Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何?芳(Yunn-Fang Ho)
dc.contributor.authorYu-Lun Leeen
dc.contributor.author李友倫zh_TW
dc.date.accessioned2021-07-11T15:01:17Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation1. Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012;23:1258-70.
2. Barnes KJ, Rowland A, Polasek TM, Miners JO. Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. Eur J Clin Pharmacol 2014;70:1097-106.
3. Ladda MA, Goralski KB. The effects of CKD on cytochrome P450-mediated drug metabolism. Adv Chronic Kidney Dis 2016;23:67-75.
4. Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008;133:160S-98S.
5. Go AS, Fang MC, Udaltsova N, et al. Impact of proteinuria and glomerular filtration rate on risk of thromboembolism in atrial fibrillation: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. Circulation 2009;119:1363-9.
6. Apostolakis S, Guo Y, Lane DA, Buller H, Lip GY. Renal function and outcomes in anticoagulated patients with non-valvular atrial fibrillation: the AMADEUS trial. Eur Heart J 2013;34:3572-9.
7. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-51.
8. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-92.
9. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883-91.
10. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:2093-104.
11. Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018;39:1330-93.
12. Limdi NA, Limdi MA, Cavallari L, et al. Warfarin dosing in patients with impaired kidney function. Am J Kidney Dis 2010;56:823-31.
13. Ichihara N, Ishigami T, Umemura S. Effect of impaired renal function on the maintenance dose of warfarin in Japanese patients. J Cardiol 2015;65:178-84.
14. Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet 1994;343:687-91.
15. Ridker PM, Goldhaber SZ, Danielson E, et al. Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med 2003;348:1425-34.
16. Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg 2003;25:1-5.
17. Delluc A, Tromeur C, Le Ven F, et al. Current incidence of venous thromboembolism and comparison with 1998: a community-based study in Western France. Thromb Haemost 2016;116:967-74.
18. Nordstrom M, Lindblad B. Autopsy-verified venous thromboembolism within a defined urban population--the city of Malmo, Sweden. APMIS 1998;106:378-84.
19. Heit JA, Silverstein MD, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ, 3rd. Predictors of survival after deep vein thrombosis and pulmonary embolism: a population-based, cohort study. Arch Intern Med 1999;159:445-53.
20. Lin HJ, Wolf PA, Kelly-Hayes M, et al. Stroke severity in atrial fibrillation. The Framingham Study. Stroke 1996;27:1760-4.
21. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace 2010;12:1360-420.
22. Petersen P, Boysen G, Godtfredsen J, Andersen ED, Andersen B. Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet 1989;1:175-9.
23. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 2014;130:e199-267.
24. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010;137:263-72.
25. Lip GY, Frison L, Halperin JL, Lane DA. Identifying patients at high risk for stroke despite anticoagulation: a comparison of contemporary stroke risk stratification schemes in an anticoagulated atrial fibrillation cohort. Stroke 2010;41:2731-8.
26. Stein PD, Alpert JS, Bussey HI, Dalen JE, Turpie AG. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 2001;119:220S-7S.
27. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:2438-88.
28. Vaitkus PT. Left ventricular mural thrombus and the risk of embolic stroke after acute myocardial infarction. J Cardiovasc Risk 1995;2:103-6.
29. Loh E, Sutton MS, Wun CC, et al. Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med 1997;336:251-7.
30. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013;127:e362-425.
31. Malhotra OP, Nesheim ME, Mann KG. The kinetics of activation of normal and gamma-carboxyglutamic acid-deficient prothrombins. J Biol Chem 1985;260:279-87.
32. Almutairi AR, Zhou L, Gellad WF, et al. Effectiveness and safety of non-vitamin K antagonist oral anticoagulants for atrial fibrillation and venous thromboembolism: A systematic review and meta-analyses. Clin Ther 2017;39:1456-78 e36.
