請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78515
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉貞佑 | |
dc.contributor.author | Chao-Lung Cheng | en |
dc.contributor.author | 鄭兆曨 | zh_TW |
dc.date.accessioned | 2021-07-11T15:01:25Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-19 | |
dc.identifier.citation | 1. Morais, S., F.G. Costa, and M.d.L. Pereira, Heavy metals and human health. Environmental health–emerging issues and practice, 2012. 10: p. 227-246.
2. Järup, L., Hazards of heavy metal contamination. British medical bulletin, 2003. 68(1): p. 167-182. 3. Streets, D.G., et al., Anthropogenic mercury emissions in China. Atmospheric environment, 2005. 39(40): p. 7789-7806. 4. Wuana, R.A. and F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011. 2011. 5. Chi, K.H., et al., Historical trends of dioxin-like compounds and heavy metals in sediments buried in a reservoir in central Taiwan. Chemosphere, 2009. 76(2): p. 286-292. 6. Streets, D.G., et al., Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmospheric Environment, 2019. 201: p. 417-427. 7. Fang, G.-C., Y.-S. Wu, and T.-H. Chang, Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. Journal of hazardous materials, 2009. 162(2-3): p. 607-615. 8. Lambert, M., B. Leven, and R. Green, New methods of cleaning up heavy metal in soils and water. Environmental science and technology briefs for citizens. Kansas State University, Manhattan, KS, 2000. 9. Clarkson, T.W., The three modern faces of mercury. Environmental health perspectives, 2002. 110(suppl 1): p. 11-23. 10. Houston, M.C., The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med, 2007. 13(2): p. S128-S133. 11. Papanikolaou, N.C., et al., Lead toxicity update. A brief review. Medical science monitor, 2005. 11(10): p. RA329-RA336. 12. Jaishankar, M., et al., Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 2014. 7(2): p. 60-72. 13. Krachler, M., E. Rossipal, and D. Micetic-Turk, Trace element transfer from the mother to the newborn—investigations on triplets of colostrum, maternal and umbilical cord sera. European journal of clinical nutrition, 1999. 53(6): p. 486. 14. Dorea, J.G. and C.M. Donangelo, Early (in uterus and infant) exposure to mercury and lead. Clinical nutrition, 2006. 25(3): p. 369-376. 15. Vidal, A.C., et al., Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacology and Toxicology, 2015. 16(1): p. 20. 16. Park, S.S., et al., Epigenetics, obesity and early-life cadmium or lead exposure. Epigenomics, 2017. 9(1): p. 57-75. 17. Lin, C.C., et al., In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environ Res, 2013. 123: p. 52-7. 18. Ye, B.-J., et al., Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Annals of occupational and environmental medicine, 2016. 28(1): p. 5. 19. Nordberg, G.F., B.A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals. 2014: Academic press. 20. Schuebel, K., et al., Making sense of epigenetics. International Journal of Neuropsychopharmacology, 2016. 19(11): p. pyw058. 21. Bird, A., DNA methylation patterns and epigenetic memory. Genes & development, 2002. 16(1): p. 6-21. 22. Singal, R. and G.D. Ginder, DNA methylation. Blood, 1999. 93(12): p. 4059-4070. 23. Antequera, F., Structure, function and evolution of CpG island promoters. Cellular and Molecular Life Sciences CMLS, 2003. 60(8): p. 1647-1658. 24. Singh, S. and S.S. Li, Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci, 2012. 13(8): p. 10143-53. 25. Chanda, S., et al., DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicological sciences, 2005. 89(2): p. 431-437. 26. Marsit, C.J., et al., Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis, 2005. 27(1): p. 112-116. 27. Martinez-Zamudio, R. and H.C. Ha, Environmental epigenetics in metal exposure. Epigenetics, 2011. 6(7): p. 820-827. 28. Baylin, S.B., DNA methylation and gene silencing in cancer. Nature Reviews Clinical Oncology, 2005. 2(S1): p. S4. 29. Das, P.M. and R. Singal, DNA methylation and cancer. Journal of clinical oncology, 2004. 22(22): p. 4632-4642. 30. Robertson, K.D. and A.P. Wolffe, DNA methylation in health and disease. Nature reviews genetics, 2000. 1(1): p. 11. 31. Baer, C., et al., Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer research, 2012. 72(15): p. 3775-3785. 32. Frigola, J., et al., Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer. Human molecular genetics, 2004. 14(2): p. 319-326. 33. Mulligan, C., et al., Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics, 2012. 7(8): p. 853-857. 34. St-Pierre, J., et al., IGF2 DNA methylation is a modulator of newborn’s fetal growth and development. Epigenetics, 2012. 7(10): p. 1125-1132. 35. Özçelik, T., et al., Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader–Willi syndrome critical region. Nature genetics, 1992. 2(4): p. 265. 36. Reed, M.L. and S.E. Leff, Maternal imprinting of human SNRPN, a gene deleted in Prader–Willi syndrome. Nature genetics, 1994. 6(2): p. 163. 37. Diplas, A.I., et al., Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics, 2009. 4(4): p. 235-240. 38. Marjonen, H., et al., Early prenatal alcohol exposure alters imprinted gene expression in placenta and embryo in a mouse model. PloS one, 2018. 13(5): p. e0197461. 39. Gude, N.M., et al., Growth and function of the normal human placenta. Thrombosis research, 2004. 114(5-6): p. 397-407. 40. Esteban-Vasallo, M.D., et al., Mercury, Cadmium, and Lead Levels in Human Placenta: A Systematic Review. Environmental Health Perspectives, 2012. 120(10): p. 1369-1377. 41. Castro-González, M. and M. Méndez-Armenta, Heavy metals: Implications associated to fish consumption. Environmental toxicology and pharmacology, 2008. 26(3): p. 263-271. 42. Hsieh, C.J., et al., The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Res Notes, 2011. 4: p. 291. 43. 劉俊宏, 台灣臍帶血中微量元素與重金屬濃度分布情形, in 職業醫學與工業衛生研究所. 2009, 臺灣大學. p. 1-75. 44. 黃馨冉, 產婦血、臍帶血與胎盤中砷、鎘、錳、汞、鉛濃度相關性與其 可能暴露來源, in 職業醫學與工業衛生研究所. 2007, 臺灣大學. p. 1-68. 45. 陳麗秋, et al., 中文版新生兒神經行為評估量表的反應性研究. 中華民國物理治療學會雜誌, 1997. 22(1): p. 21-27. 46. Low Birth Weight. 2004. 47. Parrish, R.R., J.J. Day, and F.D. Lubin, Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Current protocols in neuroscience, 2012. 60(1): p. 7.24. 1-7.24. 12. 48. Herman, J.G., et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the national academy of sciences, 1996. 93(18): p. 9821-9826. 49. Sisca, F., Prenatal Perfluoroalkyl Substances Exposures in Association with Peroxisome Proliferator-Activator Receptor Gamma Gene Methylation Levels and Birth Outcomes, in Graduate Institute of Environmental Health Collage of Public Health. 2017, National Taiwan University. 50. Zeschnigk, M., et al., Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Human molecular genetics, 1997. 6(3): p. 387-395. 51. White, H.E., et al., Quantitative analysis of SRNPN gene methylation by Pyrosequencing as a diagnostic test for prader–willi syndrome and angelman syndrome. Clinical chemistry, 2006. 52(6): p. 1005-1013. 52. Tost, J. and I.G. Gut, DNA methylation analysis by pyrosequencing. Nature protocols, 2007. 2(9): p. 2265. 53. Ronaghi, M., Pyrosequencing sheds light on DNA sequencing. Genome research, 2001. 11(1): p. 3-11. 54. Vidal, A.C., et al., Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacology and Toxicology, 2015. 16(1): p. 20. 55. Mistry, H.D. and P.J. Williams, The importance of antioxidant micronutrients in pregnancy. Oxidative medicine and cellular longevity, 2011. 2011. 56. Dawson, E.B., D.R. Evans, and J. Nosovitch, Third-trimester amniotic fluid metal levels associated with preeclampsia. Archives of Environmental Health: An International Journal, 1999. 54(6): p. 412-415. 57. King, J.C., Determinants of maternal zinc status during pregnancy. The American journal of clinical nutrition, 2000. 71(5): p. 1334S-1343S. 58. Organization, W.H., Health risks of heavy metals from long-range transboundary air pollution. WHO: Copenhagen, Denmark, 2007. 59. Kile, M.L., et al., Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes. Environmental Health Perspectives, 2012. 120(7): p. 1061. 60. Maccani, J.Z., et al., DNA methylation changes in the placenta are associated with fetal manganese exposure. Reproductive Toxicology, 2015. 57: p. 43-49. 61. Kippler, M., et al., Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics, 2013. 8(5): p. 494-503. 62. Hanna, C.W., et al., DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Human reproduction, 2012. 27(5): p. 1401-1410. 63. Reichard, J.F. and A. Puga, Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics, 2010. 2(1): p. 87-104. 64. Maccani, J.Z., et al., Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environmental health perspectives, 2015. 123(7): p. 723-729. 65. Tolmachyov, S.Y., J. Kuwabara, and H. Noguchi, Flow injection extraction chromatography with ICP-MS for thorium and uranium determination in human body fluids. Journal of radioanalytical and nuclear chemistry, 2004. 261(1): p. 125-131. 66. Green, B.B., et al., Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the New Hampshire Birth Cohort Study (USA). Environmental health perspectives, 2016. 124(8): p. 1253-1260. 67. Kim, M., et al., DNA methylation as a biomarker for cardiovascular disease risk. PloS one, 2010. 5(3): p. e9692. 68. Liu, Y., et al., DNA methylation at imprint regulatory regions in preterm birth and infection. American journal of obstetrics and gynecology, 2013. 208(5): p. 395. e1-395. e7. 69. Haggarty, P., et al., DNA methyltransferase candidate polymorphisms, imprinting methylation, and birth outcome. PLoS One, 2013. 8(7): p. e68896. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78515 | - |
dc.description.abstract | 背景:
重金屬是對人體有害的物質之一,而這些環境中的重金屬很多都具有穿透胎盤的能力,因此會導致胎兒暴露到環境中的重金屬。許多研究已經證實,產前重金屬暴露與新生兒出生情形以及小孩未來發展是高度相關的。另外,DNA甲基化是基因表達的重要調控機制之一,其能夠在不改變基因序列的情況下調節基因表達。過去的研究指出,環境暴露會對基因DNA甲基化程度發生改變,同時也有研究表明,產前重金屬暴露所導致的基因DNA甲基化程度改變,會影響胎兒發育以及新生兒出生情形。小核核糖核蛋白相關蛋白N(SNRPN)是母系印記基因。 SNRPN的印跡控制區(ICR)靠近泛素 - 蛋白質連接酶E3A(UBE3A)的基因啟動子,其與遺傳疾病Angelman綜合徵(AS)和Parder-Willi綜合徵(PWS)相關。因此,SNRPN的基因表達也與AS和PWS的遺傳疾病相關,並且這些遺傳疾病將影響兒童的發育。我們的目的是澄清重金屬暴露是否會導致SNRPN的DNA甲基化改變,並進一步影響出生結果。 目標: 本研究希望能夠了解產前重金屬暴露與SNRPN基因DNA甲基化之間的關係,並分析SNRPN基因DNA甲基化變化是否會影響新生兒出生情形。 方法: 本研究使用台灣出生世代研究(TBPS)於2004年7月至2005年6月於台灣北部四間醫院所收集的486個個案進行分析。我們使用台灣出生世代研究所量測臍帶血中18種重金屬濃度作為重金屬暴露資料並進行分析,其中包含鉛,砷,汞,鈹,鉑,釷,錳,鋅,銅,硒,鈷,鉬和鈾等重金屬。同時,我們使用胎盤作為SNRPN基因DNA甲基化程度分析的檢體,並以焦磷酸測序來進行基因甲基化程度的測量。最後將甲基化測量結果和重金屬暴露濃度,來跟出生時量測的新生兒體重、懷孕週數等出生情形來進行相關性統計分析。 結果: 研究結果顯示,重金屬銅與新生兒體重呈現顯著負相關(β = -192.60; p-value < 0.05),並且與新生兒神經行為檢查呈現顯著負相關(β = -4.10; p-value < 0.01)。此外,箔與懷孕週數成顯著負相關(β = -0.82; p-value < 0.05),而產前重金屬鋅暴露則是與懷孕週數成顯著正相關(β = 1.84; p-value < 0.001)。在產前重金屬暴露與SNRPN 基因DNA甲基化的部分,本研究觀察到重金屬汞(β = 1.28; p-value < 0.05)以及釷(β = 1.07; p-value < 0.05)跟SNRPN 基因DNA甲基化程度呈現顯著正相關,而銻(β = -2.04; p-value < 0.05)則與SNRPN 基因DNA甲基化程度呈現顯著負相關。最終,在SNRPN 基因DNA甲基化與新生兒出生情形的部分,本研究並未觀察到任何顯著關係。 結論: 本研究結果發現,產前重金屬暴露與SNRPN基因DNA甲基化程度之間是有高度相關。此外,我們也觀察到產前重金屬暴露與新生兒的出生情形是有顯著相關。儘管在本研究中並未觀察到SNRPN基因DNA甲基化程度與新生兒出生情形間的關聯性,但本研究結果可以明白產前重金屬暴露、新生兒出生情形以及SNRPN基因DNA甲基化程度,三者彼此間的關聯性。 | zh_TW |
dc.description.abstract | Background: Heavy metals are harmful substances to the human body. Many heavy metals from the environment have the ability to penetrate the placenta and expose the fetus. Some studies have confirmed that prenatal heavy metals exposure is strongly associated with birth outcomes and children future development. DNA methylation is one of the important regulatory mechanisms for gene expression, it can regulate gene expression without changing gene sequence. Some previous studies suggested that the environmental exposure will alter gene DNA methylation. Moreover, the alteration of DNA methylation by prenatal exposure can affect fetus development and infant birth outcomes. Small nuclear ribonucleoprotein-associated protein N (SNRPN) is a maternal imprinted gene. The imprinting control region (ICR) of SNRPN is near by the gene promoter of ubiquitin-protein ligase E3A (UBE3A) which is associated with genetic disease Angelman Syndrome (AS) and Parder-Willi Syndrome (PWS). Therefore, the gene expression of SNRPN was also associated with the genetic disease of AS and PWS, and those genetic disease will affect children developments. We aimed to clarify whether heavy metal exposure causes DNA methylation of SNRPN and further affects birth outcomes.
Objective: To investigate the relationship between prenatal exposure heavy metals and SNRPN gene DNA methylation level and clarify whether the alteration of small nuclear ribonucleoprotein-associated protein n (SNRPN) affects birth outcomes. Methods: The Study subjects came from Taiwan Birth Panel Study. A total of 486 mother-infant pairs were recruited from July 2004 to June 2005. We measured related heavy metals data from cord blood. The exposure heavy metals substances were including lead, arsenic, mercury, beryllium, platinum, thorium, manganese, zinc, copper, selenium, cobalt, molybdenum and uranium. For analyzing the DNA methylation level of small nuclear ribonucleoprotein-associated protein N (SNRPN), we used placenta as sample and detected by pyrosequencing. The birth outcome data was collected at birth, included birth weight, birth length, gestational age, etc. Finally, we used different statistical models to analyze the data. Result: Copper showed significant negative association with birth weight (β = -192.60; p-value < 0.05) and neonatal neurobehavioral examination (β = -4.10; p-value < 0.01) in adjusted model. Platinum was significant negative association with gestational age (β = -0.82; p-value < 0.05). Zinc showed significant positive association with gestational age (β = 1.84; p-value < 0.001) in adjusted model. Then, mercury (β = 1.28; p-value < 0.05) and thorium (β = 1.07; p-value < 0.05) were significant positive association with DNA methylation level of SNRPN. Furthermore, antimony (β = -2.04; p-value < 0.05) was significantly negative associated with DNA methylation level of SNRPN. The DNA methylation level of SNRPN was not significantly associated with birth outcomes. Conclusion: Our results suggested that prenatal heavy metals exposure was associated with DNA methylation level of SNRPN gene. In addition, we also observed that prenatal heavy metals significantly associated with birth outcome of infant. Although we didn’t observe significantly association between SNRPN gene DNA methylation and birth outcomes, our study confirmed three correlations including heavy metals exposure and birth outcomes, heavy metals exposure and DNA methylation, DNA methylation and birth outcomes. But, we were unclear about the direct relationship between these individual correlations. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:25Z (GMT). No. of bitstreams: 1 ntu-108-R06844011-1.pdf: 1159397 bytes, checksum: e1bf63454ea5fa4c2c5bbbe133c5002c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii Abstract iv Contents vi List of Tables viii List of Figures ix Chapter 1 . Introduction 1 1.1 Heavy Metals……………….. 1 1.1.1 Heavy Metals and Fetus/Children Health Outcomes 2 1.2 DNA Methylation 3 1.2.1 DNA Methylation and Fetus/Children Health Outcomes 3 1.3 Small Nuclear Ribonucleoprotein Polypeptide N (SNRPN) 4 1.4 Placenta 5 1.5 Study Objective 5 Chapter 2 Materials and Methods 8 2.1 Study Subjects 8 2.2 Analysis of Heavy Metals 8 2.3 Birth Outcomes 9 2.4 DNA Methylation Analysis 9 2.4.1 DNA Extraction 9 2.4.2 Bisulfite Treatment 10 2.4.3 Polymerase Chain Reaction (PCR) of Bisulfite-Converted DNA 11 2.4.4 Pyrosequencing Analysis 11 2.5 Statistical Analysis 13 Chapter 3 Results 14 Chapter 4 Discussion 18 4.1 Heavy Metals and Birth Outcome 18 4.2 DNA Methylation Level and Heavy Metals 19 4.3 DNA Methylation Level and Birth Outcomes 20 4.4 Strengths 22 4.5 Limitation 23 Chapter 5 Conclusions 24 Reference 25 Appendix 42 List of Tables Table 1. Characteristics of participants and non-participants about study subject 29 Table 2. Heavy metals distribution in cord blood 31 Table 3. Distribution of heavy metals in boys and girls 33 Table 4. Simple and multiple linear regression of birth outcomes by heavy metals in cord blood 35 Table 5. Odds ratio in developing adverse birth outcomes by heavy metals in cord blood 36 Table 6. DNA methylation level in different positions for boys and girls 38 Table 7. Association between SNRPN gene DNA methylation level and heavy metals concentration in cord blood 39 Table 8. Simple and multiple linear regression of birth outcomes by SNRPN gene DNA methylation level 40 Table 9. Odds ratio in developing adverse birth outcomes by SNRPN gene DNA methylation 41 List of Figures Figure 1. Study Framework 7 | |
dc.language.iso | en | |
dc.title | 產前暴露重金屬對於SNRPN基因甲基化程度與新生兒的影響 | zh_TW |
dc.title | Prenatal Heavy Metals Exposures in Association with
Small Nuclear Ribonucleoprotein-Associated Protein N Gene Methylation Level and Birth Outcomes | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳保中,陳美蓮,黃憲松 | |
dc.subject.keyword | 表觀遺傳學,DNA 甲基化,產前暴露,重金屬,SNRPN,出生結果, | zh_TW |
dc.subject.keyword | Epigenetic,DNA methylation,prenatal exposure,heavy metals,SNRPN,birth outcomes, | en |
dc.relation.page | 44 | |
dc.identifier.doi | 10.6342/NTU201903932 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-19 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 環境衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06844011-1.pdf 目前未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。