Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorHong-Yi Huen
dc.contributor.author胡弘毅zh_TW
dc.date.accessioned2021-07-11T15:01:14Z-
dc.date.available2022-08-23
dc.date.copyright2019-08-23
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation[1] 沈輝 and 曾祖勤, '太陽能光電技術,' 五南圖書出版股份有限公司, 2008.
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, 'Solar cell efficiency tables (Version 45),' Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, pp. 1-9, 2015.
[3] J. Zhao, A. Wang, and M. A. Green, 'High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,' Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp. 429-435, 2001.
[4] J. Zhao, A. Wang, and M. A. Green, '24.5% Efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates,' Solar Energy Materials and Solar Cells, vol. 66, no. 1-4, pp. 27-36, 2001.
[5] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Kojima-organometal halide perovskites as visible-light sensitizers for photovoltaic Cells,' Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[6] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, 'Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,' Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[7] N. R. E. Lab. Research Cell Record Efficiency Chart. Available: https://www.nrel.gov/pv/assets/images/efficiency-chart.png , Oct 9 2017.
[8] F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu, C. Bronnbauer, S. Langner, E. Spiecker, K. Forberich, and C. J. Brabec, 'High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes,' Nanoscale, vol. 7, no. 5, pp. 1642-1649, 2015.
[9] J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, and S. H. Im, 'Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells,' Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1572-1578, 2016.
[10] H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, 'A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,' Nature, vol. 550, no. 7674, pp. 92-95, 2017.
[11] H. Kim, K.-G. Lim, and T.-W. Lee, 'Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,' Energy & Environmental Science, vol. 9, no. 1, pp. 12-30, 2016.
[12] C.-Y. Huang and W.-M. Chi, 'A studying for preparation and characterization of graphene oxide/silver nanowire conductive composite film,' Journal of Technology, vol. 31, no. 1, pp. 43-49, 2016.
[13] F. Basarir, F. S. Irani, A. Kosemen, B. T. Camic, F. Oytun, B. Tunaboylu, H. J. Shin, K. Y. Nam, and H. Choi, 'Recent progresses on solution-processed silver nanowire based transparent conducting electrodes for organic solar cells,' Materials Today Chemistry, vol. 3, pp. 60-72, 2017.
[14] M. Lee, Y. Ko, B. K. Min, and Y. Jun, 'Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate,' ChemSusChem, vol. 9, no. 1, pp. 31-35, 2016.
[15] K. Yang, F. Li, J. Zhang, C. P. Veeramalai, and T. Guo, 'All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode,' Nanotechnology, vol. 27, no. 9, p. 095202, 2016.
[16] 郭浩中, 賴芳儀, 郭守義, and 蔡閔安, '太陽能光電技術,' 五南圖書出版股份有限公司, 2012.
[17] U. o. C. Scientists. (2015, December 18). How Solar Panels Work.
[18] Y. Yoon and Z. W. Geem, 'Parameter optimization of single-diode model of photovoltaic cell using memetic algorithm,' International Journal of Photoenergy, vol. 2015, pp. 1-7, 2015.
[19] B. SCHWEBER. (2017). Solar cells and power, Part 2 - power extraction.
[20] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, 'Enhanced open-circuit voltage in cubphthalocyanine/C60 organic photovoltaic cells,' Journal of the American Chemical Society, vol. 128, no. 25, pp. 8108-8109, 2006.
[21] J. Liu, Y. Shi, and Y. Yang, 'Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices,' Advanced Functional Materials, vol. 11, no. 6, pp. 420-424, 2001.
[22] 肖立新 and 鄒德春, '鈣鈦礦太陽能電池,' 北京大學出版社, 2016.
[23] G. Rose, De novis quibusdam fossilibus quae in montibus Uraliis inveniuntur. typis AG Schadii, 1839.
[24] G. Cao, 'Lead-free organic-inorganic halide perovskites grown with nontoxic solvents,' Science Bulletin, vol. 62, no. 13, pp. 901-902, 2017.
