請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余明俊(Ming-Jiun Yu) | |
| dc.contributor.author | Wei-Ling Wang | en |
| dc.contributor.author | 王維苓 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:01:21Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-19 | |
| dc.identifier.citation | 1. Radin, M.J., et al., Aquaporin-2 regulation in health and disease. Vet Clin Pathol, 2012. 41(4): p. 455-70.
2. Rinschen, M.M., et al., Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3882-7. 3. Vargas-Poussou, R., et al., Mutations in the Vasopressin V2 Receptor and Aquaporin-2 Genes in Twelve Families with Congenital Nephrogenic Diabetes Insipidus, in Vasopressin and Oxytocin: Molecular, Cellular, and Clinical Advances, H.H. Zingg, C.W. Bourque, and D.G. Bichet, Editors. 1998, Springer US: Boston, MA. p. 387-390. 4. Hoorn, E.J., et al., Proteomic approaches for the study of cell signaling in the renal collecting duct. Contrib Nephrol, 2008. 160: p. 172-85. 5. Sachs, A.N., et al., LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. Am J Physiol Renal Physiol, 2008. 295(6): p. F1799-806. 6. Khositseth, S., et al., Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells. Mol Cell Proteomics, 2011. 10(1): p. M110.004036. 7. Takata, K., et al., Localization and trafficking of aquaporin 2 in the kidney. Histochemistry and Cell Biology, 2008. 130(2): p. 197-209. 8. Barile, M., et al., Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Molecular & cellular proteomics : MCP, 2005. 4(8): p. 1095-1106. 9. Moeller, H.B., E.T.B. Olesen, and R.A. Fenton, Regulation of the water channel aquaporin-2 by posttranslational modification. American Journal of Physiology-Renal Physiology, 2011. 300(5): p. F1062-F1073. 10. Hoffert, J.D., et al., Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol, 2007. 292(2): p. F691-700. 11. Fenton, R.A., et al., Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A, 2008. 105(8): p. 3134-9. 12. Xie, L., et al., Quantitative analysis of aquaporin-2 phosphorylation. Am J Physiol Renal Physiol, 2010. 298(4): p. F1018-23. 13. Hoffert, J.D., et al., Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem, 2008. 283(36): p. 24617-27. 14. Wang, P.J., et al., Vasopressin-induced serine 269 phosphorylation reduces Sipa1l1 (signal-induced proliferation-associated 1 like 1)-mediated aquaporin-2 endocytosis. J Biol Chem, 2017. 292(19): p. 7984-7993. 15. Moeller, H.B., et al., Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(1): p. 424-429. 16. Rahman, S.S., et al., EHD4 is a novel regulator of urinary water homeostasis. The FASEB Journal, 2017. 31(12): p. 5217-5233. 17. Hales, C.M., et al., Identification and characterization of a family of Rab11-interacting proteins. J Biol Chem, 2001. 276(42): p. 39067-75. 18. Cullis, D.N., et al., Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J Biol Chem, 2002. 277(51): p. 49158-66. 19. Tajika, Y., et al., Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol, 2005. 124(1): p. 1-12. 20. Nedvetsky, P.I., et al., A Role of Myosin Vb and Rab11-FIP2 in the Aquaporin-2 Shuttle. Traffic, 2007. 8(2): p. 110-123. 21. Casanova, J.E., et al., Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell, 1999. 10(1): p. 47-61. 22. Barile, M., et al., Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics, 2005. 4(8): p. 1095-106. 23. Lall, P., et al., Structural and functional analysis of FIP2 binding to the endosome-localised Rab25 GTPase. Biochim Biophys Acta, 2013. 1834(12): p. 2679-90. 24. Seaman, M.N.J., et al., Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. Journal of Cell Science, 2009. 122(14): p. 2371. 25. Seaman, M.N., et al., Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol, 1997. 137(1): p. 79-92. 26. Nothwehr, S.F., P. Bruinsma, and L.A. Strawn, Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol Biol Cell, 1999. 10(4): p. 875-90. 27. Vilarino-Guell, C., et al., VPS35 mutations in Parkinson disease. Am J Hum Genet, 2011. 89(1): p. 162-7. 28. Lee, M.S., et al., Depletion of vacuolar protein sorting-associated protein 35 is associated with increased lysosomal degradation of aquaporin-2. American Journal of Physiology-Renal Physiology, 2016. 311(6): p. F1294-F1307. 29. Lei, L., et al., Manganese promotes intracellular accumulation of AQP2 via modulating F-actin polymerization and reduces urinary concentration in mice. Am J Physiol Renal Physiol, 2018. 314(2): p. F306-f316. 30. Yui, N., et al., AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells. Biol Open, 2012. 1(2): p. 101-8. 31. Branon, T.C., et al., Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 2018. 36: p. 880. 32. Priya, A., et al., Molecular Insights into Rab7-Mediated Endosomal Recruitment of Core Retromer: Deciphering the Role of Vps26 and Vps35. Traffic, 2015. 16(1): p. 68-84. 33. Wang, T., et al., Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal, 2011. 23(3): p. 516-21. 34. Grimsey, N.J., et al., Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. J Biol Chem, 2016. 291(5): p. 2223-36. 35. Nothwehr, S.F., S.A. Ha, and P. Bruinsma, Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J Cell Biol, 2000. 151(2): p. 297-310. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78514 | - |
| dc.description.abstract | 水是生物體內的主要溶劑,其中大多數生物反應都發生於此,使得生理功能得以運作。因此,維持體內水分的恆定便成為一個重要的課題。在人體處於脫水狀態時,抗利尿激素 (Vasopressin,簡稱AVP)會被釋放至血液循環中,並且結合到腎臟集尿管細胞上的接收器(Vasopressin type 2 receptor),進而促使水通道蛋白(Aquaporin-2,簡稱AQP2)從細胞內囊泡被運輸至細胞尖頂膜上,增加腎臟集尿管對水分的通透性,而達到對尿液中水分的再吸收,同時,在水通道蛋白上的絲氨酸269也被進行了磷酸化。然而我們並不知道絲氨酸269的磷酸化是否能夠發生在細胞內,並且促進水通道蛋白移至尖頂膜上。為了解決這個問題,我們藉由降低參與尖頂膜運輸蛋白質的表現量(knockdown)或是加入肌蛋白聚合的促進劑來阻斷水通道蛋白尖頂膜的運輸,再來觀察絲氨酸269的磷酸化是否能夠在抗利尿激素的刺激下發生於細胞內。最終,我們發現囊泡運輸相關蛋白35 (Vacuolar protein sorting-associated protein 35,簡稱Vps35) 的表現量降低會阻斷水通道蛋白往尖頂膜上的移動,並且造成水通道蛋白累積在回收型囊泡中。同時,絲氨酸269的磷酸化並沒有下降,這說明著絲氨酸269的磷酸化是可以在細胞內發生的。這樣的觀察更是支持了我們對於絲氨酸269的磷酸化可以促進水通道蛋白移至尖頂膜上的想法。因此,為了能夠了解這些參與在絲氨酸269的磷酸化以及水通道蛋白尖頂膜運輸的蛋白,我們設計了一個可以將回收型囊泡周圍的蛋白進行標定的工具(TurboID-Rab11b),這個工具是由生物素聯合酶以及運輸蛋白 (Rab11) 所組成,目的為將生物素聯合酶帶至水通道蛋白所累積的回收型囊泡中。因此,TurboID-Rab11b可以將回收型囊泡周圍的蛋白進行生物素標定,並且可作為一個新且有效率的工具去幫助我們探討水通道蛋白尖頂膜的運輸以及絲氨酸269的磷酸化。 | zh_TW |
| dc.description.abstract | Water is a primary solvent where most biological reactions occur to maintain physiological functions. Thus, it is important to keep water homeostasis. Under water dehydration condition, the antidiuretic peptide hormone arginine vasopressin (AVP) is released and circulates to the kidneys where it binds the vasopressin type 2 receptor (V2R) in the principle cells of the inner medullar collecting duct. The above events lead to phosphorylation at serine 269 (ser269) of the water channel protein aquaporin-2 (AQP2) that traffics from the intracellular vesicles to the apical plasma membrane where AQP2 increases water reabsorption from the urine. However, it is unknown whether AQP2 ser269 phosphorylation occurs inside and accelerates AQP2 apical trafficking. To address this, we first tried to disrupt AQP2 apical trafficking mechanism by either knocking down proteins (i.e. EHD1, EHD4, Rab7, Rab11-fip2, Rab25 and Vps35) reported responsible for AQP2 apical targeting or utilizing actin polarization promoting agent, manganese chloride, to block AQP2 apical trafficking before measuring ser269 phosphorylation in response to AVP analog, dDAVP. In our study, we found that knocking down Vps35 could disrupted dDAVP-induced AQP2 apical trafficking and resulted in AQP2 accumulation in the Rab11-positive recycling endosome. In addition, Vps35 knockdown did not reduced dDAVP-induced AQP2 ser269 phosphorylation. This was the first time where AQP2 ser269 phosphorylation was observed inside the cells in response to vasopressin, compatible with the idea that AQP2 ser269 is phosphorylated inside the cells where it engages trafficking machinery for apical trafficking. To investigate the trafficking machinery, we designed a tool to label proteins in the vicinity of Rab11b, called TurboID-Rab11b. TurboID-Rab11b consists of a biotin ligase and Rab11b bringing the ligase to the recycling endosome. Hence, TurboID-Rab11b mediates proximity labeling of Rab11-positive recycling endosome neighboring proteins and represents a new and efficient tool to investigate AQP2 apical trafficking machinery and AQP2 ser269 phosphorylation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:21Z (GMT). No. of bitstreams: 1 ntu-108-R06442019-1.pdf: 3489302 bytes, checksum: 8d75ad9f72ff8cc13aa0df2bc8853ce7 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 ii
Abstract iv Contents vi Introduction 1 Materials and Methods 7 Result 21 Rab25, Rab11-FIP2, Ehd1, or Ehd4 knockdown did not affect dDAVP-induced AQP2 apical trafficking 21 MnCl2–induced actin polymerization did not block dDAVP-induced apical AQP2 trafficking 22 Rab7 knockdown increased AQP2 protein abundance 23 Rab7 knockdown impaired dDAVP-induced AQP2 apical trafficking and resulted in AQP2 accumulation in Rab5-positive early endosome 24 Rab7 knockdown reduced AQP2 ser269-phosphorylation 26 Vps35 knockdown slightly reduced AQP2 abundance 28 Vps35 knockdown impeded dDAVP-induced apical AQP2 trafficking from Rab11-positive recycling endosomes 29 Vps35 knockdown did not reduced dDAVP-induced ser269-phosphorylation 31 TurboID-Rab11b biotinylates proteins in the mpkCCD cells without affecting AQP2 apical trafficking 32 Discussion 37 Figures and Legends 42 Reference 61 | |
| dc.language.iso | en | |
| dc.subject | 囊泡運輸相關蛋白35 | zh_TW |
| dc.subject | 絲胺酸269磷酸化 | zh_TW |
| dc.subject | 囊泡運輸 | zh_TW |
| dc.subject | 第二型水通道蛋白 | zh_TW |
| dc.subject | 抗利尿激素 | zh_TW |
| dc.subject | Vesicle trafficking | en |
| dc.subject | Ser269 phosphorylation | en |
| dc.subject | Vasopressin | en |
| dc.subject | Aquaporin-2 | en |
| dc.subject | Vacuolar protein sorting-associated protein 35 | en |
| dc.title | 發展 TurboID-Rab11b 用以鑑定參與在第二型水通道蛋白絲胺酸269磷酸化及其尖頂膜運輸的蛋白 | zh_TW |
| dc.title | Developing TurboID-Rab11b for Identifying Proteins Involved in Aquaporin-2 Ser269 Phosphorylation and Apical Trafficking | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳炳宏(Ping-Hung Chen),潘思樺(Szu-Hua Pan) | |
| dc.subject.keyword | 抗利尿激素,第二型水通道蛋白,囊泡運輸相關蛋白35,囊泡運輸,絲胺酸269磷酸化, | zh_TW |
| dc.subject.keyword | Vasopressin,Aquaporin-2,Vacuolar protein sorting-associated protein 35,Vesicle trafficking,Ser269 phosphorylation, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201904042 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06442019-1.pdf 未授權公開取用 | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