33. Hirsh J, Fuster V, Ansell J, Halperin JL, American Heart A, American College of Cardiology F. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation 2003;107:1692-711.
34. Breckenridge A, Orme M. Kinetics of warfarin absorption in man. Clin Pharmacol Ther 1973;14:955-61.
35. Bristol-Myers Squibb Company P, NJ, USA. Product Information: COUMADIN(R) oral tablets, warfarin sodium oral tablets. [Package insert]. 2017.
36. Mannucci PM. Genetic control of anticoagulation. Lancet 1999;353:688-9.
37. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 2005;7:97-104.
38. Wen MS, Lee M, Chen JJ, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther 2008;84:83-9.
39. Gaikwad T, Ghosh K, Shetty S. VKORC1 and CYP2C9 genotype distribution in Asian countries. Thromb Res 2014;134:537-44.
40. Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1998;114:445S-69S.
41. Ansell JE OL, Wittkowsky AK. Managing Oral Anticoagulation Therapy. Third ed: Wolters Kluwer; 2009. Appendix 4: p. 12-41.
42. Chenhsu RY, Chiang SC, Chou MH, Lin MF. Long-term treatment with warfarin in Chinese population. Ann Pharmacother 2000;34:1395-401.
43. Yasaka M, Minematsu K, Yamaguchi T. Optimal intensity of international normalized ratio in warfarin therapy for secondary prevention of stroke in patients with non-valvular atrial fibrillation. Intern Med 2001;40:1183-8.
44. You JH, Chan FW, Wong RS, Cheng G. Is INR between 2.0 and 3.0 the optimal level for Chinese patients on warfarin therapy for moderate-intensity anticoagulation? Br J Clin Pharmacol 2005;59:582-7.
45. Suzuki S, Yamashita T, Kato T, et al. Incidence of major bleeding complication of warfarin therapy in Japanese patients with atrial fibrillation. Circ J 2007;71:761-5.
46. Guyatt GH, Akl EA, Crowther M, et al. Executive summary: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:7S-47S.
47. Holbrook AM, Pereira JA, Labiris R, et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 2005;165:1095-106.
48. Gage BF, Fihn SD, White RH. Management and dosing of warfarin therapy. Am J Med 2000;109:481-8.
49. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013;158:825-30.
50. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461-70.
51. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31-41.
52. Albrecht D, Turakhia MP, Ries D, et al. Pharmacokinetics of Tecarfarin and Warfarin in Patients with Severe Chronic Kidney Disease. Thromb Haemost 2017;117:2026-33.
53. Providencia R, Marijon E, Boveda S, et al. Meta-analysis of the influence of chronic kidney disease on the risk of thromboembolism among patients with nonvalvular atrial fibrillation. Am J Cardiol 2014;114:646-53.
54. Olesen JB, Lip GY, Kamper AL, et al. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N Engl J Med 2012;367:625-35.
55. Roldan V, Marin F, Manzano-Fernandez S, et al. Does chronic kidney disease improve the predictive value of the CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation? Thromb Haemost 2013;109:956-60.
56. Banerjee A, Fauchier L, Vourc'h P, et al. Renal impairment and ischemic stroke risk assessment in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. J Am Coll Cardiol 2013;61:2079-87.
57. Friberg L, Rosenqvist M, Lip GY. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur Heart J 2012;33:1500-10.
58. Eikelboom JW, Connolly SJ, Gao P, et al. Stroke risk and efficacy of apixaban in atrial fibrillation patients with moderate chronic kidney disease. J Stroke Cerebrovasc Dis 2012;21:429-35.
59. Cha MJ, Oh GC, Hahn S, Choi EK, Oh S. Thromboembolic risk evaluation in patients with atrial fibrillation using a modified CHADS(2) scoring system. J Cardiovasc Electrophysiol 2012;23:155-62.
60. Hart RG, Pearce LA, Asinger RW, Herzog CA. Warfarin in atrial fibrillation patients with moderate chronic kidney disease. Clin J Am Soc Nephrol 2011;6:2599-604.
61. Lai HM, Aronow WS, Kalen P, et al. Incidence of thromboembolic stroke and of major bleeding in patients with atrial fibrillation and chronic kidney disease treated with and without warfarin. Int J Nephrol Renovasc Dis 2009;2:33-7.
62. Reinecke H, Brand E, Mesters R, et al. Dilemmas in the management of atrial fibrillation in chronic kidney disease. J Am Soc Nephrol 2009;20:705-11.
63. Yang F, Chou D, Schweitzer P, Hanon S. Warfarin in haemodialysis patients with atrial fibrillation: what benefit? Europace 2010;12:1666-72.
64. Heine GH, Brandenburg V, Schirmer SH. Oral anticoagulation in chronic kidney disease and atrial fibrillation. Dtsch Arztebl Int 2018;115:287-94.
65. De Vriese AS, Caluwe R, Bailleul E, et al. Dose-finding study of rivaroxaban in hemodialysis patients. Am J Kidney Dis 2015;66:91-8.
66. Wang X, Tirucherai G, Marbury TC, et al. Pharmacokinetics, pharmacodynamics, and safety of apixaban in subjects with end-stage renal disease on hemodialysis. J Clin Pharmacol 2016;56:628-36.
67. Mavrakanas TA, Samer CF, Nessim SJ, Frisch G, Lipman ML. Apixaban pharmacokinetics at steady state in hemodialysisp patients. J Am Soc Nephrol 2017;28:2241-8.
68. Nutescu EA, Shapiro NL, Ibrahim S, West P. Warfarin and its interactions with foods, herbs and other dietary supplements. Expert Opin Drug Saf 2006;5:433-51.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78513-
dc.description.abstract研究背景
以腎臟為主要排除路徑的藥品用於慢性腎臟病(chronic kidney disease,CKD)病人時,仿單往往標示需依照腎臟功能做劑量調整。新近研究文獻另顯示,以肝臟代謝為主要排除途徑的特定藥品,於CKD病人可能因體內尿毒素累積等因素,直接或間接使得藥品之代謝或效用受到影響,因而使用時亦須考量腎功能狀態,以求最適劑量、發揮最佳藥效。Warfarin是由肝臟廣泛代謝的藥品,且為腎功能不良時首選之抗凝血藥品,但目前於亞洲漢人族群中還缺乏腎臟功能對warfarin劑量影響的實證。
研究目的
本研究欲分析warfarin的處方型態,並探討亞洲漢人族群之腎功能與其他變因對於warfarin使用劑量之相關性,並以臨床資訊嘗試建立warfarin劑量預估模型。
研究材料與方法
本研究為一回溯性世代研究,利用醫學中心醫療整合資料,探討2017年度有使用warfarin處方及相關醫療資料,並針對warfarin用藥劑量且INR處於穩定期間者之病歷資訊,包括基本特性、臨床檢驗數值、warfarin適應症、併用藥品等進行分析。本研究分組比較分析正常腎功能組與CKD病人組之間於各變項之異同,其中CKD組更進一步依eGFR值細分為G1&2、G3a、G3b、G4、G5等五組檢定。最後,更以多重線性回歸模型嘗試建立warfarin劑量推估模型。
研究結果
在3741位warfarin用藥病人中,有998位符合本研究納入條件,其中 CKD患者有237人(23.7%)。
腎功能正常組與CKD組的estimated creatinine clearance(eCrCL)分別為80.1  28.8 mL/min與33.1  17.0 mL/min(p-value < 0.0001),而兩組之warfarin平均週劑量分別為26.3  16.7 mg/週與18.9  14.7 mg/週(p-value < 0.0001),warfarin平均週劑量與eCrCL有顯著之正相關(p-value < 0.0001,r  0.2762)。
另外本研究發現臨床上病人間warfarin之處方劑量與使用頻次存在頗大的差異性,warfarin平均週劑量之中位數為21 mg,使用頻次「as order」比例佔研究群體之19.9%。在warfarin平均週劑量之單變項分析中,發現「每日使用相同劑量」較「非每日使用相同劑量」的warfarin平均週劑量少11.8 mg(p-value < 0.0001),是以往較少討論到之新變因。
經過多重線性模型的逐步篩選,最終納入warfarin平均週劑量計算模型之變項有eCrCL、身高、average INR、每日使用相同劑量、使用amiodarone之劑量,此模型之校正後決定係數(coefficient of determination,R2)為0.195。
結論
本研究顯示,對於warfarin劑量穩定期之病人,CKD病人warfarin之平均週劑量較腎功能正常者低,且用藥劑量隨著CKD stage惡化而呈現逐次降低趨勢,且eCrCL與warfarin平均週劑量呈現顯著正相關。本研究受限於觀察性研究與資料庫內容之限制,尚待更多深入研究以更完整釐清CKD對warfarin之藥動學與藥效學的影響。
zh_TW
dc.description.abstractBackground