[25] S. Luo and W. A. Daoud, 'Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design,' Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8992-9010, 2015.
[26] A. R. Chakhmouradian and P. M. Woodward, 'Celebrating 175 years of perovskite research: a tribute to roger h. mitchell,' Physics and Chemistry of Minerals, vol. 41, no. 6, pp. 387-391, 2014.
[27] A. Chynoweth, 'Pyroelectricity, internal domains, and interface charges in triglycine sulfate,' Physical Review, vol. 117, no. 5, p. 1235, 1960.
[28] J. Franco and G. Shirane, 'Ferroelectric crystals,' ed: Pergamon, New York, 1962.
[29] D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang, and M. Shen, 'High-efficiency ferroelectric-film solar cells with an n-type Cu(2)O cathode buffer layer,' Nano Lett, vol. 12, no. 6, pp. 2803-2809, 2012.
[30] A. Salau, 'Fundamental absorption edge in PbI2: KI alloys,' Solar Energy Materials, vol. 2, no. 3, pp. 327-332, 1980.
[31] M. Schoijet, 'Possibilities of new materials for solar photovoltaic cells,' Solar Energy Materials, vol. 1, no. 1-2, pp. 43-57, 1979.
[32] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, 'Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications,' Journal of Materials Chemistry A, vol. 1, no. 18, pp. 5628-5641, 2013.
[33] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, 'Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,' Science, vol. 342, no. 6156, pp. 341-344, 2013.
[34] C. S. Ponseca Jr, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. r. Pascher, T. Harlang, P. Chabera, T. Pullerits, and A. Stepanov, 'Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,' Journal of the American Chemical Society, vol. 136, no. 14, pp. 5189-5192, 2014.
[35] D. B. Mitzi, 'Solution-processed inorganic semiconductors,' Journal of Materials Chemistry, vol. 14, no. 15, pp. 2355-2365, 2004.
[36] 陳新傑, 岳宏霖, 莊名凱, and 陳方中, '鈣鈦礦太陽能電池,' 國家奈米元件實驗室奈米通, vol. 24, no. 2, pp. 21-26, 2017.
[37] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, 'Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,' Scientific Reports, vol. 2, p. 591, 2012.
[38] J. Wei, Q. Zhao, H. Li, C. L. Shi, J. J. Tian, G. Z. Cao, and D. P. Yu, 'Perovskite solar cells:promise of photovoltaics,' Scientla Sinica Technologica, vol. 44, no. 8, pp. 801-821, 2014.
[39] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, 'Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,' Science, p. 1228604, 2012.
[40] M. Liu, M. B. Johnston, and H. J. Snaith, 'Efficient planar heterojunction perovskite solar cells by vapour deposition,' Nature, vol. 501, no. 7467, p. 395, 2013.
[41] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, 'Sequential deposition as a route to high-performance perovskite-sensitized solar cells,' Nature, vol. 499, no. 7458, p. 316, 2013.
[42] N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, 'Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials,' Journal of the American Chemical Society, vol. 135, no. 51, pp. 19087-19090, 2013.
[43] A. A. f. t. A. o. Science, 'Newcomer juices up the race to harness sunlight,' Science, vol. 342, no. 6165, pp. 1438-1439, 2013.
[44] A. Kim, H. Lee, H. C. Kwon, H. S. Jung, N. G. Park, S. Jeong, and J. Moon, 'Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells,' Nanoscale, vol. 8, no. 12, pp. 6308-6316, 2016.
[45] K. K. Sears, M. Fievez, M. Gao, H. C. Weerasinghe, C. D. Easton, and D. Vak, 'ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes,' Solar RRL, vol. 1, no. 8, p. 1700059, 2017.
[46] Y. Jin, Y. Sun, K. Wang, Y. Chen, Z. Liang, Y. Xu, and F. Xiao, 'Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells,' Nano Research, vol. 11, no. 4, pp. 1998-2011, 2018.
[47] E. Lee, J. Ahn, H.-C. Kwon, S. Ma, K. Kim, S. Yun, and J. Moon, 'All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection,' Advanced Energy Materials, vol. 8, no. 9, p. 1702182, 2018.
[48] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J. P. Simonato, 'Flexible transparent conductive materials based on silver nanowire networks: a review,' Nanotechnology, vol. 24, no. 45, p. 452001, 2013.
[49] W. He and C. Ye, 'Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review,' Journal of Materials Science & Technology, vol. 31, no. 6, pp. 581-588, 2015.
[50] S. Yang, W. Fu, Z. Zhang, H. Chen, and C.-Z. Li, 'Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite,' Journal of Materials Chemistry A, vol. 5, no. 23, pp. 11462-11482, 2017.
[51] B. Abdollahi Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi, and A. Moshaii, 'All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate,' Chemical Communications, vol. 53, no. 4, pp. 747-750, 2017.
[52] T. Liu, W. Liu, Y. Zhu, S. Wang, G. Wu, and H. Chen, 'All solution processed perovskite solar cells with Ag@Au nanowires as top electrode,' Solar Energy Materials and Solar Cells, vol. 171, pp. 43-49, 2017.
[53] K. Han, M. Xie, L. Zhang, L. Yan, J. Wei, G. Ji, Q. Luo, J. Lin, Y. Hao, and C.-Q. Ma, 'Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode,' Solar Energy Materials and Solar Cells, vol. 185, pp. 399-405, 2018.
[54] M. Xie, H. Lu, L. Zhang, J. Wang, Q. Luo, J. Lin, L. Ba, H. Liu, W. Shen, L. Shi, and C.-Q. Ma, 'Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode,' Solar RRL, vol. 2, no. 2, p. 1700184, 2018.
[55] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, 'Fabrication of silver nanowire transparent electrodes at room temperature,' Nano Research, vol. 4, no. 12, pp. 1215-1222, 2011.
[56] E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, 'Self-limited plasmonic welding of silver nanowire junctions,' Nature Materials, vol. 11, no. 3, pp. 241-249, 2012.
[57] S. B. Yang, H. Choi, D. S. Lee, C. G. Choi, S. Y. Choi, and I. D. Kim, 'Improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer,' Small, vol. 11, no. 11, pp. 1293-1300, 2015.
[58] J. H. Park, G. T. Hwang, S. Kim, J. Seo, H. J. Park, K. Yu, T. S. Kim, and K. J. Lee, 'Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester,' Advanced Materials, vol. 29, no. 5, 2017.
[59] B.-K. Yu, D. Vak, J. Jo, S.-I. Na, S.-S. Kim, M.-K. Kim, and D.-Y. Kim, 'Factors to be considered in bulk heterojunction polymer solar cells fabricated by the spray process,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 6, pp. 1838-1846, 2010.
[60] K. X. Steirer, M. O. Reese, B. L. Rupert, N. Kopidakis, D. C. Olson, R. T. Collins, and D. S. Ginley, 'Ultrasonic spray deposition for production of organic solar cells,' Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 447-453, 2009.
[61] F. Aziz and A. F. Ismail, 'Spray coating methods for polymer solar cells fabrication: a review,' Materials Science in Semiconductor Processing, vol. 39, pp. 416-425, 2015.
[62] J.-W. Kang, Y.-J. Kang, S. Jung, M. Song, D.-G. Kim, C. Su Kim, and S. H. Kim, 'Fully spray-coated inverted organic solar cells,' Solar Energy Materials and Solar Cells, vol. 103, pp. 76-79, 2012.
[63] C. Girotto, B. P. Rand, J. Genoe, and P. Heremans, 'Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells,' Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 454-458, 2009.
[64] I. Jelight Company, 'UVO-cleaner model 42 series instruction manual,' Jelight Company, Inc.
[65] S. Wang, W. Yuan, and Y. S. Meng, 'Spectrum-dependent spiro-ometad oxidization mechanism in perovskite solar cells,' ACS Applied Materials & Interfaces, vol. 7, no. 44, pp. 24791-24798, 2015.
[66] 羅聖全, '掃描式電子顯微鏡(SEM),' 科學研習, vol. 52-5, 2013.
[67] Y. T. Liao, '4-point probe user manual,'NSC Southern Region MEMS Research Center, 2003.
[68] M. B. Heaney, 'Electrical conductivity and resistivity.,' in Electrical Measurement, Signal Processing, and Displays, J. G. Webster., Ed. CRC Press LLC, pp. 7-1, 2003.
[69] JASCO, 'Model V-630,650,660,670 Spectrophotometer manual,' JASCO Croporation, 2010.
[70] J. Jeong, 'Photovoltaics: Measuring the'sun', 2009.
[71] 蔡進譯, '超高效率太陽電池-從愛因斯坦的光電效應談起,' 物理雙月刊, vol. 27, no. 5, pp. 701-719, 2005.
[72] K. Technologies, '太陽能 / 光電電池之 IV 及 CV 特性分析 - 使用B1500A,' Keysight Technologies, 2014.
[73] W.-C. Chen, 'Highly efficient semi-transparent polymer solar cells,' Master, department of photonic and display institute, national chiao tung university, 2008.
[74] L. Wang, G.-R. Li, Q. Zhao, and X.-P. Gao, 'Non-precious transition metals as counter electrode of perovskite solar cells,' Energy Storage Materials, vol. 7, pp. 40-47, 2017.
[75] F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Grätzel, 'Electron transport and recombination in solid-state dye solar cell with spiro-Oometad as hole conductor,' Journal of the American Chemical Society, vol. 131, no. 2, pp. 558-562, 2009.
[76] E. J. Juarez-Perez, M. Wubetaler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, 'Role of the selective contacts in the performance of lead halide perovskite solar cells,' Journal of Physical Chemistry Letters, vol. 5, no. 4, pp. 680-685, 2014.
[77] B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, 'Recombination study of combined halides (Cl, Br, I) perovskite solar cells,' Journal of Physical Chemistry Letters, vol. 5, no. 10, pp. 1628-1635, 2014.
[78] C. Hsu, S. Lien, Y. Yang, J. Chen, I. Cheng, and C. Hsu, 'Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process,' Thin Solid Films, vol. 570, pp. 423-428, 2014.
[79] O. Godoy-Cabrera, R. López-Callejas, R. Valencia, A. Muñoz-Castro, S. Barocio, A. Chávez, A. Mercado-Cabrera, A. de La Piedad-Beneitez, B. Rodríguez-Méndez, and J. Rodríguez-Arce, 'Effect of air-oxygen and argon-oxygen mixtures on dielectric barrier discharge decomposition of toluene,' Brazilian journal of physics, vol. 34, no. 4B, pp. 1766-1770, 2004.
[80] J.-S. Chang, P. A. Lawless, and T. Yamamoto, 'Corona discharge processes,' IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
[81] Y. Ahn, Y. Jeong, and Y. Lee, 'Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide,' ACS Applied Materials & Interfaces, vol. 4, no. 12, pp. 6410-6414, 2012.
[82] I.-C. Ni, 'Multidisciplinary application of assembled nanostructure consisted with molecule functionalized metal nanoparticles,' Doctor, Department of Physics, National Dong Hwa University, 2017.
[83] H. Abdullah, D.-H. Kuo, Y.-R. Kuo, F.-A. Yu, and K.-B. Cheng, 'Facile synthesis and recyclability of thin nylon film-supported n-type ZnO/p-Type Ag2O nano composite for visible light photocatalytic degradation of organic dye,' The Journal of Applied Surface Science, vol. 467, no. 13, pp. 7144-7154, 2019.
[84] B. Liu,S. Wang, and Z. Ma, ' High-performance perovskite solar cells with large grain-size obtained by the synergy of urea and dimethyl sulfoxide,' Journal of Molecular Catalysis A: Chemical, vol. 424, pp. 37-44, 2016.
[85] S. Ma, J. Xue, Y. Zhou, and Z. Zhang, 'Enhanced visible-light photocatalytic activity of Ag2O/g-C3N4 p–n heterojunctions synthesized via a photochemical route for degradation of tetracycline hydrochloride,' RSC Advances, vol. 5, no. 50, pp. 40000-40006, 2015.
[86] L. Shi, L. Liang, J. Ma, F. Wang, and J. Sun, 'Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light,' Catalysis Science & Technology, vol. 4, no. 3, p. 758, 2014.
[87] C.-M. Liu, J.-W. Liu, G.-Y. Zhang, J.-B. Zhang, Q.-S. Wu, Y.-Y. Xu, and Y.-Q. Sun, 'Facile room-temperature precipitation strategy for Ag2O/Bi2WO6 heterojunction with high simulated sunlight photocatalytic performance via bi-directed electron migration mechanism,' RSC Advances, vol. 5, no. 41, pp. 32333-32342, 2015.
[88] D. C. Choo and T. W. Kim, 'Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment,' Science Report, vol. 7, no. 1, p. 1696, 2017.
[89] R. Hock, T. Mayer, and W. Jaegermann, 'P-type doping of spiro-meotad with WO3 and the Spiro-MeOTAD/WO3 interface investigated by synchrotron-induced photoelectron spectroscopy,' The Journal of Physical Chemistry C, vol. 116, no. 34, pp. 18146-18154, 2012.
[90] L. K. Ono, P. Schulz, J. J. Endres, G. O. Nikiforov, Y. Kato, A. Kahn, and Y. Qi, 'Air-exposure-induced gas-molecule incorporation into spiro-meotad Films,' Journal of Physical Chemistry Letters, vol. 5, no. 8, pp. 1374-1379, 2014.
[91] T.-W. Ng, C.-Y. Chan, Q.-D. Yang, H.-X. Wei, M.-F. Lo, V. A. L. Roy, W.-J. Zhang, and C.-S. Lee, 'Charge interaction and interfacial electronic structures in a solid-state dye-sensitized solar cell,' Organic Electronics, vol. 14, no. 11, pp. 2743-2747, 2013.
[92] Z. Hawash, L. K. Ono, S. R. Raga, M. V. Lee, and Y. Qi, 'Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-meotad Films,' Chemistry of Materials, vol. 27, no. 2, pp. 562-569, 2015.
[93] D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, and J. O. Thomas, 'A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes,' Journal of Materials Chemistry, vol. 19, no. 1, pp. 82-88, 2009.
[94] H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J. H. Jeong, E. Lee, J. Y. Lee, and I. Park, 'Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization,' Small, vol. 10, no. 20, pp. 4171-4181, 2014.
[95] Y. Han, R. Lupitskyy, T. M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, 'Effect of oxidation on surface-enhanced raman scattering activity of silver nanoparticles: a quantitative correlation,' Analytical Chemistry, vol. 83, no. 15, pp. 5873-5880, 2011.
[96] G. Waterhouse, G. Bowmaker, and J. Metson, 'Oxidation of a polycrystalline silver foil by reaction with ozone,' Applied Surface Science, vol. 183, no. 3-4, pp. 191-204, 2001.
[97] M. Bielmann, P. Schwaller, P. Ruffieux, O. Gröning, L. Schlapbach, and P. Gröning, 'AgO investigated by photoelectron spectroscopy: evidence for mixed valence,' Physical Review B, vol. 65, no. 23, p. 235431, 2002.
[98] C.-W. Chen, P.-Y. Hsieh, H.-H. Chiang, C.-L. Lin, H.-M. Wu, and C.-C. Wu, 'Top-emitting organic light-emitting devices using surface-modified Ag anode,' Applied Physics Letters, vol. 83, no. 25, pp. 5127-5129, 2003.
[99] C.-T. Wang, C.-C. Ting, P.-C. Kao, S.-R. Li, and S.-Y. Chu, 'Improvement of OLED performance by tuning of silver oxide buffer layer composition on silver grid surface using UV-ozone treatment,' Applied Physics Letters, vol. 113, no. 5, p. 051602, 2018.
[100] Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, and Y. Qi, 'Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes,' Advanced Materials Interfaces, vol. 2, no. 13, p. 1500195, 2015.
[101] H. D. Kim, N. Yanagawa, A. Shimazaki, M. Endo, A. Wakamiya, H. Ohkita, H. Benten, and Shinzaburo Ito, 'Origin of open-circuit voltage loss in polymer solar cells and perovskite solar cells,' ACS Applied Materials & Interfaces, vol. 7, no. 44, pp. 19988-19997, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78512-
dc.description.abstract本研究以噴閥塗佈製備奈米銀線薄膜對電極並搭配低溫燒結之奈米顆粒TiO2電子傳輸層,成功於PEN / ITO基板上開發可撓性平面正規結構鈣鈦礦太陽能電池。接著以短時間紫外光臭氧處理奈米銀線對電極,以提升元件特性。最後,研究可撓性鈣鈦礦太陽能電池在多次彎曲後特性的變化。
研究中奈米銀線對電極以噴閥式塗佈法製備,藉由調控載流氣體(空氣)壓力、噴塗次數與基板加熱溫度對元件進行最佳化。接著,再對奈米銀線對電極面進行紫外光臭氧處理30、60、120與180 s。由電化學阻抗分析顯示,在短時間的紫外光臭氧處理後,奈米銀線/spiro-OMeTAD界面傳輸阻抗有所下降,於處理時間60 s時達到最佳效果,此時元件的能量轉換效率為12.13 %,開路電壓為1.04 V,短路電流密度為19.97 mA/cm2,填充因子為61.5 %;相較於未經紫外光臭氧處理之元件(能量轉換效率11.15 %,開路電壓1.031 V,短路電流密度19.2 mA/cm2與填充因子53.4 %),效率顯著提升8 %。最後針對紫外光臭氧處理之元件進行彎曲穩定性測試,在經過100次和500次的彎曲後,元件效率仍保持在未彎曲前的94%和75%。
zh_TW
dc.description.abstractIn this study, all-solution processed flexible n-i-p type planar perovskite solar cells were demonstrated by using low-temperature nanoparticle TiO2 electron transpart layers and solution-processed silver nanowires (AgNWs) counter electrodes. Next, an ultraviolet ozone (UVO) treatment was applied to the AgNWs counter electrode to improve the cell performance. Finally, the effect of cyclic bending on the performace of the flexible perovskite cells was investigated.
The deposition of AgNWs was carried out by spray coating with air as carrier gas. The optimization paramters include: the pressure of the carrier gas, the number of scans and the substrate temperature. Next, an UVO treatment was performed on the AgNWs counter electrode for 30, 60, 120 and 180 s. The electrochemical impedance spectroscopy analysis reveals that the short UVO treatment can reduce the charger transfer resistance at the spiro-OMeTAD/AgNWs interface. With an optimal UVO treatment duration of 60 s, the cell exhibits a photoelectric conversion efficiency (PCE) of 12.13 %, open circuit voltage (Voc) of 1.04 V, short circuit current density (Jsc) of 19.97 mA/cm2, and fill factor (F.F.) of 61.5 %. Compared with the counterpart without UVO treatment (PCE of 11.15 %, Voc of 1.031 V, Jsc of 19.2 mA/cm2 and F.F. of 53.4 %), the PCE is greatly improved 8 %. Finally, we perform the bending test on the UVO treated cell. After 100 and 500 bending cycles, the cell efficiency remaines at 94% and 75% of its initial value, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:01:14Z (GMT). No. of bitstreams: 1
ntu-108-R06941002-1.pdf: 6014716 bytes, checksum: d9c545b989f6482fd292ca8ae9b673d2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝ii
中文摘要 iii
Abstractiv
目錄v
圖目錄viii
表目錄xiv
第1章 緒論16
1.1 前言16
1.2 太陽能電池發展16
1.3 研究動機18
1.4 論文架構18
第2章 文獻回顧20
2.1 太陽能電池20
2.1.1 太陽能電池原理20
2.1.2 太陽能電池特性參數21
2.2 鈣鈦礦太陽能電池24
2.2.1 鈣鈦礦材料24
2.2.2 鈣鈦礦太陽能電池發展25
2.2.3 鈣鈦礦太陽能電池溶液製程26
2.2.4 溶液式奈米銀線電極製程26
2.2.5 奈米銀線電極於正結構鈣鈦礦太陽能電池之應用33
2.2.6 奈米銀線電極於反結構鈣鈦礦太陽能電池之應用38
2.2.7 可撓式鈣鈦礦太陽能電池44
第3章 研究方法49
3.1 製程儀器49
3.1.1 氮氣手套箱49
3.1.2 旋轉塗佈機50
3.1.3 噴閥式塗佈機50
3.1.4 離心機51
3.1.5 紫外光臭氧系統52
3.2 量測系統53
3.2.1 太陽光模擬器53
3.2.2 掃描式電子顯微鏡54
3.2.3 原子力顯微鏡55
3.2.4 X光子繞射儀55
3.2.5 紫外光-可見光光譜儀56
3.2.6 電化學阻抗58
3.3 實驗材料介紹59
3.3.1 銦錫氧化物 (ITO)59
3.3.2 軟性基版59
3.3.3 電子傳輸層材料60
3.3.4 主動層材料60
3.3.5 電洞傳輸層材料61
3.3.6 對電極材料61
3.4 可撓性鈣鈦礦太陽能電池製程62
3.4.1 基材清洗62
3.4.2 電子傳輸層製備63
3.4.3 鈣鈦礦調配、塗佈及燒結64
3.4.4 電洞傳輸層調配、塗佈65
3.4.5 奈米銀線對電極置備及後處理65
第4章 實驗結果與討論67
4.1 不同TiO2電子傳輸層製備方式對鈣鈦礦太陽能電池效能之影響67
4.2 不同基板對鈣鈦礦太陽能電池效能之影響70
4.2.1 基板比較70
4.2.2 不同基板對低溫TiO2電子傳輸層特性的影響71
4.2.3 不同基板對Perovskite吸收層的影響73
4.2.4 不同基板對鈣鈦礦太陽能電池特性的影響79
4.3 奈米銀線對電極應用於可撓性鈣鈦礦太陽能電池81
4.3.1 噴閥式塗佈(次數)81
4.3.2 噴閥式塗佈(壓力)84
4.3.3 噴閥式塗佈(溫度)85
4.3.4 可撓性鈣鈦礦太陽能電池87
4.4 紫外光臭氧處理奈米銀對電極對可撓性鈣鈦礦太陽能電池特性之影響 92
4.4.1 紫外光臭氧處理之可撓性鈣鈦礦太陽能電池92
4.4.2 電化學阻抗分析96
4.4.3 奈米銀線及Spiro-OMeTAD之XPS分析98
4.4.4 紫外光臭氧處理之可撓性鈣鈦礦太陽能電池的彎曲測試103
第5章 結論與未來展望107
附錄A UV-Vis分析108
附錄B 薄膜分析110
附錄C111
參考文獻 112
dc.language.isozh-TW
dc.title以溶液製程製備之可撓性鈣鈦礦太陽能電池zh_TW
dc.titleSolution-Processed Flexible Perovskite Solar Cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰,徐振哲,吳肇欣,吳育任
dc.subject.keyword可撓性鈣鈦礦太陽能電池,奈米銀線,噴閥式塗佈,紫外光臭氧處理,彎曲測試,zh_TW
dc.subject.keywordflexible perovskite solar cell,silver nanowires,spray coating,ultraviolet ozone,bending test,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201903991
dc.rights.note有償授權
dc.date.accepted2019-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06941002-1.pdf
  目前未授權公開取用
5.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved