P., Chen, P. W., Xu, L. W., Guan, H. L., and Zhao, L. X. 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 40:315-324. Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E. A. 2015. Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. Costacurta, A., and Vanderleyden, J. 1995. Synthesis of phytohormones by plant associated bacteria. Crit. Rev. Microbiol. 21:1-18. Dagamac, N. H. A., Sogono, P. G., Cabalfin, R. C. B., Adducul, A. C. Y., and Dela-Cruz, T. E. E. 2008. Fungal root endophytes from Musa spp. as biological control agents against the plant pathogen Fusarium oxysporum. Acta Manilana 56:27-35. De-Silva, N, J., Brooks, S., Lumyong, S., and Hyde, D. 2019. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 33:133-148. Devi, K, A., Pandey, P., and Sharma, G. D. 2016. Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. Hayati J. Biosci. 23:173-180. Divilov, K., and Walker, D. R. 2016. Reaction of Diaporthe longicolla to a strain of Sarocladium kiliense. Biocontrol. Sci. Techn. 26:938-950. Duke, K. A., Becker, M. G., Girard, I. J., Millar, J. L, Fernando, W. G. D., Belmonte, M. F., and de-Kievit, T. R. 2017. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genomics 18:467. Egel, D. S., and Martyn, R. D. 2007. Fusarium wilt of watermelon and other cucurbits. The Plant Health Instructor. DOI: 10.1094/PHI-I-2007-0122-01. Ellis, M. B. 1971. Denatiaceous hyphomycetes. Comowealth Mycological Institute Kew 608:1-25. Escribano-Viana, R., Lopez-Alfaro, I., Lopez, R., Santamaria, P., Gutierrez, A. R., and Gonzalez-Arenzana, L. 2018. Impact of chemical and biological fungicides applied to grapevine on grape biofilm, must, and wine microbial diversity. Front. Microbiol. 9:59. FAO. 2017. http://www.fao.org/economic. Filho, F. D. M., Fonseca, A. O. D. S., Persici, B. M., Silveira, J. D. S., Braga, C. Q., Potter, L., Botton, S. D. A., and Pereira, D. I. B. 2017. Trichoderma virens as a biocontrol of Toxocara canis: In vivo evaluation. Rev. Iberoam. Micol. 34:32-35. Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, B. M., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Part, T., Bretagnolle, V., Plantegenest, M., Clement, L. W., Dennis, C., Palmer, C., Oñate, J. J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke, S., Fischer, C., Goedhart, P. W., and Inchausti, P. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11:97-105. Ghosh, P., Rathinasabapathi, B., Ma, L. Q. 2015. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1-6. Groenewald, S., van den Berg, N., Marasas, W. F. O., and Vilijoe, A. 2006. Biological, physiological and pathogenic variation in a genetically homogenous population of Fusarium oxysporum f. sp. cubense. Australas. Plant Path. 35:401. Gyaneshwar, P., James, E. K., Mathan, N., Reddy, P. M., Reinhold-Hurek, B., and Ladha, J. K. 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183:2634-2645. Harish, S., Kavino, M., Kumar, N., Saravanakumar, D., Soorianathasundaran, D., and Samiyappan, R. 2008. Biohardening with Plant Growth Promoting Rhizosphere and Endophytic bacteria induces systemic resistance against Banana bunchy top virus. Appl. Soil Ecol. 39:187-200. Heslop-Harrison, H. J. S., and Schwarzacher, T. 2007. Domestication, genomics and the future for banana. Ann. Bot. 100: 1073-1084. Ho, Y. N., Chiang, H. M., Chao, C. P., Su, C. C., Hsu, H. F., Guo, C. T., Hsieh, J. L., and Huang, C. C. 2015. In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant Soil 387:295-306. Hong, E. C. and Park, M. J. 2016. Endophytic bacteria as biocontrol agents against plant pathogens: current state of the art. Plant Biotechnol. Rep. 10:353-357. Huang, J. S., Peng, Y. H., Chung, K. R., and Huang, J. W. 2018. Suppressive efficacy of volatile compounds produced by Bacillus mycoides on damping-off pathogens of cabbage seedlings. J. Agric. Sci. 156:795-809. Hwang, S. C., and Ko, W. H. 2004. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 88:580-588. Ines, M., Amel, K., Yousra, T., Neila, S., Imen, D., Marie, M. J., and Abdennaseur, H. 2012. Effect of dose-response of zinc and manganese on siderophores production. Am. J. Environ. Sci. 8:143-151. Itoh, N., Kouzai, T., and Koide, Y. 1994. Efficient transformation of Pseudomonas strains with pNI vectors by electroporation Biosci. Biotech. Biochem. 58:1306-1308. INIBAP. 2000. Musa germplasm management. IPGRI. Rome. Jamalizadeh, M., Etebarian, H. R., Aminian, H., and Alizadeh, A. 2011. A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. Bulletin OEPP/EPPO Bulletin 41:65-71. Kavino, M., and Manoranjitham, S. K. 2018. In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates: Novel ways to combat Fusarium wilt. Eur. J. Plant Pathol. 151:371-387. Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., Asaf, S., Elyassi, A., Mabood, F., Shin, J. A., and Lee, I. J. 2016. Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and Indole Acetic Acid. PLoS ONE 11:e0158207. Khilyas, I. V., Tursunov, K. A., Shirshikova, T. V. Kamaletdinova, L. K., Matrosova, L. E., McCleland, M., and Bogomonaya, L. M. 2019. Genome sequence of pigmented siderophore-producing strain Serratia marcescens SM6. Microbiol. Resour. Announc. 8:1-2. Kotoky, R., Nath, S., Maheshwari, D. K., and Pandey, P. 2019. Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environ. Sustain. 3:2523-8922. Lambrecht, M., Okon, Y., Broek, A. V., and Vanderleyden, J. 2000. Indole-3-acetic acid: a reciprocal signaling molecule in bacteria plant interactions. Trends Microbiol. 8:298-300. Li, M. H., Xi, P. G., Jiang, Z. D., and Qi, P. K. 2007. Race identification of Fusarium oxysporum f. sp. cubense, the causal agent of banana Fusarium wilt in Guangdong province. J. South China Agric. Univ. 28-38-41. Lin, Y. H., Chang, J. Y., Liu, E. T., Chao, C. P., Huang, J. W., and Chang, P. F. L. 2009. Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 123:353-365. Liu, Y., Wang, Z., Bilal, M., Hu, H., Wang, W., Huang, X., Peng, H., and Zhang X. 2018. Enhanced fluorescent siderophore biosynthesis and loss of phenazine-1-carboxamide in phenotypic variant of Pseudomonas chlororaphis HT66. Front. Microbiol. 9:759 Matteoli, F. P., Passarelli-Araujo, H., Reis, R. J. A., da-Rocha, L. O., de-Souza, E. M., Aravind L., Olivares, F. L., and Venancio, T. M. 2018. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 19:750. Menon, 2016. Banana breeding. In: Mohanda, S., Ravishankar, K. V. (eds.) Banana: Genomics and transgenic approaches for genetic improvement. Springer 13-34. Meyer, J. M., Geoffroy, V. A., Baida, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W., and Palleroni, N. J. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 68:2745-2753. Miller, W. G., and Lindow, S. E. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149-153. Mosquera-Espinosa, A. T., Bayman, P., Prado, G. A., Gomez-Carabali, A., and Otero, J. T. 2013. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia 105:141-50. Moore, N. Y., Bentley, S., Pegg, K. G., and Jones, D. R. 1995. Fusarium wilt of banana. Musa disease fact sheet Nº. INBAP, Montpellier, France, 5:4. Mohamed, A. A., Mak, C., Liew, K. W., and Ho, Y. W. 1999. Early evaluation of banana plants at nursery stage for fusarium wilt tolerance. In: Molina, A. B., Nik, M. N., Liew, K. W., (eds). Fusarium wilt management: towards sustainable cultivation. Proceedings of the international workshop on the banana Fusarium wilt disease. Malaysia: INIBAP. 174-185. Mohandas, S., and Ravishankar, K. V. 2016. Banana: Genomics and transgenic approaches for genetic improvement. Springer. 211-226. Nam, H. S., Anderson A. J., and Kim Y. J. 2018. Biocontrol efficacy of formulated Pseudomonas chlororaphis O6 against plant diseases and root-knot nematodes. Plant Pathol. J. 34:241-249. Narayanasamy, P. 2013. Biological Management of diseases of crops. Springer. 99-134. Nicosia, L. D. M. G., Mosca, S., Mercurio, R., and Schena, L. 2015. Dieback of Pinus nigra seedlings caused by a strain of Trichoderma viride. Plant Dis. 99:44-49. Nuangmek, W., McKenzie, E. H. C., and Lumyong, S. 2008. Endophytic fungi from wild banana (Musa acuminata Colla) works against anthracnose disease caused by Colletotrichum musae. Res. J. Microbiol. 3:368-374. Oberlies, N. H., Raja, H. A., Miller, A. N., and Pearce, C. J. 2017. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 80:756-770. Okungbowa, F. I., and Shittu, H. 2014. Fusarium wilts: An overview. Environ. Res. 1935-3049. Ordentlic, A., Elad, Y., and Chet, I. 1987. Rhizosphere colonization by Serratia marcescens for the control of Sclerotium rolfsii. Soil Biol. Biochem. 19:747-751. Pal, K. K., and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instructor. Passari, A. K., Mishra, K. V., Leo, V. V., Gupta, V. K., and Singh, B. P. 2016. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol. Res. 193:57-73. Pegg, K. G., Moore, N. Y., and Bentley, S. 1996. Fusarium wilt of banana in Australia: a review. Aust. J. Agri. Res. 47:637-650. Perez-Vicente, L., Dita, M. A., and Martinez, E. M. 2014. Technical manual prevention and diagnostic of Fusarium wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). FAO. Rome. 6-30. Ploetz, R. C. 2000. Panama disease: a classic and destructive disease of banana. Plant Health Prog. 10:1-7. Ploetz, R. C., Thomas, J. E., and Slabaugh, W. R. 2003. Diseases of banana and plantain. In: Ploetz, R. C (eds.) Diseases of tropical fruit crops. CAB International 73-134. Ploetz R. C. 2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96:653-656. Ploetz, R. C., Kepler, A. K., Daniells, J., Nelson, S. C. 2007. Banana and plantai-an overview with emphasis on Pacific island cultivars. In: CR Elevitch, (eds.) Species profiles for pacific siland agroforestry. Permanent agricultural resources, Holualoa, Hawaii. Ploetz, R. C. 2015. Fusarium wilt of banana. Phytopathology 105:1512-1521. Purkayastha, G, D., Mangar, P., Sha, A., and Saha, D. 2018. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE 13:1-27. Samuelian, S. 2016. Potential of Trichoderma harzianum for control of banana leaf fungal pathogens when applied with a food source and an organic adjuvant. Biotech. 6:8. Schwyn, B., and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. Sharma, A., and Johri, B. N. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res. 158:243-8. Simmonds, N. W. 1959. Bananas. Longman. London. Singh, P. R., and Jha, P. N. 2016. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11:e0155026. Singh, G., Katoch, A., Razak, M., Kitchlu, S., Goswami, A., and Katoch, M. 2017. Bioactive and biocontrol potential of endophytic fungi associated with Brugmansia aurea Lagerh. FEMS Microbiol. Lett. 364:1-11. Srivastava, S., Singh, W., Kumar, V., Verma, P. C., Srivastava, R., Basu, V., Gupta, V., and Rawat, A. K. 2008. Identification of regulatory elements in 16S rRNA gene of Acinetobacter species isolated from water sample. Bioinformation 3:173-176. Steinbach, W. J., and Shetty, A. 2001. Use of the diagnostic bacteriology laboratory: a practical review for the clinician. Postgrad. Med. J. 77:14-156. Stockwell, V. O., and Stack, J. P. 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244-249. Stokstad, E. 2019. Banana fungus puts Latin America on alert. Science 365:207-208. Stover, R. H. 1962. Fusarial wilt (Panama disease) of bananas and other Musa species. Kew, UK, Commonwealth Mycological Institute. Phytopathology 4:117. Su, H. J., Hwang, S. C., Ko, W. H. 1986. Fusarial wilt of Cavendish bananas in Taiwan. Plant Dis. 70:814-818. Sumardi, I., and Wulandari, M. 2010. Anatomy and morphology character of five Indonesian banana cultivars (Musa spp.) of different ploidy level. Biodiversitas 11:167-175. Syamsia, Kuswinanti, T., Syam’un, E., and Masniawati, A. 2015. The potency of endophytic fungal isolates collected from local aromatic rice as indole acetic acid (IAA) producer. Procedia Food Sci. 3:96-103. Swarupa, V., Ravishankar, K. V., and Rekha, A. 2014. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239:735-751. Taiz, L., Zeiger, E. 1998. Plant Physiology, 2nd ed. Sinauer Associates, Sunderland. Tan, D., Fu, L., Han, B., Sun, X., Zheng, P., and Zhang, J. 2015. Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana Fusarium wilt. PLoS ONE 10: e0131974. Thangavelu, R., Palaniswami, A., and Velazhahan, R. 2004. Mass production of Trichoderma harzianum for managing Fusarium wilt of banana. Agric. Ecosyst. Environ. 103:259-263. Thangavelu, R., Mostert, D., Gopi, M., Devi, P. G., Padmanahan, B., Molina, A. B., and Viljoen, A. 2019. First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur. J. Plant Pathol. 154:777-786. Ting, A. S .Y., Meon, S., Kadir, J., Radu, S., and Singh, G. 2010. Induction of host defense enzymes by the endophytic bacterium Serratia marcescens, in banana plantlets. Int. J. Pest Manage. 56:183-188. Tjamos, E. C., Tsitsigiannis, D. I., Tjamos, S. E., Antoniou, P. P., and Katinakis, P. 2004. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur. J. Plant Pathol. 110:35-44. Torre-Ruiz, N. D. L., Ruiz-Valdiviezo, V. M., Rincon-Molino, C. I., Rodriguez-Mendiola, M., Arias-Castro, C., Gutierrez-Miceli, F. A., Palomeque-Dominguez, H., and Rincon-Rosales, R. 2016. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave Americana L. Braz. J. Microbiol. 47: 587-596. Usharani, T. R., Sowmya, H. D., Sunisha, C., and Mohandas, S. 2006. Engineering resistance to Fusarium Wilt. In: Mohanda, S., Ravishankar K. V. (eds.) Banana: genomics and transgenic approaches for genetic improvement. Springer 13-34. Vujanovic, V., St-Arnaud, M., and Neumann, P. J. 2000. Susceptibility of cones and seeds to fungal infection in a pine collection. Forest Pathol. 30:305-320. Wahyudi, A. T., Astuti, R. T., and Giyanto. 2011. Screening of Pseudomonas sp. isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am. J. Agric. & Biol. Sci. 6:134-141. Wang, J., Roe B., Macmil. S., Yu, Q., Murra, J. E., Tang, H., Chen, C., Najar F., Wiley, G., Bowers, J., Van Sluys M-A, Rokhsar, D. S., Hudson, M. E., Moose, S. P., and Paterson, A. H, Ming, R. 2010. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261. Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., and Lee, I. J. 2012. Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:10754-10773. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250-256. Wilson, K. 2001. Preparation of genomic DNA from bacteria. Curr. Proctoc. Mol. Biol. pp. 2.4.1-2.4.5. Wu, L., Xiao, W., Song, D., Khaskheli, M. A., Zhang, S., and Feng, G. 2018. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of Rice Blast Fungus Magnaporthe oryzae. J. Biotechnol. 282:1-9. Xue, C., Penton, C. R., Shen, Z., Zhang, R., Huang, Q., Li, R., Ruan, Y., and Shen, Q. 2015. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci. Rep. 5:1-10. Zhang, N., He, X., Zhang, J., Raza, W., Yang, X. M. X., Ruan, Y. Z., Shen, Q. R., and Huang, Q. W. 2014. Suppression of Fusarium wilt of banana with application of bio-organic fertilizers. Pedosphere 24:613-624. Zhao, L. Y., Xu, Y. X., Ma, Z. O., Deng, Z. S., Shan, C. J., and Wei, G. H. 2012. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz. J. Microbiol. 44:629-637. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78519 | - |
| dc.description.abstract | 香蕉(Musa spp.),是世界上最為重要的經濟和農業作物之一,然而幾種病害的發生,大大降低其產量。香蕉黃葉病,由土壤傳播病原菌Fusarium oxysporum f. sp. cubense(Foc)引起,為目前對香蕉生產最具威脅的病害。因對環境友善防治方法的需求與日俱增,尋找非化學的替代防治方法,如利用內生微生物作為生物防治製劑,為時勢所趨。因此,本研究旨在分離香蕉根部組織中的內生細菌和真菌,評估其作為香蕉黃葉病生物防治劑的潛力。從栽植對香蕉黃葉病菌熱帶型四號生理小種(Tropical race 4, Foc TR4)呈現中等抗性的兩華蕉品種「寶島蕉(Formosana)」及「台蕉5號(Tai-Chiao No. 5)」的有機香蕉園植株根部組織中,分離得到193株內生細菌和124株內生真菌,其中17株細菌和28株真菌分離株對Foc TR4具有拮抗活性。16株內生細菌經鑑定為Pseudomonas mosselii,P. chlororaphis, Serratia marcescens,及Bacillus mycoides;其中5株內生真菌經鑑定為Ceratobasidium sp.,Fusarium nematophilum,Trichoderma spirale,T. virens,以及Sarocladium kiliense 。進一步篩選這些內生菌產生吲哚-乙酸(IAA)及螯鐵蛋白(siderophore)的能力,顯示P. chlororaphis C3H2-L具有最高的活性,其次分別為P. mosselii AH2-E1,P. mosselii AH1-E1和S. marcescens AH2-B1,而B. mycoides C3H1-I及內生真菌則未測到IAA活性;而P. mosselii AH2-E1,S. marcescens AH2-B1、P. mosselii AH1-E1、P. chlororaphis C3H2-L,及S. kiliense C3H2-8,亦可檢測到螯鐵蛋白活性。此外,將10株內生菌接種至組織培養蕉苗,經由再分離確認其組織內生生長的能力;並且進一步利用GFP螢光質體標定P. mosselii AH1-E1及P. chlororaphis C3H2-L,確認其定殖香蕉根部組織的能力。為了評估這些內生菌生物防治的能力,選取7株內生菌接種至感病華蕉品種北蕉蕉苗根部,然後接種黃葉病菌,結果顯示內生細菌S. marcescens和Pseudomonas spp. 具有不錯的防治效果。總結,本研究發現具防治香蕉黃葉病潛力的內生細菌和真菌,未來可進一步評估其實際田間防治能力,以期應用於香蕉的商業化生產。 | zh_TW |
| dc.description.abstract | Banana (Musa spp.) is one of the most important economic and agricultural crops in the world. However, there are several diseases that can reduce the yield greatly. Panama disease or Fusarium wilt, caused by the soilborne pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases that can reduce banana production drastically. Demand for eco-friendly safe control measures has encouraged researchers to find non-chemical alternatives, for example using endophytic microbes as biological control agents. Therefore, this study aims to investigate potential endophytic bacteria and fungi from banana plants and evaluate their potentials as biocontrol agents for Panama disease caused by tropical race 4 of Foc (Foc TR4). A total of 193 endophytic bacteria and 124 endophytic fungi were isolated from the root tissues of banana plants of two moderately resistant cultivars, Formosana and Tai-Chiao No. 5, at two organic fields, Pingtung, Taiwan. Among these endophytes, 17 bacterial isolates and 28 fungal isolates showed antagonistic activity against the growth of Foc TR4. Sixteen endophytic bacteria were identified and belonged to Pseudomonas mosselii, P. chlororaphis, Serratia marcescens and Bacillus mycoides; whereas 5 endophytic fungi were identified as Ceratobasidium sp. , Fusarium nematophilum, Trichoderma spirale, T. virens and Sarocladium kiliense. Ten endophytic isolates were further screened for their ability to produce indole-acetic acid (IAA) and siderophore. P. chlororaphis C3H2-L showed the highest activity in producing IAA and followed by P. mosselii AH2-E1, P. mosselii AH1-E1, and S. marcescens AH2-B1. We failed to detect IAA activity in B. mycoides C3H1-I and endophytic fungi. On the other hand, siderophore activities were positively detected in P. mosselii AH2-E1, S. marcescens AH2-B1, P. mosselii AH1-E1 and P. chlororaphis C3H2-L and S. kiliense C3H2-8. Furthermore, these 10 endophytes were inoculated onto banana tissue plantlets and re-isolation was conducted to confirm their ability of endophytic growth inside banana root tissue. In addition, GFP-tagged P. mosselii AH1-E1 and GFP-tagged P. chlororaphis C3H2-L were further created and used to monitor their abilities to colonize banana root tissue. To evaluate the biocontrol activities, 7 endophytes were selected, inoculated onto the roots of tissue culture plantlets of susceptible Cavendish banana cultivar Pei-Chiao, and then challenged with Foc TR4. Bacterial endophytes such as S. marcescens and Pseudomonas spp. showed promising protection results. In conclusion, our studies found candidate endophytic bacteria and fungi with biocontrol potential for Panama disease and field tests are needed to further evaluate their practical potentials for commercial banana production. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:39Z (GMT). No. of bitstreams: 1 ntu-108-R06633024-1.pdf: 2184503 bytes, checksum: 6e3fd8236e983495fef3119cddbb7d62 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgement i 中文摘要 ii ABSTRACT iv Table of Contents vi List of Tables ix List of Figures x List of Appendix Tables xiii Chapter 1 Introduction 1 1.1 Banana and its importance in the world 3 1.2 Fusarium oxysporum f. sp. cubense, the causal agent of Panama disease 3 1.2.1 History and pathogen variability 4 1.2.2 Taxonomy 5 1.2.3 Morphology and anatomy 6 1.2.4 Biology and ecology 7 1.3 Disease managements 8 1.4 Endophytic microbes as biocontrol agent 9 Chapter 2 Materials and methods 11 2.1 Sample collection 11 2.2 Isolation of endophytic bacteria and fungi 11 2.3 Antagonistic activity test against Fusarium oxyporum f. sp. cubense tropica race 4 (Foc TR4) 12 2.4 Identification of endophytic bacteria and fungi 14 2.4.1 Morphological identification 14 2.4.2. Molecular identification 14 2.5 Indole-3-acetic-acid (IAA) production test 16 2.6 Siderophore production test 17 2.7 Endophyte inoculation and colonization test 18 2.8 GFP transformation and inoculation 19 2.9 Pot biocontrol assay 21 2.10 Data analysis 22 Chapter 3 Results 23 3.1 Isolation of endophytic bacteria and fungi 23 3.2 Antagonistic activity 23 3.3 Identification of endophytes isolates 24 3.4 IAA production test 26 3.5 Siderophore production 27 3.6 Endophyte inoculation and re-isolation 28 3.7 Colonization of GFP strains 29 3.8 Pot biocontrol assay 29 Chapter 4 Discussion 31 References 37 Tables 51 Figures 54 Appendix Tables 76 | - |
| dc.language.iso | en | - |
| dc.subject | 香蕉黃葉病 | zh_TW |
| dc.subject | 生物防治菌 | zh_TW |
| dc.subject | 香蕉 | zh_TW |
| dc.subject | 內生細菌 | zh_TW |
| dc.subject | 香蕉黃葉病菌熱帶型四號生理小種 | zh_TW |
| dc.subject | 內生真菌 | zh_TW |
| dc.subject | biocontrol agent | en |
| dc.subject | banana | en |
| dc.subject | Panama disease | en |
| dc.subject | Fusarium wilt | en |
| dc.subject | Fusarium oxysporum f. sp. cubense tropical race 4 | en |
| dc.subject | endophytic bacteria | en |
| dc.subject | endophytic fungi | en |
| dc.title | 分離自華蕉品種的內生細菌和真菌作為拮抗香蕉黃葉病菌熱帶型四號生理小種的生物防治劑 | zh_TW |
| dc.title | Endophytic bacteria and fungi from Cavendish banana cultivar as biocontrol agents against Fusarium oxysporum f. sp. cubense tropical race 4 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉信宏;趙治平 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hung Yeh;Chih-Ping Chao | en |
| dc.subject.keyword | 香蕉,香蕉黃葉病,香蕉黃葉病菌熱帶型四號生理小種,內生細菌,內生真菌,生物防治菌, | zh_TW |
| dc.subject.keyword | banana,Panama disease,Fusarium wilt,Fusarium oxysporum f. sp. cubense tropical race 4,endophytic bacteria,endophytic fungi,biocontrol agent, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU201902127 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-19 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2024-08-08 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