Dosage adjustments are usually required for renally-eliminated medications in patients with chronic kidney disease (CKD). Recent studies have further disclosed that the metabolism or efficacy of certain drugs metabolized chiefly by the liver might still be affected, possible due to direct or indirect effects of accumulated uremic toxins, in CKD sufferers. It is postulated that dose adjustments based on renal function status should also be considered for certain liver metabolizing drugs. Warfarin, mainly metabolized by the liver, is the preferred anticoagulant in patients with impaired renal function. The association between renal function status and warfarin dosage in Han Chinese remain elusive.
Study objectives
This study aimed to: (1) analyze warfarin prescribing pattern, (2) evaluate possible correlation between renal function status (and/or clinical factors) and warfarin dosage in a dosing-stable cohort, and (3) construct a warfarin dosing algorithm by utilizing a medical-center healthcare data.
Methods
Patients prescribed with warfarin in 2017 and had a stable INR, defined as two consecutive INR values fell between 1.5 and 3.0, were retrospectively identified from the Integrated Medical Database of a medical center. Warfarin regimen and clinical information, including patient demographics, laboratory data, diagnoses or indications, and relevant co-medications were all collected and analyzed. Group (control vs. CKD sub-cohort) or subgroup (by CKD severity, according to estimated glomerular filtration rate [eGFR]) comparisons were also performed. A multivariate linear regression model was used to construct a warfarin dosing algorithm.
Results
Of 3741 warfarin users, a cohort of 998 individuals were eligible for the study. The CKD sub-cohort consisted of 237 (23.7%) patients.
The estimated creatinine clearance (eCrCL) of the control and CKD groups were 80.1  28.8 mL/min and 33.1  17.0 mL/min (mean  standard deviation, p-value < 0.0001), respectively. The average warfarin weekly dose were 26.3  16.7 mg/week and 18.9  14.7 mg/week (p-value < 0.0001), respectively. A positive correlation between average warfarin weekly dose and eCrCL was observed (p-value < 0.0001, r  0.2762).
Moreover, a wide variety in warfarin dosage and use frequency was noticed in the INR-stable cohort. The median average warfarin weekly dose was 21 mg, ranging from 2.5 to 180 mg). The proportion of the “as order” use frequency was 19.9% which consisted of a multitude of special instructions. In univariate analysis of warfarin dosage, a novel variable, “same daily dose of warfarin (SDDW)”, was found to decrease 11.8 mg of average warfarin weekly dose.
In a stepwise linear regression with average warfarin weekly dose as the dependent variable, eCrCL as well as height, average INR, SDDW, and the dose of amiodarone were chosen as independent variables. The adjusted coefficient of determination (R2) of the developed algorithm was 0.195.
Conclusions
The study revealed that the average warfarin weekly dose within the INR-stable cohort was significantly lower in CKD sub-cohort, with a tendency of dosage decline in more advanced CKD stages. Concordantly, eCrCL is positively correlated with the average warfarin weekly dose. As limited by the observational design and single-institution data, further in-depth research is needed to investigate more thoroughly the impacts of CKD on the pharmacokinetics and pharmacodynamics of warfarin.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:01:17Z (GMT). No. of bitstreams: 1
ntu-108-R06451003-1.pdf: 1495610 bytes, checksum: 37b053560dbfa750a3f56e009e92443b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 x
第一章 序言 1
第二章 文獻回顧 2
2.1 抗凝血治療概述 2
2.1.1 栓塞概述 2
2.1.2 口服抗凝血治療之藥物選擇 5
2.2 Warfarin藥品綜述 6
2.2.1 Warfarin藥理學簡介 6
2.2.2 Warfarin藥品動態學概述 7
2.2.3 Warfarin藥物基因體學簡介 7
2.2.4 Warfarin臨床用途以及治療檢測 8
2.2.5 Warfarin與食品/藥物之交互作用 8
2.3 慢性腎臟病簡介 11
2.3.1 慢性腎臟病定義 11
2.3.2 慢性腎臟病分級 11
2.3.3 腎絲球過濾率之評估 11
2.3.4 尿毒素對肝臟代謝酵素之影響 11
2.4 口服抗凝血治療與慢性腎臟病病人之關係 14
2.4.1 慢性腎臟病與栓塞或出血事件 14
2.4.2 慢性腎臟病病人的口服抗凝血治療用藥選擇 15
第三章 研究目的 17
第四章 研究方法 18
4.1 研究對象 18
4.2 納入條件與排除條件 18
4.3 研究資料 19
4.4 研究架構 19
4.5 研究名詞定義 22
4.5.1 疾病定義 22
4.5.2 臨床檢驗數值定義 22
4.5.3 併用藥品定義 22
4.5.4 其他名詞定義 23
4.6 統計分析 26
4.6.1 描述性分析與統計檢定 26
4.6.2 回歸分析 26
第五章 研究結果 27
5.1 研究對象基本資料與分析 27
5.1.1 研究流程與人數 27
5.1.2 研究對象基本資料 28
5.2 Warfarin處方型態分析 31
5.3 臨床檢驗數值與分析 35
5.4 研究對象Warfarin用藥之相關診斷 38
5.5 具臨床意義之Warfarin併用藥分析 41
5.6 回歸分析 43
5.6.1 單變項相關性分析 43
5.6.2 多變項線性回歸分析 47
第六章 討論 48
6.1 腎功能狀態與Warfarin劑量 48
6.2 Warfarin處方型態多樣性討論 49
6.3慢性腎臟病人Warfarin用藥研究之比較 49
6.4 Warfarin劑量回歸模型比較 51
6.5 研究限制 53
第七章 結論 55
參考文獻 56
dc.language.isozh-TW
dc.subjectwarfarin平均週劑量zh_TW
dc.subjectwarfarinzh_TW
dc.subjecteCrCLzh_TW
dc.subjectCKDzh_TW
dc.subjectCKDen
dc.subjectaverage weekly dose of warfarinen
dc.subjectwarfarinen
dc.subjecteCrCLen
dc.title從醫學中心醫療資料探討Warfarin處方劑量與慢性腎臟病之相關性zh_TW
dc.titleA Study on Warfarin Prescribing Dosage in Chronic Kidney Disease using Real-world Medical-center Health Dataen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林芳如,嚴崇仁
dc.subject.keywordwarfarin,CKD,warfarin平均週劑量,eCrCL,zh_TW
dc.subject.keywordCKD,warfarin,average weekly dose of warfarin,eCrCL,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201904068
dc.rights.note有償授權
dc.date.accepted2019-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06451003-1.pdf
  未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved